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EC 6.1 Forming carbon-oxygen bonds
This subclass contains a single sub-subclass for enzymes that acylate a tRNA with the corresponding amino acid, forming a
carbon-oxygen bond (amino-acid—tRNA ligases; EC 6.1.1).

EC 6.1.1 Ligases forming aminoacyl-tRNA and related compounds

EC 6.1.1.1
Accepted name: tyrosine—tRNA ligase

Reaction: ATP + L-tyrosine + tRNATyr = AMP + diphosphate + L-tyrosyl-tRNATyr

Systematic name: L-tyrosine:tRNATyr ligase (AMP-forming)
References: [10, 89, 190, 454, 52]

[EC 6.1.1.1 created 1961, modified 2002]

EC 6.1.1.2
Accepted name: tryptophan—tRNA ligase

Reaction: ATP + L-tryptophan + tRNATrp = AMP + diphosphate + L-tryptophyl-tRNATrp

Other name(s): tryptophanyl-tRNA synthetase; L-tryptophan-tRNATrp ligase (AMP-forming); tryptophanyl-transfer
ribonucleate synthetase; tryptophanyl-transfer ribonucleic acid synthetase; tryptophanyl-transfer
RNA synthetase; tryptophanyl ribonucleic synthetase; tryptophanyl-transfer ribonucleic synthetase;
tryptophanyl-tRNA synthase; tryptophan translase; TrpRS

Systematic name: L-tryptophan:tRNATrp ligase (AMP-forming)
References: [99, 399, 551]

[EC 6.1.1.2 created 1961, modified 2002]

EC 6.1.1.3
Accepted name: threonine—tRNA ligase

Reaction: ATP + L-threonine + tRNAThr = AMP + diphosphate + L-threonyl-tRNAThr

Other name(s): threonyl-tRNA synthetase; threonyl-transfer ribonucleate synthetase; threonyl-transfer RNA syn-
thetase; threonyl-transfer ribonucleic acid synthetase; threonyl ribonucleic synthetase; threonine-
transfer ribonucleate synthetase; threonine translase; threonyl-tRNA synthetase; TRS

Systematic name: L-threonine:tRNAThr ligase (AMP-forming)
References: [10, 190]

[EC 6.1.1.3 created 1961]

EC 6.1.1.4
Accepted name: leucine—tRNA ligase

Reaction: ATP + L-leucine + tRNALeu = AMP + diphosphate + L-leucyl-tRNALeu

Other name(s): leucyl-tRNA synthetase; leucyl-transfer ribonucleate synthetase; leucyl-transfer RNA synthetase;
leucyl-transfer ribonucleic acid synthetase; leucine-tRNA synthetase; leucine translase

Systematic name: L-leucine:tRNALeu ligase (AMP-forming)
References: [10, 38, 39]

[EC 6.1.1.4 created 1961]

EC 6.1.1.5
Accepted name: isoleucine—tRNA ligase
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Reaction: ATP + L-isoleucine + tRNAIle = AMP + diphosphate + L-isoleucyl-tRNAIle

Other name(s): isoleucyl-tRNA synthetase; isoleucyl-transfer ribonucleate synthetase; isoleucyl-transfer RNA syn-
thetase; isoleucine-transfer RNA ligase; isoleucine-tRNA synthetase; isoleucine translase

Systematic name: L-isoleucine:tRNAIle ligase (AMP-forming)
References: [10, 38, 39]

[EC 6.1.1.5 created 1961]

EC 6.1.1.6
Accepted name: lysine—tRNA ligase

Reaction: ATP + L-lysine + tRNALys = AMP + diphosphate + L-lysyl-tRNALys

Other name(s): lysyl-tRNA synthetase; lysyl-transfer ribonucleate synthetase; lysyl-transfer RNA synthetase; L-
lysine-transfer RNA ligase; lysine-tRNA synthetase; lysine translase

Systematic name: L-lysine:tRNALys ligase (AMP-forming)
References: [10, 76, 254, 478]

[EC 6.1.1.6 created 1961]

EC 6.1.1.7
Accepted name: alanine—tRNA ligase

Reaction: ATP + L-alanine + tRNAAla = AMP + diphosphate + L-alanyl-tRNAAla

Other name(s): alanyl-tRNA synthetase; alanyl-transfer ribonucleate synthetase; alanyl-transfer RNA synthetase;
alanyl-transfer ribonucleic acid synthetase; alanine-transfer RNA ligase; alanine transfer RNA syn-
thetase; alanine tRNA synthetase; alanine translase; alanyl-transfer ribonucleate synthase; AlaRS;
Ala-tRNA synthetase

Systematic name: L-alanine:tRNAAla ligase (AMP-forming)
References: [191, 535]

[EC 6.1.1.7 created 1961]

[6.1.1.8 Deleted entry. D-alanine-sRNA synthetase]

[EC 6.1.1.8 created 1961, deleted 1965]

EC 6.1.1.9
Accepted name: valine—tRNA ligase

Reaction: ATP + L-valine + tRNAVal = AMP + diphosphate + L-valyl-tRNAVal

Other name(s): valyl-tRNA synthetase; valyl-transfer ribonucleate synthetase; valyl-transfer RNA synthetase; valyl-
transfer ribonucleic acid synthetase; valine transfer ribonucleate ligase; valine translase

Systematic name: L-valine:tRNAVal ligase (AMP-forming)
References: [38, 39]

[EC 6.1.1.9 created 1961]

EC 6.1.1.10
Accepted name: methionine—tRNA ligase

Reaction: ATP + L-methionine + tRNAMet = AMP + diphosphate + L-methionyl-tRNAMet

Other name(s): methionyl-tRNA synthetase; methionyl-transfer ribonucleic acid synthetase; methionyl-transfer ri-
bonucleate synthetase; methionyl-transfer RNA synthetase; methionine translase; MetRS

Systematic name: L-methionine:tRNAMet ligase (AMP-forming)
Comments: In those organisms producing N-formylmethionyl-tRNAfMet for translation initiation, this enzyme also

recognizes the initiator tRNAfMet and catalyses the formation of L-methionyl-tRNAfMet, the substrate
for EC 2.1.2.9, methionyl-tRNA formyltransferase.
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References: [39, 261]

[EC 6.1.1.10 created 1961, modified 2002]

EC 6.1.1.11
Accepted name: serine—tRNA ligase

Reaction: ATP + L-serine + tRNASer = AMP + diphosphate + L-seryl-tRNASer

Other name(s): seryl-tRNA synthetase; SerRS; seryl-transfer ribonucleate synthetase; seryl-transfer RNA synthetase;
seryl-transfer ribonucleic acid synthetase; serine translase

Systematic name: L-serine:tRNASer ligase (AMP-forming)
Comments: This enzyme also recognizes tRNASec, the special tRNA for selenocysteine, and catalyses the forma-

tion of L-seryl-tRNASec, the substrate for EC 2.9.1.1, L-seryl-tRNASec selenium transferase.
References: [226, 291, 537, 371]

[EC 6.1.1.11 created 1961, modified 2002]

EC 6.1.1.12
Accepted name: aspartate—tRNA ligase

Reaction: ATP + L-aspartate + tRNAAsp = AMP + diphosphate + L-aspartyl-tRNAAsp

Other name(s): aspartyl-tRNA synthetase; aspartyl ribonucleic synthetase; aspartyl-transfer RNA synthetase; aspartic
acid translase; aspartyl-transfer ribonucleic acid synthetase; aspartyl ribonucleate synthetase

Systematic name: L-aspartate:tRNAAsp ligase (AMP-forming)
References: [147, 367]

[EC 6.1.1.12 created 1965]

EC 6.1.1.13
Accepted name: D-alanine—poly(phosphoribitol) ligase

Reaction: ATP + D-alanine + poly(ribitol phosphate) = AMP + diphosphate + O-D-alanyl-poly(ribitol phos-
phate)

Other name(s): D-alanyl-poly(phosphoribitol) synthetase; D-alanine: membrane acceptor ligase; D-alanine-D-alanyl
carrier protein ligase; D-alanine-membrane acceptor ligase; D-alanine-activating enzyme

Systematic name: D-alanine:poly(phosphoribitol) ligase (AMP-forming)
Comments: A thioester bond is formed transiently between D-alanine and the sulfhydryl group of the 4′-

phosphopantetheine prosthetic group of D-alanyl carrier protein during the activation of the alanine.
Involved in the synthesis of teichoic acids.

References: [26, 422, 388, 180, 103]

[EC 6.1.1.13 created 1965, modified 2001]

EC 6.1.1.14
Accepted name: glycine—tRNA ligase

Reaction: ATP + glycine + tRNAGly = AMP + diphosphate + glycyl-tRNAGly

Other name(s): glycyl-tRNA synthetase; glycyl-transfer ribonucleate synthetase; glycyl-transfer RNA synthetase;
glycyl-transfer ribonucleic acid synthetase; glycyl translase

Systematic name: glycine:tRNAGly ligase (AMP-forming)
References: [137, 362]

[EC 6.1.1.14 created 1972]
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EC 6.1.1.15
Accepted name: proline—tRNA ligase

Reaction: ATP + L-proline + tRNAPro = AMP + diphosphate + L-prolyl-tRNAPro

Other name(s): prolyl-tRNA synthetase; prolyl-transferRNA synthetase; prolyl-transfer ribonucleate synthetase; pro-
line translase; prolyl-transfer ribonucleic acid synthetase; prolyl-s-RNA synthetase; prolinyl-tRNA
ligase

Systematic name: L-proline:tRNAPro ligase (AMP-forming)
References: [366, 391]

[EC 6.1.1.15 created 1972]

EC 6.1.1.16
Accepted name: cysteine—tRNA ligase

Reaction: ATP + L-cysteine + tRNACys = AMP + diphosphate + L-cysteinyl-tRNACys

Other name(s): cysteinyl-tRNA synthetase; cysteinyl-transferRNA synthetase; cysteinyl-transfer ribonucleate syn-
thetase; cysteine translase

Systematic name: L-cysteine:tRNACys ligase (AMP-forming)
References: [312]

[EC 6.1.1.16 created 1972]

EC 6.1.1.17
Accepted name: glutamate—tRNA ligase

Reaction: ATP + L-glutamate + tRNAGlu = AMP + diphosphate + L-glutamyl-tRNAGlu

Other name(s): glutamyl-tRNA synthetase; glutamyl-transfer ribonucleate synthetase; glutamyl-transfer RNA syn-
thetase; glutamyl-transfer ribonucleic acid synthetase; glutamate-tRNA synthetase; glutamic acid
translase

Systematic name: L-glutamate:tRNAGlu ligase (AMP-forming)
References: [414]

[EC 6.1.1.17 created 1972]

EC 6.1.1.18
Accepted name: glutamine—tRNA ligase

Reaction: ATP + L-glutamine + tRNAGln = AMP + diphosphate + L-glutaminyl-tRNAGln

Other name(s): glutaminyl-tRNA synthetase; glutaminyl-transfer RNA synthetase; glutaminyl-transfer ribonucleate
synthetase; glutamine-tRNA synthetase; glutamine translase; glutamate-tRNA ligase; glutaminyl ri-
bonucleic acid; GlnRS

Systematic name: L-glutamine:tRNAGln ligase (AMP-forming)
References: [414]

[EC 6.1.1.18 created 1972]

EC 6.1.1.19
Accepted name: arginine—tRNA ligase

Reaction: ATP + L-arginine + tRNAArg = AMP + diphosphate + L-arginyl-tRNAArg

Other name(s): arginyl-tRNA synthetase; arginyl-transfer ribonucleate synthetase; arginyl-transfer RNA synthetase;
arginyl transfer ribonucleic acid synthetase; arginine-tRNA synthetase; arginine translase

Systematic name: L-arginine:tRNAArg ligase (AMP-forming)
References: [12, 317, 333]

[EC 6.1.1.19 created 1972]

5

http://www.enzyme-database.org/query.php?ec=6.1.1.15
http://www.enzyme-database.org/query.php?ec=6.1.1.16
http://www.enzyme-database.org/query.php?ec=6.1.1.17
http://www.enzyme-database.org/query.php?ec=6.1.1.18
http://www.enzyme-database.org/query.php?ec=6.1.1.19


EC 6.1.1.20
Accepted name: phenylalanine—tRNA ligase

Reaction: ATP + L-phenylalanine + tRNAPhe = AMP + diphosphate + L-phenylalanyl-tRNAPhe

Other name(s): phenylalanyl-tRNA synthetase; phenylalanyl-transfer ribonucleate synthetase; phenylalanine-tRNA
synthetase; phenylalanyl-transfer RNA synthetase; phenylalanyl-tRNA ligase; phenylalanyl-transfer
RNA ligase; L-phenylalanyl-tRNA synthetase; phenylalanine translase

Systematic name: L-phenylalanine:tRNAPhe ligase (AMP-forming)
References: [481]

[EC 6.1.1.20 created 1972]

EC 6.1.1.21
Accepted name: histidine—tRNA ligase

Reaction: ATP + L-histidine + tRNAHis = AMP + diphosphate + L-histidyl-tRNAHis

Other name(s): histidyl-tRNA synthetase; histidyl-transfer ribonucleate synthetase; histidine translase
Systematic name: L-histidine:tRNAHis ligase (AMP-forming)

References: [504]

[EC 6.1.1.21 created 1972]

EC 6.1.1.22
Accepted name: asparagine—tRNA ligase

Reaction: ATP + L-asparagine + tRNAAsn = AMP + diphosphate + L-asparaginyl-tRNAAsn

Other name(s): asparaginyl-tRNA synthetase; asparaginyl-transfer ribonucleate synthetase; asparaginyl transfer RNA
synthetase; asparaginyl transfer ribonucleic acid synthetase; asparagyl-transfer RNA synthetase; as-
paragine translase

Systematic name: L-asparagine:tRNAAsn ligase (AMP-forming)
References: [100]

[EC 6.1.1.22 created 1976]

EC 6.1.1.23
Accepted name: aspartate—tRNAAsn ligase

Reaction: ATP + L-aspartate + tRNAAsx = AMP + diphosphate + L-aspartyl-tRNAAsx

Other name(s): nondiscriminating aspartyl-tRNA synthetase
Systematic name: L-aspartate:tRNAAsx ligase (AMP-forming)

Comments: When this enzyme acts on tRNAAsp, it catalyses the same reaction as EC 6.1.1.12, aspartate—tRNA
ligase. It has, however, diminished discrimination, so that it can also form aspartyl-tRNAAsn. This
relaxation of specificity has been found to result from the absence of a loop in the tRNA that specifi-
cally recognizes the third position of the anticodon [202]. This accounts for the ability of this enzyme
in, for example, Thermus thermophilus, to recognize both tRNAAsp (GUC anticodon) and tRNAAsn

(GUU anticodon). The aspartyl-tRNAAsn is not used in protein synthesis until it is converted by EC
6.3.5.6, asparaginyl-tRNA synthase (glutamine-hydrolysing), into asparaginyl-tRNAAsn.

References: [202, 449, 31]

[EC 6.1.1.23 created 2002]

EC 6.1.1.24
Accepted name: glutamate—tRNAGln ligase

Reaction: ATP + L-glutamate + tRNAGlx = AMP + diphosphate + L-glutamyl-tRNAGlx

Other name(s): nondiscriminating glutamyl-tRNA synthetase
Systematic name: L-glutamate:tRNAGlx ligase (AMP-forming)
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Comments: When this enzyme acts on tRNAGlu, it catalyses the same reaction as EC 6.1.1.17, glutamate—tRNA
ligase. It has, however, diminished discrimination, so that it can also form glutamyl-tRNAGln. This
relaxation of specificity has been found to result from the absence of a loop in the tRNA that specif-
ically recognizes the third position of the anticodon [202]. This accounts for the ability of this en-
zyme in, for example, Bacillus subtilis, to recognize both tRNA1

Gln (UUG anticodon) and tRNAGlu

(UUC anticodon) but not tRNA2
Gln (CUG anticodon). The ability of this enzyme to recognize both

tRNAGlu and one of the tRNAGln isoacceptors derives from their sharing a major identity element, a
hypermodified derivative of U34 (5-methylaminomethyl-2-thiouridine). The glutamyl-tRNAGln is not
used in protein synthesis until it is converted by EC 6.3.5.7, glutaminyl-tRNA synthase (glutamine-
hydrolysing), into glutaminyl-tRNAGln.

References: [202, 449, 235]

[EC 6.1.1.24 created 2002]

[6.1.1.25 Deleted entry. lysine—tRNAPyl ligase. The tRNAPyl is now known only to be charged with pyrrolysine (cf. EC
6.1.1.26).]

[EC 6.1.1.25 created 2002, deleted 2012]

EC 6.1.1.26
Accepted name: pyrrolysine—tRNAPyl ligase

Reaction: ATP + L-pyrrolysine + tRNAPyl = AMP + diphosphate + L-pyrrolysyl-tRNAPyl

Other name(s): PylS; pyrrolysyl-tRNA synthetase
Systematic name: L-pyrrolysine:tRNAPyl ligase (AMP-forming)

Comments: In organisms such as Methanosarcina barkeri that incorporate the modified amino acid pyrrolysine
(Pyl) into certain methylamine methyltransferases, an unusual tRNAPyl, with a CUA anticodon, can
be charged directly with pyrrolysine by this class II aminoacyl—tRNA ligase. The enzyme is specific
for pyrrolysine as substrate as it cannot be replaced by lysine or any of the other natural amino acids
[44].

References: [44, 397, 447]

[EC 6.1.1.26 created 2007]

EC 6.1.1.27
Accepted name: O-phospho-L-serine—tRNA ligase

Reaction: ATP + O-phospho-L-serine + tRNACys = AMP + diphosphate + O-phospho-L-seryl-tRNACys

Other name(s): O-phosphoseryl-tRNA ligase; non-canonical O-phosphoseryl-tRNA synthetase; SepRS
Systematic name: O-phospho-L-serine:tRNACys ligase (AMP-forming)

Comments: In organisms like Archaeoglobus fulgidus lacking EC 6.1.1.16 (cysteine—tRNA ligase) for the di-
rect Cys-tRNACys formation, Cys-tRNACys is produced by an indirect pathway, in which EC 6.1.1.27
(O-phosphoseryl-tRNA ligase) ligates O-phosphoserine to tRNACys, and EC 2.5.1.73 (O-phospho-
L-seryl-tRNA: Cys-tRNA synthase) converts the produced O-phospho-L-seryl-tRNACys to Cys-
tRNACys. The SepRS/SepCysS pathway is the sole route for cysteine biosynthesis in the organism
[144]. Methanosarcina mazei can use both pathways, the direct route using EC 6.1.1.16 (cysteine—
tRNA ligase) and the indirect pathway with EC 6.1.1.27 and EC 2.5.1.73 (O-phospho-L-seryl-tRNA:
Cys-tRNA synthase) [178].

References: [144, 178]

[EC 6.1.1.27 created 2009]

[6.1.1.28 Deleted entry. proline/cysteine—tRNA ligase. Later published work having demonstrated that this was not a
genuine enzyme, EC 6.1.1.28 was withdrawn at the public-review stage before being made official.]

[EC 6.1.1.28 created 2014, deleted 2014]
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EC 6.1.2 acidâC”alcohol ligases (ester synthases)

EC 6.1.2.1
Accepted name: D-alanine—(R)-lactate ligase

Reaction: D-alanine + (R)-lactate + ATP = D-alanyl-(R)-lactate + ADP + phosphate
Other name(s): VanA; VanB; VanD

Systematic name: D-alanine:(R)-lactate ligase (ADP-forming)
Comments: The product of this enzyme, the depsipeptide D-alanyl-(R)-lactate, can be incorporated into the pep-

tidoglycan pentapeptide instead of the usual D-alanyl-D-alanine dipeptide, which is formed by EC
6.3.2.4, D-alanine—D-alanine ligase. The resulting peptidoglycan does not bind the glycopeptide an-
tibiotics vancomycin and teicoplanin, conferring resistance on the bacteria.

References: [56, 327, 390]

[EC 6.1.2.1 created 2010]

EC 6.1.2.2
Accepted name: nebramycin 5′ synthase

Reaction: (1) tobramycin + carbamoyl phosphate + ATP + H2O = nebramycin 5′ + AMP + diphosphate + phos-
phate (overall reaction)
(1a) carbamoyl phosphate + ATP + H2O = diphosphate + O-carbamoyladenylate + phosphate
(1b) O-carbamoyladenylate + tobramycin = AMP + nebramycin 5′

(2) kanamycin A + carbamoyl phosphate + ATP + H2O = 6′′-O-carbamoylkanamycin A + AMP +
diphosphate + phosphate (overall reaction)
(2a) carbamoyl phosphate + ATP + H2O = diphosphate + O-carbamoyladenylate + phosphate
(2b) O-carbamoyladenylate + kanamycin A = AMP + 6′′-O-carbamoylkanamycin A

Other name(s): tobramycin carbamoyltransferase; TobZ
Systematic name: tobramycin:carbamoyl phosphate ligase (AMP,phosphate-forming)

Comments: Requires Fe(III). The enzyme from the bacterium Streptoalloteichus tenebrarius catalyses the ac-
tivation of carbamoyl phosphate to O-carbamoyladenylate and the subsequent carbamoylation of
kanamycin and tobramycin.

References: [385]

[EC 6.1.2.2 created 2014]

EC 6.1.3 Cyclo-ligases

EC 6.1.3.1
Accepted name: olefin β-lactone synthetase

Reaction: ATP + a (2R,3S)-2-alkyl-3-hydroxyalkanoate = AMP + diphosphate + a cis-3-alkyl-4-alkyloxetan-2-
one

Other name(s): oleC (gene name)
Systematic name: (2R,3S)-2-alkyl-3-hydroxyalkanoate ligase (β-lactone,AMP-forming)

Comments: The enzyme, found in certain bacterial species, participates in a pathway for the production of olefins.
It forms a β-lactone. The alkyl group at C2 of the substrate ends up as the 3-alkyl group of the prod-
uct.

References: [484, 139, 224, 79]

[EC 6.1.3.1 created 2017]
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EC 6.2 Forming carbon-sulfur bonds
This subclass contains enzymes that use the energy from NTP hydrolysis to catalyse the attachment of an acyl group to the sulfur
atom of 4’-phosphopantetheine groups in coenzyme A and acyl-binding proteins, or of a cysteine residue, forming a carbon-sulfur
bond.

EC 6.2.1 Acid-thiol ligases

EC 6.2.1.1
Accepted name: acetate—CoA ligase

Reaction: ATP + acetate + CoA = AMP + diphosphate + acetyl-CoA
Other name(s): acetyl-CoA synthetase; acetyl activating enzyme; acetate thiokinase; acyl-activating enzyme; acetyl

coenzyme A synthetase; acetic thiokinase; acetyl CoA ligase; acetyl CoA synthase; acetyl-coenzyme
A synthase; short chain fatty acyl-CoA synthetase; short-chain acyl-coenzyme A synthetase; ACS

Systematic name: acetate:CoA ligase (AMP-forming)
Comments: Also acts on propanoate and propenoate.
References: [78, 123, 182, 329]

[EC 6.2.1.1 created 1961]

EC 6.2.1.2
Accepted name: medium-chain acyl-CoA ligase

Reaction: ATP + a medium-chain fatty acid + CoA = AMP + diphosphate + a medium-chain acyl-CoA
Other name(s): fadK (gene name); lvaE (gene name); butyryl-CoA synthetase; fatty acid thiokinase (medium chain);

acyl-activating enzyme; fatty acid elongase; fatty acid activating enzyme; fatty acyl coenzyme A syn-
thetase; butyrate—CoA ligase; butyryl-coenzyme A synthetase; L-(+)-3-hydroxybutyryl CoA ligase;
short-chain acyl-CoA synthetase; medium-chain acyl-CoA synthetase; butanoate:CoA ligase (AMP-
forming)

Systematic name: medium-chain fatty acid:CoA ligase (AMP-forming)
Comments: Acts on fatty acids from C4 to C11 and on the corresponding 3-hydroxy and 2,3- or 3,4-unsaturated

acids. The enzyme from the bacterium Pseudomonas putida also acts on 4-oxo and 4-hydroxy deriva-
tives.

References: [290, 301, 538, 339, 408]

[EC 6.2.1.2 created 1961, modified 2011, modified 2018]

EC 6.2.1.3
Accepted name: long-chain-fatty-acid—CoA ligase

Reaction: ATP + a long-chain fatty acid + CoA = AMP + diphosphate + an acyl-CoA
Other name(s): acyl-CoA synthetase; fatty acid thiokinase (long chain); acyl-activating enzyme; palmitoyl-CoA syn-

thase; lignoceroyl-CoA synthase; arachidonyl-CoA synthetase; acyl coenzyme A synthetase; acyl-
CoA ligase; palmitoyl coenzyme A synthetase; thiokinase; palmitoyl-CoA ligase; acyl-coenzyme A
ligase; fatty acid CoA ligase; long-chain fatty acyl coenzyme A synthetase; oleoyl-CoA synthetase;
stearoyl-CoA synthetase; long chain fatty acyl-CoA synthetase; long-chain acyl CoA synthetase; fatty
acid elongase; LCFA synthetase; pristanoyl-CoA synthetase; ACS3; long-chain acyl-CoA synthetase
I; long-chain acyl-CoA synthetase II; fatty acyl-coenzyme A synthetase; long-chain acyl-coenzyme A
synthetase; FAA1

Systematic name: long-chain fatty acid:CoA ligase (AMP-forming)
Comments: Acts on a wide range of long-chain saturated and unsaturated fatty acids, but the enzymes from dif-

ferent tissues show some variation in specificity. The liver enzyme acts on acids from C6 to C20; that
from brain shows high activity up to C24.

References: [27, 196, 348, 496]
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[EC 6.2.1.3 created 1961, modified 1989, modified 2011]

EC 6.2.1.4
Accepted name: succinate—CoA ligase (GDP-forming)

Reaction: GTP + succinate + CoA = GDP + phosphate + succinyl-CoA
Other name(s): succinyl-CoA synthetase (GDP-forming); succinyl coenzyme A synthetase (guanosine diphosphate-

forming); succinate thiokinase (ambiguous); succinic thiokinase (ambiguous); succinyl coenzyme A
synthetase (ambiguous); succinate-phosphorylating enzyme (ambiguous); P-enzyme; SCS (ambigu-
ous); G-STK; succinyl coenzyme A synthetase (GDP-forming); succinyl CoA synthetase (ambiguous)

Systematic name: succinate:CoA ligase (GDP-forming)
Comments: Itaconate can act instead of succinate, and ITP instead of GTP.
References: [174, 229, 309, 439]

[EC 6.2.1.4 created 1961]

EC 6.2.1.5
Accepted name: succinate—CoA ligase (ADP-forming)

Reaction: ATP + succinate + CoA = ADP + phosphate + succinyl-CoA
Other name(s): succinyl-CoA synthetase (ADP-forming); succinic thiokinase (ambiguous); succinate thiokinase

(ambiguous); succinyl-CoA synthetase (ambiguous); succinyl coenzyme A synthetase (adenosine
diphosphate-forming); succinyl coenzyme A synthetase (ambiguous); A-STK (adenin nucleotide-
linked succinate thiokinase); STK (ambiguous); A-SCS

Systematic name: succinate:CoA ligase (ADP-forming)
References: [174, 227, 228]

[EC 6.2.1.5 created 1961]

EC 6.2.1.6
Accepted name: glutarate—CoA ligase

Reaction: ATP + glutarate + CoA = ADP + phosphate + glutaryl-CoA
Other name(s): glutaryl-CoA synthetase; glutaryl coenzyme A synthetase

Systematic name: glutarate:CoA ligase (ADP-forming)
Comments: GTP or ITP can act instead of ATP.
References: [323]

[EC 6.2.1.6 created 1961]

EC 6.2.1.7
Accepted name: cholate—CoA ligase

Reaction: (1) ATP + cholate + CoA = AMP + diphosphate + choloyl-CoA
(2) ATP + (25R)-3α,7α,12α-trihydroxy-5β-cholestan-26-oate + CoA = AMP + diphosphate + (25R)-
3α,7α,12α-trihydroxy-5β-cholestanoyl-CoA

Other name(s): BAL; bile acid CoA ligase; bile acid coenzyme A ligase; choloyl-CoA synthetase; choloyl coenzyme
A synthetase; cholic thiokinase; cholate thiokinase; cholic acid:CoA ligase; 3α,7α,12α-trihydroxy-
5β-cholestanoyl coenzyme A synthetase; 3α,7α,12α-trihydroxy-5β-cholestanoate-CoA ligase;
3α,7α,12α-trihydroxy-5β-cholestanoate-CoA synthetase; THCA-CoA ligase; 3α,7α,12α-trihydroxy-
5β-cholestanate—CoA ligase; 3α,7α,12α-trihydroxy-5β-cholestanate:CoA ligase (AMP-forming);
cholyl-CoA synthetase; trihydroxycoprostanoyl-CoA synthetase

Systematic name: cholate:CoA ligase (AMP-forming)
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Comments: Requires Mg2+ for activity. The mammalian enzyme is membrane-bound and catalyses the first step
in the conjugation of bile acids with amino acids, converting bile acids into their acyl-CoA thioesters.
Chenodeoxycholate, deoxycholate, lithocholate and trihydroxycoprostanoate can also act as substrates
[128]. The bacterial enzyme is soluble and participates in an anaerobic bile acid 7 α-dehydroxylation
pathway [292].

References: [125, 126, 400, 446, 292, 542, 128]

[EC 6.2.1.7 created 1961 (EC 6.2.1.29 created 1992, incorporated 2005), modified 2005]

EC 6.2.1.8
Accepted name: oxalate—CoA ligase

Reaction: ATP + oxalate + CoA = AMP + diphosphate + oxalyl-CoA
Other name(s): oxalyl-CoA synthetase; oxalyl coenzyme A synthetase

Systematic name: oxalate:CoA ligase (AMP-forming)
References: [158]

[EC 6.2.1.8 created 1972]

EC 6.2.1.9
Accepted name: malate—CoA ligase

Reaction: ATP + malate + CoA = ADP + phosphate + malyl-CoA
Other name(s): malyl-CoA synthetase; malyl coenzyme A synthetase; malate thiokinase

Systematic name: malate:CoA ligase (ADP-forming)
References: [343]

[EC 6.2.1.9 created 1972]

EC 6.2.1.10
Accepted name: carboxylic acid—CoA ligase (GDP-forming)

Reaction: GTP + a carboxylate + CoA = GDP + phosphate + acyl-CoA
Other name(s): acyl-CoA synthetase (GDP-forming); acyl coenzyme A synthetase (guanosine diphosphate forming)

Systematic name: carboxylic acid:CoA ligase (GDP-forming)
References: [433]

[EC 6.2.1.10 created 1972, modified 2011]

EC 6.2.1.11
Accepted name: biotin—CoA ligase

Reaction: ATP + biotin + CoA = AMP + diphosphate + biotinyl-CoA
Other name(s): biotinyl-CoA synthetase; biotin CoA synthetase; biotinyl coenzyme A synthetase

Systematic name: biotin:CoA ligase (AMP-forming)
References: [80]

[EC 6.2.1.11 created 1972]

EC 6.2.1.12
Accepted name: 4-coumarate—CoA ligase

Reaction: ATP + 4-coumarate + CoA = AMP + diphosphate + 4-coumaroyl-CoA
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Other name(s): 4-coumaroyl-CoA synthetase; p-coumaroyl CoA ligase; p-coumaryl coenzyme A synthetase; p-
coumaryl-CoA synthetase; p-coumaryl-CoA ligase; feruloyl CoA ligase; hydroxycinnamoyl CoA
synthetase; 4-coumarate:coenzyme A ligase; caffeolyl coenzyme A synthetase; p-hydroxycinnamoyl
coenzyme A synthetase; feruloyl coenzyme A synthetase; sinapoyl coenzyme A synthetase;
4-coumaryl-CoA synthetase; hydroxycinnamate:CoA ligase; p-coumaryl-CoA ligase; p-
hydroxycinnamic acid:CoA ligase; 4CL

Systematic name: 4-coumarate:CoA ligase (AMP-forming)
References: [167, 275]

[EC 6.2.1.12 created 1976]

EC 6.2.1.13
Accepted name: acetate—CoA ligase (ADP-forming)

Reaction: ATP + acetate + CoA = ADP + phosphate + acetyl-CoA
Other name(s): acetyl-CoA synthetase (ADP-forming); acetyl coenzyme A synthetase (adenosine diphosphate-

forming); acetate thiokinase
Systematic name: acetate:CoA ligase (ADP-forming)

Comments: Also acts on propanoate and, very slowly, on butanoate.
References: [416]

[EC 6.2.1.13 created 1978]

EC 6.2.1.14
Accepted name: 6-carboxyhexanoate—CoA ligase

Reaction: ATP + 6-carboxyhexanoate + CoA = AMP + diphosphate + 6-carboxyhexanoyl-CoA
Other name(s): 6-carboxyhexanoyl-CoA synthetase; pimelyl-CoA synthetase

Systematic name: 6-carboxyhexanoate:CoA ligase (AMP-forming)
References: [211, 212]

[EC 6.2.1.14 created 1983]

EC 6.2.1.15
Accepted name: arachidonate—CoA ligase

Reaction: ATP + arachidonate + CoA = AMP + diphosphate + arachidonoyl-CoA
Other name(s): arachidonoyl-CoA synthetase

Systematic name: arachidonate:CoA ligase (AMP-forming)
Comments: Not identical with EC 6.2.1.3 long-chain-fatty-acid—CoA ligase. Icosa-8,11,14-trienoate, but not the

other long-chain fatty acids, can act in place of arachidonate.
References: [546]

[EC 6.2.1.15 created 1984]

EC 6.2.1.16
Accepted name: acetoacetate—CoA ligase

Reaction: ATP + acetoacetate + CoA = AMP + diphosphate + acetoacetyl-CoA
Other name(s): acetoacetyl-CoA synthetase

Systematic name: acetoacetate:CoA ligase (AMP-forming)
Comments: Also acts, more slowly, on L-3-hydroxybutanoate.
References: [143]

[EC 6.2.1.16 created 1984]
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EC 6.2.1.17
Accepted name: propionate—CoA ligase

Reaction: ATP + propanoate + CoA = AMP + diphosphate + propanoyl-CoA
Other name(s): propionyl-CoA synthetase

Systematic name: propanoate:CoA ligase (AMP-forming)
Comments: Propenoate can act instead of propanoate. Not identical with EC 6.2.1.1 (acetate—CoA ligase) or EC

6.2.1.2 (butyrate—CoA ligase).
References: [424]

[EC 6.2.1.17 created 1984]

EC 6.2.1.18
Accepted name: citrate—CoA ligase

Reaction: ATP + citrate + CoA = ADP + phosphate + (3S)-citryl-CoA
Other name(s): citryl-CoA synthetase; citrate:CoA ligase; citrate thiokinase

Systematic name: citrate:CoA ligase (ADP-forming)
Comments: The enzyme is a component of EC 2.3.3.8 ATP citrate synthase.
References: [273, 19]

[EC 6.2.1.18 created 1986]

EC 6.2.1.19
Accepted name: long-chain-fatty-acid—protein ligase

Reaction: ATP + a long-chain fatty acid + [protein]-L-cysteine = AMP + diphosphate + a [protein]-S-(long-
chain-acyl)-L-cysteine

Other name(s): luxE (gene name); acyl-protein synthetase; long-chain-fatty-acid—luciferin-component ligase
Systematic name: long-chain-fatty-acid:protein ligase (AMP-forming)

Comments: Together with a hydrolase component (EC 3.1.2.2/EC 3.1.2.14) and a reductase component (EC
1.2.1.50), this enzyme forms a multienzyme fatty acid reductase complex that produces the long-chain
aldehyde substrate of the bacterial luciferase enzyme (EC 1.14.14.3). The enzyme activates free long-
chain fatty acids, generated by the action of the transferase component, forming a fatty acyl-AMP
intermediate, followed by the transfer of the acyl group to an internal L-cysteine residue. It then trans-
fers the acyl group to EC 1.2.1.50, long-chain acyl-protein thioester reductase.

References: [425, 427, 530, 468, 274]

[EC 6.2.1.19 created 1986, modified 2011, modified 2016]

EC 6.2.1.20
Accepted name: long-chain-fatty-acid—[acyl-carrier-protein] ligase

Reaction: ATP + a long-chain fatty acid + an [acyl-carrier protein] = AMP + diphosphate + a long-chain acyl-
[acyl-carrier protein]

Other name(s): acyl-[acyl-carrier-protein] synthetase (ambiguous); acyl-ACP synthetase (ambiguous); stearoyl-ACP
synthetase; acyl-acyl carrier protein synthetase (ambiguous); long-chain-fatty-acid:[acyl-carrier-
protein] ligase (AMP-forming)

Systematic name: long-chain-fatty-acid:[acyl-carrier protein] ligase (AMP-forming)
Comments: The enzyme ligates long chain fatty acids (with aliphatic chain of 13-22 carbons) to an acyl-carrier

protein. Not identical with EC 6.2.1.3 long-chain-fatty-acid—CoA ligase.
References: [505, 220]

[EC 6.2.1.20 created 1986]

[6.2.1.21 Deleted entry. phenylacetate—CoA ligase. Activity covered by EC 6.2.1.30, phenylacetate—CoA ligase]

[EC 6.2.1.21 created 1986, deleted 2001]
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EC 6.2.1.22
Accepted name: [citrate (pro-3S)-lyase] ligase

Reaction: ATP + acetate + holo-[citrate (pro-3S)-lyase] = AMP + diphosphate + acetyl-[citrate (pro-3S)-lyase]
Other name(s): citrate lyase ligase; citrate lyase synthetase; acetate: SH-[acyl-carrier-protein] enzyme ligase (AMP);

acetate:HS-citrate lyase ligase; acetate:citrate-(pro-3S)-lyase(thiol-form) ligase (AMP-forming);
acetate:[citrate-(pro-3S)-lyase](thiol-form) ligase (AMP-forming)

Systematic name: acetate:holo-[citrate-(pro-3S)-lyase] ligase (AMP-forming)
Comments: Both this enzyme and EC 2.3.1.49,deacetyl-[citrate-(pro-3S)-lyase] S-acetyltransferase, acetylate and

activate EC 4.1.3.6, citrate (pro-3S)-lyase.
References: [15, 16, 402, 448]

[EC 6.2.1.22 created 1989]

EC 6.2.1.23
Accepted name: dicarboxylate—CoA ligase

Reaction: ATP + an α,ω-dicarboxylate + CoA = AMP + diphosphate + an ω-carboxyacyl-CoA
Other name(s): carboxylyl-CoA synthetase; dicarboxylyl-CoA synthetase

Systematic name: ω-dicarboxylate:CoA ligase (AMP-forming)
Comments: Acts on dicarboxylic acids of chain length C5 to C16; the best substrate is dodecanedioic acid.
References: [516]

[EC 6.2.1.23 created 1989, modified 2011]

EC 6.2.1.24
Accepted name: phytanate—CoA ligase

Reaction: ATP + phytanate + CoA = AMP + diphosphate + phytanoyl-CoA
Other name(s): phytanoyl-CoA ligase

Systematic name: phytanate:CoA ligase (AMP-forming)
Comments: Not identical with EC 6.2.1.20 long-chain-fatty-acid—[acyl-carrier-protein] ligase.
References: [346]

[EC 6.2.1.24 created 1989]

EC 6.2.1.25
Accepted name: benzoate—CoA ligase

Reaction: ATP + benzoate + CoA = AMP + diphosphate + benzoyl-CoA
Other name(s): benzoate—coenzyme A ligase; benzoyl-coenzyme A synthetase; benzoyl CoA synthetase (AMP

forming)
Systematic name: benzoate:CoA ligase (AMP-forming)

Comments: Also acts on 2-, 3- and 4-fluorobenzoate, but only very slowly on the corresponding chlorobenzoates.
References: [199, 445]

[EC 6.2.1.25 created 1989]

EC 6.2.1.26
Accepted name: o-succinylbenzoate—CoA ligase

Reaction: ATP + 2-succinylbenzoate + CoA = AMP + diphosphate + 4-(2-carboxyphenyl)-4-oxobutanoyl-CoA
Other name(s): o-succinylbenzoyl-coenzyme A synthetase; o-succinylbenzoate:CoA ligase (AMP-forming)

Systematic name: 2-succinylbenzoate:CoA ligase (AMP-forming)
References: [181, 242, 316]

[EC 6.2.1.26 created 1992]
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EC 6.2.1.27
Accepted name: 4-hydroxybenzoate—CoA ligase

Reaction: ATP + 4-hydroxybenzoate + CoA = AMP + diphosphate + 4-hydroxybenzoyl-CoA
Other name(s): 4-hydroxybenzoate-CoA synthetase; 4-hydroxybenzoate—coenzyme A ligase (AMP-forming); 4-

hydroxybenzoyl coenzyme A synthetase; 4-hydroxybenzoyl-CoA ligase
Systematic name: 4-hydroxybenzoate:CoA ligase (AMP-forming)

References: [324]

[EC 6.2.1.27 created 1992]

EC 6.2.1.28
Accepted name: 3α,7α-dihydroxy-5β-cholestanate—CoA ligase

Reaction: ATP + (25R)-3α,7α-dihydroxy-5β-cholestan-26-oate + CoA = AMP + diphosphate + (25R)-3α,7α-
dihydroxy-5β-cholestanoyl-CoA

Other name(s): 3α,7α-dihydroxy-5β-cholestanoyl coenzyme A synthetase; DHCA-CoA ligase; 3α,7α-dihydroxy-5β-
cholestanate:CoA ligase (AMP-forming)

Systematic name: (25R)-3α,7α-dihydroxy-5β-cholestan-26-oate:CoA ligase (AMP-forming)
References: [400]

[EC 6.2.1.28 created 1992]

[6.2.1.29 Deleted entry. 3α,7α,12α-trihydroxy-5β-cholestanate—CoA ligase. The enzyme is identical to EC 6.2.1.7, cholate—
CoA ligase]

[EC 6.2.1.29 created 1992, deleted 2005]

EC 6.2.1.30
Accepted name: phenylacetate—CoA ligase

Reaction: ATP + phenylacetate + CoA = AMP + diphosphate + phenylacetyl-CoA
Other name(s): phenacyl coenzyme A synthetase; phenylacetyl-CoA ligase; PA-CoA ligase; phenylacetyl-CoA ligase

(AMP-forming)
Systematic name: phenylacetate:CoA ligase (AMP-forming)

Comments: Also acts, more slowly, on acetate, propanoate and butanoate, but not on hydroxy derivatives of
phenylacetate and related compounds.

References: [299]

[EC 6.2.1.30 created 1992 (EC 6.2.1.21 created 1986, incorporated 2001)]

EC 6.2.1.31
Accepted name: 2-furoate—CoA ligase

Reaction: ATP + 2-furoate + CoA = AMP + diphosphate + 2-furoyl-CoA
Other name(s): 2-furoyl coenzyme A synthetase

Systematic name: 2-furoate:CoA ligase (AMP-forming)
References: [241]

[EC 6.2.1.31 created 1992]

EC 6.2.1.32
Accepted name: anthranilate—CoA ligase

Reaction: ATP + anthranilate + CoA = AMP + diphosphate + anthraniloyl-CoA
Other name(s): anthraniloyl coenzyme A synthetase; 2-aminobenzoate—CoA ligase; 2-aminobenzoate—coenzyme A

ligase; 2-aminobenzoate coenzyme A ligase
Systematic name: anthranilate:CoA ligase (AMP-forming)
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References: [13]

[EC 6.2.1.32 created 1992]

EC 6.2.1.33
Accepted name: 4-chlorobenzoate—CoA ligase

Reaction: 4-chlorobenzoate + CoA + ATP = 4-chlorobenzoyl-CoA + AMP + diphosphate
Systematic name: 4-chlorobenzoate:CoA ligase

Comments: Requires Mg2+. This enzyme is part of the bacterial 2,4-dichlorobenzoate degradation pathway.
References: [116, 279, 69]

[EC 6.2.1.33 created 1999]

EC 6.2.1.34
Accepted name: trans-feruloyl-CoA synthase

Reaction: ferulic acid + CoA + ATP = feruloyl-CoA + products of ATP breakdown
Other name(s): trans-feruloyl-CoA synthetase; trans-ferulate:CoASH ligase (ATP-hydrolysing); ferulate:CoASH

ligase (ATP-hydrolysing)
Systematic name: ferulate:CoA ligase (ATP-hydrolysing)

Comments: Requires Mg2+. It has not yet been established whether AMP + diphosphate or ADP + phosphate are
formed in this reaction.

References: [356, 398]

[EC 6.2.1.34 created 2000]

EC 6.2.1.35
Accepted name: acetate—[acyl-carrier protein] ligase

Reaction: ATP + acetate + an [acyl-carrier protein] = AMP + diphosphate + an acetyl-[acyl-carrier protein]
Other name(s): HS-acyl-carrier protein:acetate ligase; [acyl-carrier protein]:acetate ligase; MadH; ACP-SH:acetate

ligase
Systematic name: acetate:[acyl-carrier-protein] ligase (AMP-forming)

Comments: This enzyme, from the anaerobic bacterium Malonomonas rubra, is a component of the multienzyme
complex EC 7.2.4.4, biotin-dependent malonate decarboxylase. The enzyme uses the energy from
hydrolysis of ATP to convert the thiol group of the acyl-carrier-protein-bound 2′-(5-phosphoribosyl)-
3′-dephospho-CoA prosthetic group into its acetyl thioester [36].

References: [185, 36, 37, 110]

[EC 6.2.1.35 created 2008, modified 2018]

EC 6.2.1.36
Accepted name: 3-hydroxypropionyl-CoA synthase

Reaction: 3-hydroxypropanoate + ATP + CoA = 3-hydroxypropanoyl-CoA + AMP + diphosphate
Other name(s): 3-hydroxypropionyl-CoA synthetase (AMP-forming); 3-hydroxypropionate—CoA ligase

Systematic name: hydroxypropanoate:CoA ligase (AMP-forming)
Comments: Catalyses a step in the 3-hydroxypropanoate/4-hydroxybutanoate cycle, an autotrophic CO2 fixation

pathway found in some thermoacidophilic archaea [35, 9].The enzymes from Metallosphaera sedula
and Sulfolobus tokodaii can also use propionate, acrylate, acetate, and butanoate as substrates [9],
and are thus different from EC 6.2.1.17 (propionate—CoA ligase), which does not accept acetate or
butanoate.

References: [35, 9]

[EC 6.2.1.36 created 2009]
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EC 6.2.1.37
Accepted name: 3-hydroxybenzoate—CoA ligase

Reaction: ATP + 3-hydroxybenzoate + CoA = AMP + diphosphate + 3-hydroxybenzoyl-CoA
Other name(s): 3-hydroxybenzoyl-CoA synthetase; 3-hydroxybenzoate—coenzyme A ligase (AMP-forming); 3-

hydroxybenzoyl coenzyme A synthetase; 3-hydroxybenzoyl-CoA ligase
Systematic name: 3-hydroxybenzoate:CoA ligase (AMP-forming)

Comments: The enzyme works equally well with 4-hydroxybenzoate but shows low activity towards benzoate,
4-aminobenzoate, 3-aminobenzoate, 3-fluorobenzoate, 4-fluorobenzoate, 3-chlorobenzoate, and 4-
chlorobenzoate. There is no activity with 3,4-dihydroxybenzoate, 2,3-dihydroxybenzoate, and 2-
hydroxybenzoate as substrates.

References: [252]

[EC 6.2.1.37 created 2011]

EC 6.2.1.38
Accepted name: (2,2,3-trimethyl-5-oxocyclopent-3-enyl)acetyl-CoA synthase

Reaction: [(1R)-2,2,3-trimethyl-5-oxocyclopent-3-enyl]acetate + ATP + CoA = AMP + diphosphate + [(1R)-
2,2,3-trimethyl-5-oxocyclopent-3-enyl]acetyl-CoA

Other name(s): 2-oxo-∆3-4,5,5-trimethylcyclopentenylacetyl-CoA synthetase
Systematic name: [(1R)-2,2,3-trimethyl-5-oxocyclopent-3-enyl]acetate:CoA ligase (AMP-forming)

Comments: Isolated from Pseudomonas putida. Forms part of the pathway of camphor catabolism.
References: [376]

[EC 6.2.1.38 created 2012]

EC 6.2.1.39
Accepted name: [butirosin acyl-carrier protein]—L-glutamate ligase

Reaction: (1) ATP + L-glutamate + BtrI acyl-carrier protein = ADP + phosphate + L-glutamyl-[BtrI acyl-carrier
protein]
(2) ATP + L-glutamate + 4-amino butanoyl-[BtrI acyl-carrier protein] = ADP + phosphate + 4-(γ-L-
glutamylamino)butanoyl-[BtrI acyl-carrier protein]

Other name(s): [BtrI acyl-carrier protein]—L-glutamate ligase; BtrJ
Systematic name: [BtrI acyl-carrier protein]:L-glutamate ligase (ADP-forming)

Comments: Catalyses two steps in the biosynthesis of the side chain of the aminoglycoside antibiotics of the bu-
tirosin family. The enzyme adds one molecule of L-glutamate to a dedicated acyl-carrier protein, and
following decarboxylation of the product by EC 4.1.1.95, L-glutamyl-[BtrI acyl-carrier protein] decar-
boxylase, adds a second L-glutamate molecule. Requires Mg2+ or Mn2+, and activity is enhanced in
the presence of Mn2+.

References: [270]

[EC 6.2.1.39 created 2012]

EC 6.2.1.40
Accepted name: 4-hydroxybutyrate—CoA ligase (AMP-forming)

Reaction: ATP + 4-hydroxybutanoate + CoA = AMP + diphosphate + 4-hydroxybutanoyl-CoA
Other name(s): 4-hydroxybutyrate-CoA synthetase (ambiguous); 4-hydroxybutyrate:CoA ligase (ambiguous); hbs

(gene name); 4-hydroxybutyrate—CoA ligase
Systematic name: 4-hydroxybutanoate:CoA ligase (AMP-forming)

Comments: Isolated from the archaeon Metallosphaera sedula. Involved in the 3-hydroxypropanoate/4-
hydroxybutanoate cycle. cf. EC 6.2.1.56, 4-hydroxybutyrate—CoA ligase (ADP-forming).

References: [407, 179]

[EC 6.2.1.40 created 2014, modified 2019]
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EC 6.2.1.41
Accepted name: 3-[(3aS,4S,7aS)-7a-methyl-1,5-dioxo-octahydro-1H-inden-4-yl]propanoate—CoA ligase

Reaction: ATP + 3-[(3aS,4S,7aS)-7a-methyl-1,5-dioxo-octahydro-1H-inden-4-yl]propanoate + CoA = AMP +
diphosphate + 3-[(3aS,4S,7aS)-7a-methyl-1,5-dioxo-octahydro-1H-inden-4-yl]propanoyl-CoA

Other name(s): fadD3 (gene name); HIP—CoA ligase
Systematic name: 3-[(3aS,4S,7aS)-7a-methyl-1,5-dioxo-octahydro-1H-inden-4-yl]propanoate:CoA ligase (AMP-

forming)
Comments: The enzyme, characterized from actinobacterium Mycobacterium tuberculosis, catalyses a step in the

degradation of cholesterol and cholate. The enzyme is very specific for its substrate, and requires that
the side chain at C17 is completely removed.

References: [194, 60]

[EC 6.2.1.41 created 2014]

EC 6.2.1.42
Accepted name: 3-oxocholest-4-en-26-oate—CoA ligase

Reaction: ATP + (25S)-3-oxocholest-4-en-26-oate + CoA = AMP + diphosphate + (25S)-3-oxocholest-4-en-26-
oyl-CoA

Other name(s): fadD19 (gene name)
Systematic name: (25S)-3-oxocholest-4-en-26-oate:CoA ligase (AMP-forming)

Comments: The enzyme, characterized from actinobacterium Mycobacterium tuberculosis, catalyses a step in the
degradation of cholesterol. It is responsible for the activation of the C8 side chain. 3β-hydroxycholest-
5-en-26-oate can also be used as substrate.

References: [544, 61]

[EC 6.2.1.42 created 2014]

EC 6.2.1.43
Accepted name: 2-hydroxy-7-methoxy-5-methyl-1-naphthoate—CoA ligase

Reaction: ATP + 2-hydroxy-7-methoxy-5-methyl-1-naphthoate + CoA = AMP + diphosphate + 2-hydroxy-7-
methoxy-5-methyl-1-naphthoyl-CoA

Other name(s): NcsB2
Systematic name: 2-hydroxy-7-methoxy-5-methyl-1-naphthoate:CoA ligase

Comments: The enzyme from the bacterium Streptomyces carzinostaticus is involved in the attachment of the
2-hydroxy-7-methoxy-5-methyl-1-naphthoate moiety of the antibiotic neocarzinostatin. In vitro the
enzyme also catalyses the activation of other 1-naphthoic acid analogues, e.g. 2-hydroxy-5-methyl-1-
naphthoate or 2,7-dihydroxy-5-methyl-1-naphthoate.

References: [85]

[EC 6.2.1.43 created 2014]

EC 6.2.1.44
Accepted name: 3-(methylthio)propionyl—CoA ligase

Reaction: ATP + 3-(methylsulfanyl)propanoate + CoA = AMP + diphosphate + 3-(methylsulfanyl)propanoyl-
CoA

Other name(s): DmdB; MMPA-CoA ligase; methylmercaptopropionate-coenzyme A ligase; 3-
methylmercaptopropionyl-CoA ligase; 3-(methylthio)propanoate:CoA ligase (AMP-forming)

Systematic name: 3-(methylsulfanyl)propanoate:CoA ligase (AMP-forming)
Comments: The enzyme is part of a dimethylsulfoniopropanoate demethylation pathway in the marine bacteria

Ruegeria pomeroyi and Pelagibacter ubique. It also occurs in some nonmarine bacteria capable of
metabolizing dimethylsulfoniopropionate (e.g. Burkholderia thailandensis, Pseudomonas aeruginosa,
and Silicibacter lacuscaerulensis). It requires Mg2+ [57].

References: [421, 57]
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[EC 6.2.1.44 created 2014]

EC 6.2.1.45
Accepted name: E1 ubiquitin-activating enzyme

Reaction: ATP + ubiquitin + [E1 ubiquitin-activating enzyme]-L-cysteine = AMP + diphosphate + S-ubiquitinyl-
[E1 ubiquitin-activating enzyme]-L-cysteine

Other name(s): ubiquitin activating enzyme; E1; ubiquitin-activating enzyme E1
Systematic name: ubiquitin:[E1 ubiquitin-activating enzyme] ligase (AMP-forming)

Comments: Catalyses the ATP-dependent activation of ubiquitin through the formation of a thioester bond be-
tween the C-terminal glycine of ubiquitin and the sulfhydryl side group of a cysteine residue in the
E1 protein. The two-step reaction consists of the ATP-dependent formation of an E1-ubiquitin adeny-
late intermediate in which the C-terminal glycine of ubiquitin is bound to AMP via an acyl-phosphate
linkage, then followed by the conversion to an E1-ubiquitin thioester bond via the cysteine residue on
E1 in the second step.

References: [173, 201, 567, 59]

[EC 6.2.1.45 created 2015]

EC 6.2.1.46
Accepted name: L-allo-isoleucine—holo-[CmaA peptidyl-carrier protein] ligase

Reaction: ATP + L-allo-isoleucine + holo-[CmaA peptidyl-carrier protein] = AMP + diphosphate + L-allo-
isoleucyl-[CmaA peptidyl-carrier protein]

Other name(s): CmaA
Systematic name: L-allo-isoleucine:holo-[CmaA peptidyl-carrier protein] ligase (AMP-forming)

Comments: This two-domain protein from the bacterium Pseudomonas syringae contains an adenylation domain
(A domain) and a thiolation domain (T domain). It catalyses the adenylation of L-allo-isoleucine and
its attachment to the T domain. The enzyme is involved in the biosynthesis of the toxin coronatine,
which mimics the plant hormone jasmonic acid isoleucine. Coronatine promotes opening of the plant
stomata allowing bacterial invasion, which is followed by bacterial growth in the apoplast, systemic
susceptibility, and disease.

References: [88]

[EC 6.2.1.46 created 2015]

EC 6.2.1.47
Accepted name: medium-chain-fatty-acid—[acyl-carrier-protein] ligase

Reaction: ATP + a medium-chain fatty acid + a holo-[acyl-carrier protein] = AMP + diphosphate + a medium-
chain acyl-[acyl-carrier protein]

Other name(s): jamA (gene name)
Systematic name: medium-chain-fatty-acid:[acyl-carrier protein] ligase (AMP-forming)

Comments: The enzyme ligates medium chain fatty acids (with aliphatic chain of 6-12 carbons) to an acyl-carrier
protein.

References: [120, 570]

[EC 6.2.1.47 created 2016]

EC 6.2.1.48
Accepted name: carnitine—CoA ligase

Reaction: ATP + L-carnitine + CoA = AMP + diphosphate + L-carnitinyl-CoA
Other name(s): caiC (gene name)

Systematic name: L-carnitine:CoA ligase (AMP-forming)
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Comments: The enzyme, originally characterized from the bacterium Escherichia coli, can catalyse the transfer of
CoA to L-carnitine, crotonobetaine and γ-butyrobetaine. In vitro the enzyme also exhibits the activity
of EC 2.8.3.21, L-carnitine CoA-transferase.

References: [122, 40]

[EC 6.2.1.48 created 2017]

EC 6.2.1.49
Accepted name: long-chain fatty acid adenylyltransferase FadD28

Reaction: ATP + a long-chain fatty acid + holo-[mycocerosate synthase] = AMP + diphosphate + a long-chain
acyl-[mycocerosate synthase] (overall reaction)
(1a) ATP + a long-chain fatty acid = diphosphate + a long-chain acyl-adenylate ester
(1b) a long-chain acyl-adenylate ester + holo-[mycocerosate synthase] = AMP + a long-chain acyl-
[mycocerosate synthase]

Other name(s): fadD28 (gene name)
Systematic name: long-chain fatty acid:holo-[mycocerosate synthase] ligase (AMP-forming)

Comments: The enzyme, found in certain mycobacteria, activates long-chain fatty acids by adenylation and trans-
fers them to EC 2.3.1.111, mycocerosate synthase. The enzyme participates in the biosynthesis of the
virulent lipids dimycocerosates (DIM) and dimycocerosyl triglycosyl phenolphthiocerol (PGL).

References: [134, 163, 23, 321, 521]

[EC 6.2.1.49 created 2016 as EC 2.7.7.95, transferred 2017 to EC 6.2.1.49]

EC 6.2.1.50
Accepted name: 4-hydroxybenzoate adenylyltransferase FadD22

Reaction: ATP + 4-hydroxybenzoate + holo-[4-hydroxyphenylalkanoate synthase] = AMP + diphosphate + 4-
hydroxybenzoyl-[4-hydroxyphenylalkanoate synthase] (overall reaction)
(1a) ATP + 4-hydroxybenzoate = 4-hydroxybenzoyl-adenylate + diphosphate
(1b) 4-hydroxybenzoyl-adenylate + holo-[4-hydroxyphenylalkanoate synthase] = AMP + 4-
hydroxybenzoyl-[4-hydroxyphenylalkanoate synthase]

Other name(s): fadD22 (gene name); 4-hydroxybenzoate adenylase
Systematic name: 4-hydroxybenzoate:holo-[4-hydroxyphenylalkanoate synthase] ligase (AMP-forming)

Comments: This mycobacterial enzyme participates in the biosynthesis of phenolphthiocerols. Following the sub-
strate’s activation by adenylation, it is transferred to an acyl-carrier protein domain within the enzyme,
from which it is transferred to EC 2.3.1.261, 4-hydroxyphenylalkanoate synthase.

References: [463, 521]

[EC 6.2.1.50 created 2017 as EC 2.7.7.98, transferred 2017 to EC 6.2.1.50]

EC 6.2.1.51
Accepted name: 4-hydroxyphenylalkanoate adenylyltransferase FadD29

Reaction: (1) ATP + 17-(4-hydroxyphenyl)heptadecanoate + holo-[(phenol)carboxyphthiodiolenone synthase]
= AMP + diphosphate + 17-(4-hydroxyphenyl)heptadecanoyl-[(phenol)carboxyphthiodiolenone syn-
thase]
(1a) ATP + 17-(4-hydroxyphenyl)heptadecanoate = diphosphate + 17-(4-
hydroxyphenyl)heptadecanoyl-adenylate
(1b) 17-(4-hydroxyphenyl)heptadecanoyl-adenylate + holo-[(phenol)carboxyphthiodiolenone syn-
thase] = AMP + 17-(4-hydroxyphenyl)heptadecanoyl-[(phenol)carboxyphthiodiolenone synthase]
(2) ATP + 19-(4-hydroxyphenyl)nonadecanoate + holo-[(phenol)carboxyphthiodiolenone synthase]
= AMP + diphosphate + 19-(4-hydroxyphenyl)nonadecanoyl-[(phenol)carboxyphthiodiolenone syn-
thase]
(2a) ATP + 19-(4-hydroxyphenyl)nonadecanoate = diphosphate + 19-(4-hydroxyphenyl)nonadecanoyl-
adenylate
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(2b) 19-(4-hydroxyphenyl)nonadecanoyl-adenylate + holo-[(phenol)carboxyphthiodiolenone synthase]
= AMP + 19-(4-hydroxyphenyl)nonadecanoyl-[(phenol)carboxyphthiodiolenone synthase]

Other name(s): fadD29 (gene name); 4-hydroxyphenylalkanoate adenylase
Systematic name: 4-hydroxyphenylalkanoate:holo-[(phenol)carboxyphthiodiolenone synthase] ligase

Comments: The mycobacterial enzyme participates in the biosynthesis of phenolphthiocerols. Following the sub-
strate’s activation by adenylation, it is transferred to an acyl-carrier protein domain within the enzyme,
from which it is transferred to the phenolphthiocerol/phthiocerol polyketide synthase.

References: [463, 521]

[EC 6.2.1.51 created 2016 as EC 2.7.7.94, transferred 2017 to EC 6.2.1.51]

EC 6.2.1.52
Accepted name: L-firefly luciferin—CoA ligase

Reaction: ATP + L-firefly luciferin + CoA = AMP + diphosphate + L-firefly luciferyl-CoA
Other name(s): LUC

Systematic name: (R)-4,5-dihydro-2-(6-hydroxy-1,3-benzothiazol-2-yl)thiazole-4-carboxylate:CoA ligase (AMP-
forming)

Comments: This is an alternative activity of the firefly luciferase (EC 1.13.12.7), which the enzyme exhibits under
normal conditions only when acting on the L-enantiomer of its substrate. The D-isomer can act as a
substrate for the CoA—ligase activity in vitro only under low oxygen conditions that are not found in
vivo. The activation of L-firefly luciferin to a CoA ester is a step in a recycling pathway that results in
its epimerization to the D enantiomer, which is the only substrate whose oxygenation results in light
emission.

References: [136, 352, 523, 288]

[EC 6.2.1.52 created 2017]

EC 6.2.1.53
Accepted name: L-proline—[L-prolyl-carrier protein] ligase

Reaction: ATP + L-proline + holo-[L-prolyl-carrier protein] = AMP + diphosphate + L-prolyl-[L-prolyl-carrier
protein] (overall reaction)
(1a) ATP + L-proline = diphosphate + (L-prolyl)adenylate
(1b) (L-prolyl)adenylate + holo-[L-prolyl-carrier protein] = AMP + L-prolyl-[L-prolyl-carrier protein]

Other name(s): pltF (gene name); bmp4 (gene name); pigI (gene name)
Systematic name: L-proline:[L-prolyl-carrier protein] ligase (AMP-forming)

Comments: The enzyme participates in the biosynthesis of several pyrrole-containing compounds, such as unde-
cylprodigiosin, prodigiosin, pyoluteorin, and coumermycin A1. It catalyses the activation of L-proline
to an adenylate form, followed by its transfer to the 4′-phosphopantheine moiety of an L-prolyl-carrier
protein.

References: [503, 175, 545]

[EC 6.2.1.53 created 2018]

EC 6.2.1.54
Accepted name: D-alanine—[D-alanyl-carrier protein] ligase

Reaction: ATP + D-alanine + holo-[D-alanyl-carrier protein] = AMP + diphosphate + D-alanyl-[D-alanyl-carrier
protein] (overall reaction)
(1a) ATP + D-alanine = (D-alanyl)adenylate + diphosphate
(1b) (D-alanyl)adenylate + holo-[D-alanyl-carrier protein] = AMP + D-alanyl-[D-alanyl-carrier protein]

Other name(s): dltA (gene name); Dcl
Systematic name: D-alanine:[D-alanyl-carrier protein] ligase
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Comments: The enzyme is involved in the modification of wall teichoic acids, as well as type I and IV lipote-
ichoic acids, with D-alanine residues. It activates D-alanine using ATP to form a high-energy (D-
alanyl)adenylate intermediate and subsequently transfers the alanyl moiety to the phosphopantheinyl
prosthetic group of a D-alanyl-carrier protein (DltC).

References: [388, 559, 115, 374]

[EC 6.2.1.54 created 2018]

EC 6.2.1.55
Accepted name: E1 SAMP-activating enzyme

Reaction: ATP + [SAMP]-Gly-Gly + [E1 SAMP-activating enzyme]-L-cysteine = S-[[SAMP]-Gly-Gly]-[[E1
SAMP-activating enzyme]-L-cysteine] + AMP + diphosphate (overall reaction)
(1a) ATP + [SAMP]-Gly-Gly = diphosphate + [SAMP]-Gly-Gly-AMP
(1b) [SAMP]-Gly-Gly-AMP + [E1 SAMP-activating enzyme]-L-cysteine = S-[[SAMP]-Gly-Gly]-[[E1
SAMP-activating enzyme]-L-cysteine] + AMP

Other name(s): UbaA; SAMP-activating enzyme E1
Systematic name: [SAMP]:[E1 SAMP-activating enzyme] ligase (AMP-forming)

Comments: Contains Zn2+. The enzyme catalyses the activation of SAMPs (Small Archaeal Modifier Proteins),
which are ubiquitin-like proteins found only in the Archaea. SAMPs are involved in protein degra-
dation, and also act as sulfur carriers involved in thiolation of tRNA and other metabolites such as
molybdopterin. The enzyme catalyses the ATP-dependent formation of a SAMP adenylate intermedi-
ate in which the C-terminal glycine of SAMP is bound to AMP via an acyl-phosphate linkage (reac-
tion 1). This intermediate can accept a sulfur atom to form a thiocarboxylate moiety in a mechanism
that is not yet understood. Alternatively, the E1 enzyme can transfer SAMP from its activated form
to an internal cysteine residue, releasing AMP (reaction 2). In this case SAMP is subsequently trans-
ferred to a lysine residue in a target protein in a process termed SAMPylation. Auto-SAMPylation
(attachment of SAMP to lysine residues within the E1 enzyme) has been observed. cf. EC 2.7.7.100,
SAMP-activating enzyme.

References: [332, 306, 331, 183]

[EC 6.2.1.55 created 2018]

EC 6.2.1.56
Accepted name: 4-hydroxybutyrate—CoA ligase (ADP-forming)

Reaction: ATP + 4-hydroxybutanoate + CoA = ADP + phosphate + 4-hydroxybutanoyl-CoA
Other name(s): Nmar 0206 (locus name)

Systematic name: 4-hydroxybutanoate:CoA ligase (ADP-forming)
Comments: The enzyme, characterized from the marine ammonia-oxidizing archaeon Nitrosopumilus maritimus,

participates in a variant of the 3-hydroxypropanoate/4-hydroxybutanate CO2 fixation cycle. cf. EC
6.2.1.40, 4-hydroxybutyrate—CoA ligase (AMP-forming).

References: [243]

[EC 6.2.1.56 created 2019]

EC 6.2.1.57
Accepted name: long-chain fatty acid adenylase/transferase FadD23

Reaction: (1) ATP + stearate + a holo-[(hydroxy)phthioceranic acid synthase] = AMP + diphosphate + a
stearoyl-[(hydroxy)phthioceranic acid synthase] (overall reaction)
(1a) ATP + stearate = diphosphate + (stearoyl)adenylate
(1b) (stearoyl)adenylate + a holo-[(hydroxy)phthioceranic acid synthase] = AMP + a stearoyl-
[(hydroxy)phthioceranic acid synthase]
(2) ATP + palmitate + a holo-[(hydroxy)phthioceranic acid synthase] = AMP + diphosphate + a
palmitoyl-[(hydroxy)phthioceranic acid synthase] (overall reaction)
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(2a) ATP + palmitate = diphosphate + (palmitoyl)adenylate
(2b) (palmitoyl)adenylate + a holo-[(hydroxy)phthioceranic acid synthase] = AMP + a palmitoyl-
[(hydroxy)phthioceranic acid synthase]

Other name(s): fadD23 (gene name); long-chain fatty acid adenylyltransferase FadD23
Systematic name: palmitate:holo-[(hydroxy)phthioceranic acid synthase] ligase

Comments: This mycobacterial enzyme activates palmitate and stearate by adenylation, followed by their loading
onto the polyketide synthase EC 2.3.1.287, phthioceranic/hydroxyphthioceranic acid synthase.

References: [160, 283]

[EC 6.2.1.57 created 2019]

EC 6.2.1.58
Accepted name: isophthalate—CoA ligase

Reaction: ATP + isophthalate + CoA = AMP + diphosphate + isophthalyl-CoA
Other name(s): IPCL

Systematic name: isophthalate:CoA ligase (AMP-forming)
Comments: The enzyme, characterized from the bacterium Syntrophorhabdus aromaticivorans, catalyses the first

step in an anaerobic isophthalate degradation pathway.
References: [219]

[EC 6.2.1.58 created 2019]

EC 6.2.1.59
Accepted name: long-chain fatty acid adenylase/transferase FadD26

Reaction: ATP + a long-chain fatty acid + holo-[(phenol)carboxyphthiodiolenone synthase] = AMP + diphos-
phate + a long-chain acyl-[(phenol)carboxyphthiodiolenone synthase] (overall reaction)
(1a) ATP + a long-chain fatty acid = diphosphate + a long-chain fatty-acyl adenylate ester
(1b) a long-chain fatty-acyl adenylate ester + holo-[(phenol)carboxyphthiodiolenone synthase] = AMP
+ a long-chain acyl-[(phenol)carboxyphthiodiolenone synthase]

Other name(s): FadD26
Systematic name: long-chain fatty acid:holo-[(phenol)carboxyphthiodiolenone synthase] ligase (AMP-forming)

Comments: The enzyme, present in pathogenic species of mycobacteria, participates in the pathway for biosyn-
thesis of phthiocerols. It catalyses the adenylation of the long-chain fatty acids arachidate (C20) or be-
henate (C22) [24] and potentially the very-long-chain fatty acid lignocerate (C24) [463]. The activated
fatty acids are then loaded to EC 2.3.1.292, (phenol)carboxyphthiodiolenone synthase.

References: [24, 463, 521]

[EC 6.2.1.59 created 2019]

EC 6.2.1.60
Accepted name: marinolic acid—CoA ligase

Reaction: (1) ATP + a marinolic acid + CoA = AMP + diphosphate + a marinoloyl-CoA
(2) ATP + a pseudomonic acid + CoA = AMP + diphosphate + a pseudomonoyl-CoA

Other name(s): tmlU (gene name)
Systematic name: marinolic acid:CoA ligase (AMP-forming)

Comments: The enzyme, characterized from the bacterium Pseudoalteromonas sp. SANK 73390, catalyses the
CoA acylation of pseudomonic and marinolic acids, as part of the biosynthesis of thiomarinols and
related compounds.

References: [117]

[EC 6.2.1.60 created 2019]
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EC 6.2.1.61
Accepted name: salicylate—[aryl-carrier protein] ligase

Reaction: ATP + salicylate + holo-[non-ribosomal peptide synthase] = AMP + diphosphate + salicyl-[non-
ribosomal peptide synthase] (overall reaction)
(1a) ATP + salicylate = diphosphate + (salicyl)adenylate
(1b) (salicyl)adenylate + holo-[non-ribosomal peptide synthase] = AMP + salicyl-[non-ribosomal pep-
tide synthase]

Other name(s): pmsE (gene name); pchD (gene name)
Systematic name: salicylate:holo-[non-ribosomal peptide synthase] ligase

Comments: The enzyme catalyses the activation of salicylate to (salicyl)adenylate, followed by the transfer of the
activated compound to the free thiol of a phosphopantetheine arm of an aryl-carrier protein, which
is often a domain of a larger non-ribosimal peptide synthase. The PmsE enzyme is involved in pseu-
domonine biosynthesis and transfers the activated salicylate first to itself, and then to a PmsG protein.
The PchD enzyme is involved in pyochelin biosynthesis and transfers the activated salicylate directly
to the PchE protein.

References: [401, 444]

[EC 6.2.1.61 created 2019]

EC 6.2.1.62
Accepted name: 3,4-dihydroxybenzoate—[aryl-carrier protein] ligase

Reaction: ATP + 3,4-dihydroxybenzoate + holo-[aryl-carrier protein] = AMP + diphosphate + 3,4-
dihydroxybenzoyl-[aryl-carrier protein] (overall reaction)
(1a) ATP + 3,4-dihydroxybenzoate = diphosphate + (3,4-dihydroxybenzoyl)adenylate
(1b) (3,4-dihydroxybenzoyl)adenylate + holo-[aryl-carrier protein] = AMP + 3,4-dihydroxybenzoyl-
[aryl-carrier protein]

Other name(s): asbC (gene name)
Systematic name: 3,4-dihydroxybenzoate:[aryl-carrier protein] ligase (AMP-forming)

Comments: The adenylation domain of the enzyme catalyses the activation of 3,4-dihydroxybenzoate to (3,4-
dihydroxybenzoyl)adenylate, followed by the transfer of the activated compound to the free thiol of
a phosphopantetheine arm of an aryl-carrier protein domain. The aryl-carrier protein domain may be
part of the same protein, or of a different protein. This activity is often found as part of a larger non-
ribosomal peptide synthase.

References: [394]

[EC 6.2.1.62 created 2020]

EC 6.2.1.63
Accepted name: L-arginine—[L-arginyl-carrier protein] ligase

Reaction: ATP + L-arginine + holo-[L-arginyl-carrier protein] = AMP + diphosphate + L-arginyl-[L-arginyl-
carrier protein] (overall reaction)
(1a) ATP + L-arginine = diphosphate + (L-arginyl)adenylate
(1b) (L-arginyl)adenylate + holo-[L-arginyl-carrier protein] = AMP + L-arginyl-[L-arginyl-carrier pro-
tein]

Other name(s): vabF (gene name)
Systematic name: L-arginine:[L-arginyl-carrier protein] ligase (AMP-forming)

Comments: The adenylation domain of the enzyme catalyses the activation of L-arginine to (L-arginyl)adenylate,
followed by the transfer of the activated compound to the free thiol of a phosphopantetheine arm of
a peptidyl-carrier protein domain. The peptidyl-carrier protein domain may be part of the same pro-
tein, or of a different protein. This activity is often found as part of a larger non-ribosomal peptide
synthase.

References: [28]

[EC 6.2.1.63 created 2020]
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EC 6.2.1.64
Accepted name: E1 NEDD8-activating enzyme

Reaction: ATP + [NEDD8 protein] + [E1 NEDD8-activating enzyme]-L-cysteine = AMP + diphosphate + [E1
NEDD8-activating enzyme]-S-[NEDD8 protein]-yl-L-cysteine

Other name(s): NEDD-activating enzyme E1; NAE1 (gene name); UBA3 (gene name)
Systematic name: [NEDD8 protein]:[E1 NEDD8-activating enzyme] ligase (AMP-forming)

Comments: Some RING-type E3 ubiquitin transferase (EC 2.3.2.27) are not able to bind a substrate protein di-
rectly. Instead, they form complexes with a cullin scaffold protein and a substrate recognition module,
which are known as CRL (Cullin-RING-Ligase) complexes. The cullin protein needs to be activated
by the ubiquitin-like protein NEDD8 in a process known as neddylation. Like ubiquitin, the NEDD8
protein ends with two glycine residues. The E1 NEDD8-activating enzyme activates NEDD8 in an
ATP-dependent reaction by forming a high-energy thioester intermediate between NEDD8 and one
of its cysteine residues. The activated NEDD8 is subsequently transferred to a cysteine residue of EC
2.3.2.34, E2 NEDD8-conjugating enzyme, and is eventually conjugated to a lysine residue of spe-
cific substrates in the presence of the appropriate E3 transferase (EC 2.3.2.32, cullin-RING-type E3
NEDD8 transferase).

References: [372, 162]

[EC 6.2.1.64 created 2020]

EC 6.2.1.65
Accepted name: salicylate—CoA ligase

Reaction: ATP + salicylate + CoA = AMP + diphosphate + 2-hydroxybenzoyl-CoA (overall reaction)
(1a) ATP + salicylate = diphosphate + (2-hydroxybenzoyl)adenylate
(1b) (2-hydroxybenzoyl)adenylate + CoA = AMP + 2-hydroxybenzoyl-CoA

Other name(s): sdgA (gene name)
Systematic name: salicylate:CoA ligase (AMP-forming)

Comments: The enzyme, characterized from the bacteria Thauera aromatica and Streptomyces sp. WA46,
participates in a salicylate degradation pathway. It activates salicylate by its adenylation to (2-
hydroxybenzoyl)adenylate, followed by the transfer of the activated compound to coenzyme A.

References: [49, 208]

[EC 6.2.1.65 created 2020]

EC 6.2.1.66
Accepted name: glyine—[glycyl-carrier protein] ligase

Reaction: ATP + glycine + holo-[glycyl-carrier protein] = AMP + diphosphate + glycyl-[glycyl-carrier protein]
(overall reaction)
(1a) ATP + glycine = diphosphate + (glycyl)adenylate
(1b) (glycyl)adenylate + holo-[glycyl-carrier protein] = AMP + glycyl-[glycyl-carrier protein]

Other name(s): dhbF (gene name); sfmB (gene name)
Systematic name: glycine:[glycyl-carrier protein] ligase (AMP-forming)

Comments: The adenylation domain of the enzyme catalyses the activation of glycine to (glycyl)adenylate, fol-
lowed by the transfer of the activated compound to the free thiol of a phosphopantetheine arm of a
peptidyl-carrier protein domain. The peptidyl-carrier protein domain may be part of the same protein
(as in the case of DhbF in bacillibactin biosynthesis), or of a different protein. This activity is often
found as part of a larger non-ribosomal peptide synthase.

References: [308, 269]

[EC 6.2.1.66 created 2021]

EC 6.2.1.67
Accepted name: L-alanine—[L-alanyl-carrier protein] ligase
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Reaction: ATP + L-alanine + holo-[L-alanyl-carrier protein] = AMP + diphosphate + L-alanyl-[L-alanyl-carrier
protein] (overall reaction)
(1a) ATP + L-alanine = diphosphate + (L-alanyl)adenylate
(1b) (L-alanyl)adenylate + holo-[L-alanyl-carrier protein] = AMP + L-alanyl-[L-alanyl-carrier protein]

Other name(s): ambB (gene name); phsB (gene name)
Systematic name: L-alanine:[L-alanyl-carrier protein] ligase (AMP-forming)

Comments: The adenylation domain of the enzyme catalyses the activation of L-alanine to (L-alanyl)adenylate,
followed by the transfer of the activated compound to the free thiol of a phosphopantetheine arm of
a peptidyl-carrier protein domain. The peptidyl-carrier protein domain may be part of the same pro-
tein, or of a different protein. This activity is often found as part of a larger non-ribosomal peptide
synthase.

References: [453, 347]

[EC 6.2.1.67 created 2021]

EC 6.2.1.68
Accepted name: L-glutamate—[L-glutamyl-carrier protein] ligase

Reaction: ATP + L-glutamate + holo-[L-glutamyl-carrier protein] = AMP + diphosphate + L-glutamyl-[L-
glutamyl-carrier protein] (overall reaction)
(1a) ATP + L-glutamate = diphosphate + (L-glutamyl)adenylate
(1b) (L-glutamyl)adenylate + holo-[L-glutamyl-carrier protein] = AMP + L-glutamyl-[L-glutamyl-
carrier protein]

Other name(s): ambE (gene name)
Systematic name: L-glutamate:[L-glutamyl-carrier protein] ligase (AMP-forming)

Comments: The adenylation domain of the enzyme catalyses the activation of L-glutamate to (L-
glutamyl)adenylate, followed by the transfer of the activated compound to the free thiol of a phos-
phopantetheine arm of a peptidyl-carrier protein domain. The peptidyl-carrier protein domain may be
part of the same protein, or of a different protein. This activity is often found as part of a larger non-
ribosomal peptide synthase.

References: [347]

[EC 6.2.1.68 created 2021]

EC 6.2.1.69
Accepted name: L-cysteine—[L-cysteinyl-carrier protein] ligase

Reaction: ATP + L-cysteine + holo-[L-cysteinyl-carrier protein] = AMP + diphosphate + L-cysteinyl-[L-
cysteinyl-carrier protein] (overall reaction)
(1a) ATP + L-cysteine = diphosphate + (L-cysteinyl)adenylate
(1b) (L-cysteinyl)adenylate + holo-[L-cysteinyl-carrier protein] = AMP + L-cysteinyl-[L-cysteinyl-
carrier protein]

Other name(s): pchE (gene name); pchF (gene name); angR (gene name)
Systematic name: L-cysteine:[L-cysteinyl-carrier protein] ligase (AMP-forming)

Comments: The adenylation domain of the enzyme catalyses the activation of L-cysteine to (L-
cysteinyl)adenylate, followed by the transfer of the activated compound to the free thiol of a phos-
phopantetheine arm of a peptidyl-carrier protein domain. The peptidyl-carrier protein domain may be
part of the same protein, or of a different protein. This activity is often found as part of a larger non-
ribosomal peptide synthase.

References: [401]

[EC 6.2.1.69 created 2021]

EC 6.2.1.70
Accepted name: L-threonine—[L-threonyl-carrier protein] ligase
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Reaction: ATP + L-threonine + holo-[L-threonyl-carrier protein] = AMP + diphosphate + L-threonyl-[L-
threonyl-carrier protein] (overall reaction)
(1a) ATP + L-threonine = diphosphate + (L-threonyl)adenylate
(1b) (L-threonyl)adenylate + holo-[L-threonyl-carrier protein] = AMP + L-threonyl-[L-threonyl-carrier
protein]

Other name(s): dhbF (gene name); pmsD (gene name); syrB1 (gene name)
Systematic name: L-threonine:[L-threonyl-carrier protein] ligase (AMP-forming)

Comments: The adenylation domain of the enzyme catalyses the activation of L-threonine to (L-
threonyl)adenylate, followed by the transfer of the activated compound to the free thiol of a phos-
phopantetheine arm of a peptidyl-carrier protein domain. The peptidyl-carrier protein domain may be
part of the same protein (as in the case of DhbF in bacillibactin biosynthesis), or of a different protein
(as in the case of PmsD in pseudomonine biosynthesis). This activity is often found as part of a larger
non-ribosomal peptide synthase.

References: [515, 444]

[EC 6.2.1.70 created 2021]

EC 6.2.1.71
Accepted name: 2,3-dihydroxybenzoate—[aryl-carrier protein] ligase

Reaction: ATP + 2,3-dihydroxybenzoate + holo-[aryl-carrier protein] = AMP + diphosphate + 2,3-
dihydroxybenzoyl-[aryl-carrier protein] (overall reaction)
(1a) ATP + 2,3-dihydroxybenzoate = diphosphate + (2,3-dihydroxybenzoyl)adenylate
(1b) (2,3-dihydroxybenzoyl)adenylate + holo-[aryl-carrier protein] = AMP + 2,3-dihydroxybenzoyl-
[aryl-carrier protein]

Other name(s): entE (gene name); vibE (gene name); dhbE (gene name); angE (gene name)
Systematic name: 2,3-dihydroxybenzoate:[aryl-carrier protein] ligase (AMP-forming)

Comments: The adenylation domain of the enzyme catalyses the activation of 2,3-dihydroxybenzoate to (2,3-
dihydroxybenzoyl)adenylate, followed by the transfer the activated compound to the free thiol of a
phosphopantetheine arm of an aryl-carrier protein domain of a specific non-ribosomal peptide syn-
thase. For example, the EntE enzyme of Escherichia coli is part of the enterobactin synthase complex,
the VibE enzyme of Vibrio cholerae is part of the vibriobactin synthase complex, and the DhbE en-
zyme of Bacillus subtilis is part of the bacillibactin synthase complex.

References: [150, 554, 121, 231, 308, 461, 232]

[EC 6.2.1.71 created 2021 (EC 2.7.7.58 created 1992, incorporated 2021)]

EC 6.2.1.72
Accepted name: L-serine—[L-seryl-carrier protein] ligase

Reaction: ATP + L-serine + holo-[L-seryl-carrier protein] = AMP + diphosphate + L-seryl-[L-seryl-carrier pro-
tein] (overall reaction)
(1a) ATP + L-serine = diphosphate + (L-seryl)adenylate
(1b) (L-seryl)adenylate + holo-[L-seryl-carrier protein] = AMP + L-seryl-[L-seryl-carrier protein]

Other name(s): entF (gene name); zmaJ (gene name); gdnB (gene name); serine-activating enzyme
Systematic name: L-serine:[L-seryl-carrier protein] ligase (AMP-forming)

Comments: The adenylation domain of the enzyme catalyses the activation of L-serine to (L-seryl)adenylate, fol-
lowed by the transfer of the activated compound to the free thiol of a phosphopantetheine arm of a
peptidyl-carrier protein domain. The peptidyl-carrier protein domain may be part of the same protein,
or of a different protein. This activity is often found as part of a larger non-ribosomal peptide syn-
thase.

References: [392, 437, 419, 121, 68, 140]

[EC 6.2.1.72 created 2021]
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EC 6.2.1.73
Accepted name: L-tryptophan—[L-tryptophyl-carrier protein] ligase

Reaction: ATP + L-tryptophan + holo-[L-tryptophyl-carrier protein] = AMP + diphosphate + -L-tryptophyl-[L-
tryptophyl-carrier protein] (overall reaction)
(1a) ATP + tryptophan = diphosphate + (L-tryptophyl)adenylate
(1b) (L-tryptophyl)adenylate + holo-[L-tryptophyl-carrier protein] = AMP + L-tryptophyl-[L-
tryptophyl-carrier protein]

Other name(s): ecm13 (gene name); swb11 (gene name)
Systematic name: L-tryptophan:[L-tryptophyl-carrier protein] ligase (AMP-forming)

Comments: The adenylation domain of the enzyme catalyses the activation of L-tryptophan to (L-
tryptophyl)adenylate, followed by the transfer of the activated compound to the free thiol of a phos-
phopantetheine arm of a peptidyl-carrier protein domain. The peptidyl-carrier protein domain may be
part of the same protein, or of a different protein. This activity is often found as part of a larger non-
ribosomal peptide synthase.

References: [563]

[EC 6.2.1.73 created 2021]

EC 6.2.1.74
Accepted name: 3-amino-5-hydroxybenzoate—[acyl-carrier protein] ligase

Reaction: ATP + 3-amino-5-hydroxybenzoate + a holo-[acyl-carrier protein] = 3-amino-5-hydroxybenzoyl-
[acyl-carrier protein] + AMP + diphosphate

Other name(s): rifA (gene name); mitE (gene name)
Systematic name: 3-amino-5-hydroxybenzoate:[acyl carrier protein] ligase (AMP-forming)

Comments: During the biosynthesis of most ansamycin antibiotics such as rifamycins, streptovaricins, naph-
thomycins, and chaxamycins, the activity is catalysed by the loading domain of the respective polyke-
tide synthase (PKS), which transfers the substrate to the acyl-carrier protein domain of the first exten-
sion module of the PKS. During the biosynthesis of the mitomycins the reaction is catalysed by the
MitE protein, which transfers the substrate to a dedicated acyl-carrier protein (MmcB).

References: [8, 6, 7, 67]

[EC 6.2.1.74 created 2021]

EC 6.2.1.75
Accepted name: indoleacetate—CoA ligase

Reaction: ATP + (indol-3-yl)acetate + CoA = AMP + diphosphate + (indol-3-yl)acetyl-CoA
Other name(s): iaaB (gene name)

Systematic name: (indol-3-yl)acetate:CoA ligase (AMP-forming)
Comments: The enzyme, characterized from the bacterium Aromatoleum aromaticum, is involved in degradation

of (indol-3-yl)acetate. It is also active with phenylacetate and the non-physiological compound (2-
naphthyl)acetate.

References: [452]

[EC 6.2.1.75 created 2022]

EC 6.2.1.76
Accepted name: malonate—CoA ligase

Reaction: ATP + malonate + CoA = AMP + diphosphate + malonyl-CoA
Other name(s): ACSF3 (gene name); AAE13 (gene name); malonyl-CoA synthetase

Systematic name: malonate:CoA ligase (AMP-forming)
Comments: The enzyme, found in mitochondria, detoxifies malonate, which is a potent inhibitor of mitochondrial

respiration, and provides malonyl-CoA to the mitochondrial fatty acid biosynthesis pathway.
References: [169, 549, 70, 168, 50, 51]

[EC 6.2.1.76 created 2022]
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EC 6.2.2 Amide—thiol ligases

EC 6.2.2.1
Accepted name: thioglycine synthase

Reaction: ATP + sulfide + a [methyl-coenzyme M reductase]-glycine = ADP + phosphate + a [methyl-coenzyme
M reductase]-thioglycine

Other name(s): ycaO (gene name) (ambiguous)
Systematic name: [methyl-coenzyme M reductase]-glycine—sulfur ligase (thioglycine-forming)

Comments: Requires Mg2+. The enzyme is found in anaerobic methanogenic and methanotrophic archaea, where
it modifies a glycine residue in EC 2.8.4.1, coenzyme-B sulfoethylthiotransferase (methyl-CoM re-
ductase). Upon binding to its substrate, an external source of sulfide attacks the target amide bond
generating a tetrahedral intermediate. The amide oxyanion attacks the γ-phosphate of ATP, releasing
ADP and forming a phosphorylated thiolate intermediate that collapses to form thioglycine and phos-
phate. In most organisms activity requires a second protein (TfuA) , which may allosterically activate
this enzyme or assist in the delivery of sulfide to the substrate.

References: [358, 289, 112]

[EC 6.2.2.1 created 2020]

EC 6.2.2.2
Accepted name: oxazoline synthase

Reaction: (1) ATP + a [protein]-(L-amino acyl-L-serine) = ADP + phosphate + a [protein]-(S,S)-2-(C-
substituted-aminomethyl)-4-acyl-2-oxazoline
(2) ATP + a [protein]-(L-amino acyl-L-threonine) = ADP + phosphate + a [protein]-(S,S)-2-(C-
substituted-aminomethyl)-4-acyl-5-methyl-2-oxazoline
(3) ATP + a [protein]-(L-amino acyl-L-cysteine) = ADP + phosphate + a [protein]-(1S,4R)-2-(C-
substituted-aminomethyl)-4-acyl-2-thiazoline

Other name(s): cyanobactin heterocyclase; cyanobactin cyclodehydratase; patD (gene name); balhD (gene name);
micD (gene name)

Systematic name: [protein]-(L-amino acyl-L-serine) cyclodehydratase (2-oxazoline-forming)
Comments: Requires Mg2+. The enzyme, which participates in the biosynthesis of ribosomal peptide natural

products (RiPPs), converts L-cysteine, L-serine and L-threonine residues to thiazoline, oxazoline,
and methyloxazoline rings, respectively. The enzyme requires two domains - a cyclodehydratase do-
main, known as a YcaO domain, and a substrate recognition domain (RRE domain) that controls the
regiospecificity of the enzyme. The RRE domain can either be fused to the YcaO domain or occur as
a separate protein; however both domains are required for activity. The enzyme can process multiple
residues within the same substrate peptide, and all enzymes characterized so far follow a defined or-
der, starting with the L-cysteine closest to the C-terminus. The reaction involves phosphorylation of
the preceding ribosomal peptide backbone amide bond, forming ADP and a phosphorylated interme-
diate, followed by release of the phosphate group. In some cases the enzyme catalyses a side reaction
in which the phosphorylated intermediate reacts with ADP to form AMP and diphosphate.

References: [314, 319, 149]

[EC 6.2.2.2 created 2020]

EC 6.2.2.3
Accepted name: thiazoline synthase

Reaction: ATP + a [protein]-(L-amino acyl-L-cysteine) = ADP + phosphate + a [protein]-(1S,4R)-2-(C-
substituted-aminomethyl)-4-acyl-2-thiazoline

Systematic name: [protein]-(L-amino acyl-L-cysteine) cyclodehydratase (2-thiazoline-forming)
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Comments: Requires Mg2+. The enzyme, which participates in the biosynthesis of some ribosomal peptide nat-
ural products (RiPPs) such as the trunkamides, converts L-cysteine residues to thiazoline rings. The
enzyme requires two domains - a cyclodehydratase domain, known as a YcaO domain, and a sub-
strate recognition domain (RRE domain) that controls the regiospecificity of the enzyme. The RRE
domain can either be fused to the YcaO domain or occur as a separate protein; however both domains
are required for activity. The enzyme can process multiple L-cysteine residues within the same sub-
strate peptide, and all enzymes characterized so far follow a defined order, starting with the L-cysteine
closest to the C-terminus. The reaction involves phosphorylation of the preceding ribosomal peptide
backbone amide bond, forming ADP and a phosphorylated intermediate, followed by release of the
phosphate group. In some cases the enzyme catalyses a side reaction in which the phosphorylated
intermediate reacts with ADP to form AMP and diphosphate. This activity is also catalysed by the re-
lated enzyme EC 6.2.2.2, oxazoline synthase. That enzyme differs by having an RRE domain that also
recognizes L-serine and L-threonine residues, which are converted to oxazoline and methyloxazoline
rings, respectively.

References: [315, 314, 239, 240, 149]

[EC 6.2.2.3 created 2020]

EC 6.3 Forming carbon-nitrogen bonds
This subclass contains enzymes that form carbon-nitrogen bonds. Sub-subclasses are: acid—ammonia (or amine) ligases (amide
synthases; EC 6.3.1), acid—amino-acid ligases (peptide synthases; EC 6.3.2), enzymes forming heterocyclic rings (cyclo-ligases;
EC 6.3.3), enzymes using glutamine as amido-N-donor (EC 6.3.5) and other carbon-nitrogen ligases (EC 6.3.4).

EC 6.3.1 Acid—ammonia (or amine) ligases (amide synthases)

EC 6.3.1.1
Accepted name: aspartate—ammonia ligase

Reaction: ATP + L-aspartate + NH3 = AMP + diphosphate + L-asparagine
Other name(s): asparagine synthetase; L-asparagine synthetase

Systematic name: L-aspartate:ammonia ligase (AMP-forming)
References: [413, 536]

[EC 6.3.1.1 created 1961]

EC 6.3.1.2
Accepted name: glutamine synthetase

Reaction: ATP + L-glutamate + NH3 = ADP + phosphate + L-glutamine
Other name(s): glutamate—ammonia ligase; glutamylhydroxamic synthetase; L-glutamine synthetase; GS

Systematic name: L-glutamate:ammonia ligase (ADP-forming)
Comments: Glutamine synthetase, which catalyses the incorporation of ammonium into glutamate, is a key en-

zyme of nitrogen metabolism found in all domains of life. Several types have been described, differ-
ing in their oligomeric structures and cofactor requirements.

References: [124, 141, 255, 318, 552, 246, 277, 300]

[EC 6.3.1.2 created 1961, modified 2016]

[6.3.1.3 Transferred entry. phosphoribosyl-glycinamide synthetase. Now EC 6.3.4.13, phosphoribosylamine—glycine lig-
ase]

[EC 6.3.1.3 created 1961, deleted 1972]
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EC 6.3.1.4
Accepted name: aspartate—ammonia ligase (ADP-forming)

Reaction: ATP + L-aspartate + NH3 = ADP + phosphate + L-asparagine
Other name(s): asparagine synthetase (ADP-forming); asparagine synthetase (adenosine diphosphate-forming)

Systematic name: L-aspartate:ammonia ligase (ADP-forming)
References: [350]

[EC 6.3.1.4 created 1972]

EC 6.3.1.5
Accepted name: NAD+ synthase

Reaction: ATP + deamido-NAD+ + NH3 = AMP + diphosphate + NAD+

Other name(s): NAD synthetase; NAD synthase; nicotinamide adenine dinucleotide synthetase; diphosphopyridine
nucleotide synthetase

Systematic name: deamido-NAD+:ammonia ligase (AMP-forming)
Comments: L-Glutamine also acts, more slowly, as amido-donor [cf. EC 6.3.5.1].
References: [470]

[EC 6.3.1.5 created 1972]

EC 6.3.1.6
Accepted name: glutamate—ethylamine ligase

Reaction: ATP + L-glutamate + ethylamine = ADP + phosphate + N5-ethyl-L-glutamine
Other name(s): N5-ethyl-L-glutamine synthetase; theanine synthetase; N5-ethylglutamine synthetase

Systematic name: L-glutamate:ethylamine ligase (ADP-forming)
References: [440, 441, 442]

[EC 6.3.1.6 created 1976]

EC 6.3.1.7
Accepted name: 4-methyleneglutamate—ammonia ligase

Reaction: ATP + 4-methylene-L-glutamate + NH3 = AMP + diphosphate + 4-methylene-L-glutamine
Other name(s): 4-methyleneglutamine synthetase

Systematic name: 4-methylene-L-glutamate:ammonia ligase (AMP-forming)
Comments: Glutamine can act instead of NH3, but more slowly.
References: [548]

[EC 6.3.1.7 created 1986]

EC 6.3.1.8
Accepted name: glutathionylspermidine synthase

Reaction: glutathione + spermidine + ATP = glutathionylspermidine + ADP + phosphate
Other name(s): glutathione:spermidine ligase (ADP-forming)

Systematic name: γ-L-glutamyl-L-cysteinyl-glycine:spermidine ligase (ADP-forming) [spermidine is numbered so that
atom N-1 is in the amino group of the aminopropyl part of the molecule]

Comments: Requires magnesium ions. Involved in the synthesis of trypanothione in trypanosomatids. The en-
zyme from Escherichia coli is bifunctional and also catalyses the glutathionylspermidine amidase (EC
3.5.1.78) reaction, resulting in a net hydrolysis of ATP.

References: [466, 47]

[EC 6.3.1.8 created 1999]
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EC 6.3.1.9
Accepted name: trypanothione synthase

Reaction: (1) glutathione + spermidine + ATP = glutathionylspermidine + ADP + phosphate
(2) glutathione + glutathionylspermidine + ATP = N1,N8-bis(glutathionyl)spermidine + ADP + phos-
phate

Other name(s): glutathionylspermidine:glutathione ligase (ADP-forming)
Systematic name: spermidine/glutathionylspermidine:glutathione ligase (ADP-forming)

Comments: The enzyme, characterized from several trypanosomatids (e.g. Trypanosoma cruzi) catalyses two sub-
sequent reactions, leading to production of trypanothione from glutathione and spermidine. Some try-
panosomatids (e.g. Crithidia species and some Leishmania species) also contain an enzyme that only
carries out the first reaction (cf. EC 6.3.1.8, glutathionylspermidine synthase). The enzyme is bifunc-
tional, and also catalyses the hydrolysis of glutathionylspermidine and trypanothione (cf. EC 3.5.1.78,
glutathionylspermidine amidase).

References: [466, 380, 84, 379, 145]

[EC 6.3.1.9 created 1999, modified 2014]

EC 6.3.1.10
Accepted name: adenosylcobinamide-phosphate synthase

Reaction: (1) ATP + adenosylcobyric acid + (R)-1-aminopropan-2-yl phosphate = ADP + phosphate + adenosyl-
cobinamide phosphate
(2) ATP + adenosylcobyric acid + (R)-1-aminopropan-2-ol = ADP + phosphate + adenosylcobinamide

Other name(s): CbiB
Systematic name: adenosylcobyric acid:(R)-1-aminopropan-2-yl phosphate ligase (ADP-forming)

Comments: One of the substrates for this reaction, (R)-1-aminopropan-2-yl phosphate, is produced by CobD (EC
4.1.1.81, threonine-phosphate decarboxylase).

References: [73, 533]

[EC 6.3.1.10 created 2004]

EC 6.3.1.11
Accepted name: glutamate—putrescine ligase

Reaction: ATP + L-glutamate + putrescine = ADP + phosphate + γ-L-glutamylputrescine
Other name(s): γ-glutamylputrescine synthetase; YcjK

Systematic name: L-glutamate:putrescine ligase (ADP-forming)
Comments: Forms part of a novel bacterial putrescine utilization pathway in Escherichia coli.
References: [251]

[EC 6.3.1.11 created 2005]

EC 6.3.1.12
Accepted name: D-aspartate ligase

Reaction: ATP + D-aspartate + [β-GlcNAc-(1→4)-Mur2Ac(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala)]n = [β-
GlcNAc-(1→4)-Mur2Ac(oyl-L-Ala-γ-D-Glu-6-N-(β-D-Asp)-L-Lys-D-Ala-D-Ala)]n + ADP + phos-
phate

Other name(s): Asl f m; UDP-MurNAc-pentapeptide:D-aspartate ligase; D-aspartic acid-activating enzyme
Systematic name: D-aspartate:[β-GlcNAc-(1→4)-Mur2Ac(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala)]n ligase (ADP-

forming)
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Comments: This enzyme forms part of the peptidoglycan assembly pathway of Gram-positive bacteria grown in
medium containing D-Asp. Normally, the side chains the acylate the 6-amino group of the L-lysine
residue contain L-Ala-L-Ala but these amino acids are replaced by D-Asp when D-Asp is included
in the medium. Hybrid chains containing L-Ala-D-Asp, L-Ala-L-Ala-D-Asp or D-Asp-L-Ala are not
formed [33]. The enzyme belongs in the ATP-grasp protein superfamily [146, 33]. The enzyme is
highly specific for D-aspartate, as L-aspartate, D-glutamate, D-alanine, D-iso-asparagine and D-malic
acid are not substrates [33]. In Enterococcus faecium, the substrate D-aspartate is produced by EC
5.1.1.13, aspartate racemase [33]

References: [473, 474, 146, 33]

[EC 6.3.1.12 created 2006]

EC 6.3.1.13
Accepted name: L-cysteine:1D-myo-inositol 2-amino-2-deoxy-α-D-glucopyranoside ligase

Reaction: 1-O-(2-amino-2-deoxy-α-D-glucopyranosyl)-1D-myo-inositol + L-cysteine + ATP = 1-O-[2-(L-
cysteinamido)-2-deoxy-α-D-glucopyranosyl]-1D-myo-inositol + AMP + diphosphate

Other name(s): MshC; MshC ligase; Cys:GlcN-Ins ligase; mycothiol ligase
Systematic name: L-cysteine:1-O-(2-amino-2-deoxy-α-D-glucopyranosyl)-1D-myo-inositol ligase (AMP-forming)

Comments: This enzyme is a key enzyme in the biosynthesis of mycothiol, a small molecular weight thiol found
in Mycobacteria spp. and other actinomycetes. Mycothiol plays a fundamental role in these organ-
isms by helping to provide protection from the effects of reactive oxygen species and electrophiles,
including many antibiotics. The enzyme may represent a novel target for new classes of antitubercu-
lars [172].

References: [129, 172, 507]

[EC 6.3.1.13 created 2009]

EC 6.3.1.14
Accepted name: diphthine—ammonia ligase

Reaction: ATP + diphthine-[translation elongation factor 2] + NH3 = AMP + diphosphate + diphthamide-
[translation elongation factor 2]

Other name(s): diphthamide synthase; diphthamide synthetase; DPH6 (gene name); ATPBD4 (gene name); diph-
thine:ammonia ligase (AMP-forming)

Systematic name: diphthine-[translation elongation factor 2]:ammonia ligase (AMP-forming)
Comments: This amidase catalyses the last step in the conversion of an L-histidine residue in the translation elon-

gation factor EF2 to diphthamide. This factor is found in all archaea and eukaryota, but not in eubac-
teria, and is the target of bacterial toxins such as the diphtheria toxin and the Pseudomonas exotoxin
A (see EC 2.4.2.36, NAD+—diphthamide ADP-ribosyltransferase). The substrate of the enzyme,
diphthine, is produced by EC 2.1.1.98, diphthine synthase.

References: [338, 337, 482]

[EC 6.3.1.14 created 1990 as EC 6.3.2.22, transferred 2010 to EC 6.3.1.14, modified 2013]

EC 6.3.1.15
Accepted name: 8-demethylnovobiocic acid synthase

Reaction: ATP + 4-hydroxy-3-prenylbenzoate + 3-amino-4,7-dihydroxycoumarin = AMP + diphosphate + 8-
demethylnovobiocic acid

Other name(s): novL (gene name); novobiocin ligase; novobiocic acid synthetase (misleading); 8-desmethyl-
novobiocic acid synthetase; 8-demethylnovobiocic acid synthetase; 3-dimethylallyl-4-
hydroxybenzoate:3-amino-4,7-dihydroxycoumarin ligase (AMP-forming)

Systematic name: 4-hydroxy-3-prenylbenzoate:3-amino-4,7-dihydroxycoumarin ligase (AMP-forming)
Comments: The enzyme is involved in the biosynthesis of the aminocoumarin antibiotic novobiocin.
References: [475, 395, 381]
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[EC 6.3.1.15 created 2013]

[6.3.1.16 Transferred entry. carbapenam-3-carboxylate synthetase. The enzyme was discovered at the public-review stage
to have been misclassified and so was withdrawn. See EC 6.3.3.6, carbapenam-3-carboxylate synthase]

[EC 6.3.1.16 created 2013, deleted 2013]

EC 6.3.1.17
Accepted name: β-citrylglutamate synthase

Reaction: ATP + citrate + L-glutamate = ADP + phosphate + β-citryl-L-glutamate
Other name(s): NAAG synthetase I; NAAGS-I; RIMKLB (gene name) (ambiguous)

Systematic name: citrate:L-glutamate ligase (ADP-forming)
Comments: The enzyme, found in animals, also has the activity of EC 6.3.2.41, N-acetylaspartylglutamate syn-

thase.
References: [83]

[EC 6.3.1.17 created 2014]

EC 6.3.1.18
Accepted name: γ-glutamylanilide synthase

Reaction: ATP + L-glutamate + aniline = ADP + phosphate + N5-phenyl-L-glutamine
Other name(s): atdA1 (gene name); tdnQ (gene name); dcaQ (gene name)

Systematic name: L-glutamate:aniline ligase (ADP-forming)
Comments: Requires Mg2+. The enzyme, characterized from the bacterium Acinetobacter sp. YAA, catalyses the

first step in the degradation of aniline. It can also accept chlorinated and methylated forms of aniline,
preferrably in the o- and p-positions.

References: [491]

[EC 6.3.1.18 created 2014]

EC 6.3.1.19
Accepted name: prokaryotic ubiquitin-like protein ligase

Reaction: ATP + [prokaryotic ubiquitin-like protein]-L-glutamate + [protein]-L-lysine = ADP + phosphate +
N6-([prokaryotic ubiquitin-like protein]-γ-L-glutamyl)-[protein]-L-lysine

Other name(s): PafA (ambiguous); Pup ligase; proteasome accessory factor A
Systematic name: [prokaryotic ubiquitin-like protein]:[protein]-L-lysine

Comments: The enzyme has been characterized from the bacteria Mycobacterium tuberculosis and Corynebac-
terium glutamicum. It catalyses the ligation of the prokaryotic ubiquitin-like protein (Pup) to a target
protein by forming a bond between an ε-amino group of a lysine residue of the target protein and the
γ-carboxylate of the C-terminal glutamate of the ubiquitin-like protein (Pup). The attachment of Pup,
also known as Pupylation, marks proteins for proteasomal degradation.

References: [487, 171, 370, 29, 480]

[EC 6.3.1.19 created 2015]

EC 6.3.1.20
Accepted name: lipoate—protein ligase

Reaction: ATP + (R)-lipoate + a [lipoyl-carrier protein]-L-lysine = a [lipoyl-carrier protein]-N6-(lipoyl)lysine +
AMP + diphosphate (overall reaction)
(1a) ATP + (R)-lipoate = lipoyl-AMP + diphosphate
(1b) lipoyl-AMP + a [lipoyl-carrier protein]-L-lysine = a [lipoyl-carrier protein]-N6-(lipoyl)lysine +
AMP

Other name(s): lplA (gene name); lplJ (gene name); lipoate protein ligase; lipoate-protein ligase A; LPL; LPL-B

34

http://www.enzyme-database.org/query.php?ec=6.3.1.17
http://www.enzyme-database.org/query.php?ec=6.3.1.18
http://www.enzyme-database.org/query.php?ec=6.3.1.19
http://www.enzyme-database.org/query.php?ec=6.3.1.20


Systematic name: [lipoyl-carrier protein]-L-lysine:lipoate ligase (AMP-forming)
Comments: Requires Mg2+. This enzyme participates in lipoate salvage, and is responsible for lipoylation in the

presence of exogenous lipoic acid [389]. The enzyme attaches lipoic acid to the lipoyl domains of cer-
tain key enzymes involved in oxidative metabolism, including pyruvate dehydrogenase (E2 domain),
2-oxoglutarate dehydrogenase (E2 domain), the branched-chain 2-oxoacid dehydrogenases and the
glycine cleavage system (H protein) [489]. Lipoylation is essential for the function of these enzymes.
The enzyme can also use octanoate instead of lipoate.

References: [341, 164, 565, 111, 142, 489, 389]

[EC 6.3.1.20 created 2006 as EC 2.7.7.63, transferred 2016 to EC 6.3.1.20]

EC 6.3.1.21
Accepted name: phosphoribosylglycinamide formyltransferase 2

Reaction: ATP + formate + N1-(5-phospho-β-D-ribosyl)glycinamide = ADP + phosphate + N2-formyl-N1-(5-
phospho-β-D-ribosyl)glycinamide

Other name(s): purT (gene name); GAR transformylase 2; GART2; glycinamide ribonucleotide transformylase 2;
5′-phosphoribosylglycinamide transformylase 2; GAR transformylase T

Systematic name: formate:N1-(5-phospho-β-D-ribosyl)glycinamide ligase (ADP-forming)
Comments: Two enzymes are known to catalyse the third step in de novo purine biosynthesis. This enzyme re-

quires ATP and utilizes formate, which is provided by the hydrolysis of 10-formyltetrahydrofolate
by EC 3.5.1.10, formyltetrahydrofolate deformylase. The other enzyme, EC 2.1.2.2, phosphoribo-
sylglycinamide formyltransferase 1, utilizes 10-formyltetrahydrofolate directly. Formyl phosphate is
formed during catalysis as an intermediate. The enzyme from the bacterium Escherichia coli can also
catalyse the activity of EC 2.7.2.1, acetate kinase.

References: [349, 368, 295, 296, 500, 216]

[EC 6.3.1.21 created 2021]

EC 6.3.2 Acid—amino-acid ligases (peptide synthases)

EC 6.3.2.1
Accepted name: pantoate—β-alanine ligase (AMP-forming)

Reaction: ATP + (R)-pantoate + β-alanine = AMP + diphosphate + (R)-pantothenate
Other name(s): pantothenate synthetase; pantoate activating enzyme; pantoic-activating enzyme; D-pantoate:β-alanine

ligase (AMP-forming); pantoate—β-alanine ligase (ambiguous)
Systematic name: (R)-pantoate:β-alanine ligase (AMP-forming)

References: [157, 284, 285]

[EC 6.3.2.1 created 1961, modified 2014]

EC 6.3.2.2
Accepted name: glutamate—cysteine ligase

Reaction: ATP + L-glutamate + L-cysteine = ADP + phosphate + γ-L-glutamyl-L-cysteine
Other name(s): γ-glutamylcysteine synthetase; γ-glutamyl-L-cysteine synthetase; γ-glutamylcysteinyl synthetase

Systematic name: L-glutamate:L-cysteine γ-ligase (ADP-forming)
Comments: Can use L-aminohexanoate in place of glutamate.
References: [286, 467, 293]

[EC 6.3.2.2 created 1961]

EC 6.3.2.3
Accepted name: glutathione synthase
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Reaction: ATP + γ-L-glutamyl-L-cysteine + glycine = ADP + phosphate + glutathione
Other name(s): glutathione synthetase; GSH synthetase

Systematic name: γ-L-glutamyl-L-cysteine:glycine ligase (ADP-forming)
References: [260, 287]

[EC 6.3.2.3 created 1961]

EC 6.3.2.4
Accepted name: D-alanine—D-alanine ligase

Reaction: ATP + 2 D-alanine = ADP + phosphate + D-alanyl-D-alanine
Other name(s): MurE synthetase [ambiguous]; alanine:alanine ligase (ADP-forming); alanylalanine synthetase

Systematic name: D-alanine:D-alanine ligase (ADP-forming)
Comments: Involved with EC 6.3.2.7 (UDP-N-acetylmuramoyl-L-alanyl-D-glutamate—L-lysine ligase) or EC

6.3.2.13 (UDP-N-acetylmuramoyl-L-alanyl-D-glutamate—2,6-diaminopimelate ligase), EC 6.3.2.8
(UDP-N-acetylmuramate—L-alanine ligase), EC 6.3.2.9 (UDP-N-acetylmuramoyl-L-alanine—D-
glutamate ligase) and EC 6.3.2.10 (UDP-N-acetylmuramoyl-tripeptide—D-alanyl-D-alanine ligase) in
the synthesis of a cell-wall peptide (click here for diagram).

References: [210, 361, 519]

[EC 6.3.2.4 created 1961, modified 2002]

EC 6.3.2.5
Accepted name: phosphopantothenate—cysteine ligase (CTP)

Reaction: CTP + (R)-4′-phosphopantothenate + L-cysteine = CMP + diphosphate + N-[(R)-4′-
phosphopantothenoyl]-L-cysteine

Other name(s): phosphopantothenoylcysteine synthetase (ambiguous); phosphopantothenate—cysteine ligase (am-
biguous)

Systematic name: (R)-4′-phosphopantothenate:L-cysteine ligase
Comments: A key enzyme in the production of coenzyme A. The bacterial enzyme requires CTP, in contrast to

the eukaryotic enzyme, EC 6.3.2.51, which requires ATP. Cysteine can be replaced by some of its
derivatives.

References: [55, 479, 249]

[EC 6.3.2.5 created 1961, modified 2003, modified 2017]

EC 6.3.2.6
Accepted name: phosphoribosylaminoimidazolesuccinocarboxamide synthase

Reaction: ATP + 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate + L-aspartate = ADP + phosphate +
(S)-2-[5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamido]succinate

Other name(s): phosphoribosylaminoimidazole-succinocarboxamide synthetase; PurC; SAICAR synthetase;
4-(N-succinocarboxamide)-5-aminoimidazole synthetase; 4-[(N-succinylamino)carbonyl]-5-
aminoimidazole ribonucleotide synthetase; SAICARs; phosphoribosylaminoimidazolesuccinocar-
boxamide synthetase; 5-aminoimidazole-4-N-succinocarboxamide ribonucleotide synthetase

Systematic name: 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate:L-aspartate ligase (ADP-forming)
Comments: Forms part of the purine biosynthesis pathway.
References: [281, 383, 119, 71, 369, 359]

[EC 6.3.2.6 created 1961, modified 2000, modified 2006]

EC 6.3.2.7
Accepted name: UDP-N-acetylmuramoyl-L-alanyl-D-glutamate—L-lysine ligase

Reaction: ATP + UDP-N-acetyl-α-D-muramoyl-L-alanyl-D-glutamate + L-lysine = ADP + phosphate + UDP-N-
acetyl-α-D-muramoyl-L-alanyl-γ-D-glutamyl-L-lysine
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Other name(s): MurE synthetase; UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-L-lysine synthetase; uridine
diphospho-N-acetylmuramoylalanyl-D-glutamyllysine synthetase; UPD-MurNAc-L-Ala-D-Glu:L-Lys
ligase; UDP-N-acetylmuramoyl-L-alanyl-D-glutamate:L-lysine γ-ligase (ADP-forming)

Systematic name: UDP-N-acetyl-α-D-muramoyl-L-alanyl-D-glutamate:L-lysine γ-ligase (ADP-forming)
Comments: Involved in the synthesis of a cell-wall peptide in bacteria. This enzyme adds lysine in some Gram-

positive organisms; in others and in Gram-negative organisms EC 6.3.2.13 (UDP-N-acetylmuramoyl-
L-alanyl-D-glutamate—2,6-diaminopimelate ligase) adds 2,6-diaminopimelate instead.

References: [209, 519]

[EC 6.3.2.7 created 1961, modified 2002]

EC 6.3.2.8
Accepted name: UDP-N-acetylmuramate—L-alanine ligase

Reaction: ATP + UDP-N-acetyl-α-D-muramate + L-alanine = ADP + phosphate + UDP-N-acetyl-α-D-
muramoyl-L-alanine

Other name(s): MurC synthetase; UDP-N-acetylmuramoyl-L-alanine synthetase; uridine diphospho-N-
acetylmuramoylalanine synthetase; UDP-N-acetylmuramoylalanine synthetase; L-alanine-adding en-
zyme; UDP-acetylmuramyl-L-alanine synthetase; UDPMurNAc-L-alanine synthetase; L-Ala ligase;
uridine diphosphate N-acetylmuramate:L-alanine ligase; uridine 5′-diphosphate-N-acetylmuramyl-L-
alanine synthetase; uridine-diphosphate-N-acetylmuramate:L-alanine ligase; UDP-MurNAc:L-alanine
ligase; alanine-adding enzyme; UDP-N-acetylmuramyl:L-alanine ligase; UDP-N-acetylmuramate:L-
alanine ligase (ADP-forming)

Systematic name: UDP-N-acetyl-α-D-muramate:L-alanine ligase (ADP-forming)
Comments: Involved in the synthesis of a cell-wall peptide in bacteria.
References: [209, 357, 519]

[EC 6.3.2.8 created 1965, modified 2002]

EC 6.3.2.9
Accepted name: UDP-N-acetylmuramoyl-L-alanine—D-glutamate ligase

Reaction: ATP + UDP-N-acetyl-α-D-muramoyl-L-alanine + D-glutamate = ADP + phosphate + UDP-N-acetyl-
α-D-muramoyl-L-alanyl-D-glutamate

Other name(s): MurD synthetase; UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase; uridine diphospho-
N-acetylmuramoylalanyl-D-glutamate synthetase; D-glutamate-adding enzyme; D-glutamate lig-
ase; UDP-Mur-NAC-L-Ala:D-Glu ligase; UDP-N-acetylmuramoyl-L-alanine:glutamate ligase
(ADP-forming); UDP-N-acetylmuramoylalanine—D-glutamate ligase; UDP-N-acetylmuramoyl-L-
alanine:D-glutamate ligase (ADP-forming)

Systematic name: UDP-N-acetyl-α-D-muramoyl-L-alanine:D-glutamate ligase (ADP-forming)
Comments: Involved in the synthesis of a cell-wall peptide in bacteria.
References: [209, 519]

[EC 6.3.2.9 created 1965, modified 2002]

EC 6.3.2.10
Accepted name: UDP-N-acetylmuramoyl-tripeptide—D-alanyl-D-alanine ligase

Reaction: ATP + UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-L-lysine + D-alanyl-D-alanine = ADP + phos-
phate + UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-L-lysyl-D-alanyl-D-alanine

Other name(s): MurF synthetase; UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-L-lysyl-D-alanyl-D-alanine syn-
thetase; UDP-N-acetylmuramoylalanyl-D-glutamyl-lysine-D-alanyl-D-alanine ligase; uridine diphos-
phoacetylmuramoylpentapeptide synthetase; UDPacetylmuramoylpentapeptide synthetase; UDP-
MurNAc-L-Ala-D-Glu-L-Lys:D-Ala-D-Ala ligase

Systematic name: UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-L-lysine:D-alanyl-D-alanine ligase (ADP-forming)
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Comments: Involved with EC 6.3.2.4 (D-alanine—D-alanine ligase), EC 6.3.2.7 (UDP-N-acetylmuramoyl-
L-alanyl-D-glutamate—L-lysine ligase) or EC 6.3.2.13 (UDP-N-acetylmuramoyl-L-alanyl-D-
glutamate—2,6-diaminopimelate ligase), EC 6.3.2.8 (UDP-N-acetylmuramate—L-alanine ligase) and
EC 6.3.2.9 (UDP-N-acetylmuramoyl-L-alanine—D-glutamate ligase) in the synthesis of a cell-wall
peptide (click here) for diagram. This enzyme also catalyses the reaction when the C-terminal residue
of the tripeptide is meso-2,6-diaminoheptanedioate (acylated at its L-centre), linking the D-Ala-D-Ala
to the carboxy group of the L-centre. This activity was previously attributed to EC 6.3.2.15, which has
since been deleted.

References: [210, 519]

[EC 6.3.2.10 created 1965, modified 2002]

EC 6.3.2.11
Accepted name: carnosine synthase

Reaction: ATP + L-histidine + β-alanine = ADP + phosphate + carnosine
Other name(s): carnosine synthetase; carnosine-anserine synthetase; homocarnosine-carnosine synthetase; carnosine-

homocarnosine synthetase; L-histidine:β-alanine ligase (AMP-forming) (incorrect)
Systematic name: L-histidine:β-alanine ligase (ADP-forming)

Comments: This enzyme was thought to form AMP [222, 477], but studies with highly purified enzyme proved
that it forms ADP [114]. Carnosine is a dipeptide that is present at high concentrations in skeletal
muscle and the olfactory bulb of vertebrates [92]. It is also found in the skeletal muscle of some in-
vertebrates. The enzyme can also catalyse the formation of homocarnosine from 4-aminobutanoate
and L-histidine, with much lower activity [114].

References: [222, 477, 92, 114]

[EC 6.3.2.11 created 1965, modified 2010]

EC 6.3.2.12
Accepted name: dihydrofolate synthase

Reaction: ATP + 7,8-dihydropteroate + L-glutamate = ADP + phosphate + 7,8-dihydropteroylglutamate
Other name(s): dihydrofolate synthetase; 7,8-dihydrofolate synthetase; H2-folate synthetase; 7,8-dihydropteroate:L-

glutamate ligase (ADP); dihydropteroate:L-glutamate ligase (ADP-forming); DHFS
Systematic name: 7,8-dihydropteroate:L-glutamate ligase (ADP-forming)

Comments: In some bacteria, a single protein catalyses both this activity and that of EC 6.3.2.17, tetrahydrofolate
synthase [46], the combined activity of which leads to the formation of the coenzyme polyglutamated
tetrahydropteroate (H4PteGlun), i.e. various tetrahydrofolates. In contrast, the activities are located
on separate proteins in most eukaryotes studied to date [412]. This enzyme is reponsible for attaching
the first glutamate residue to dihydropteroate to form dihydrofolate and is present only in those organ-
isms that have the ability to synthesize tetrahydrofolate de novo, e.g. plants, most bacteria, fungi and
protozoa [412].

References: [166, 46, 412, 74, 86]

[EC 6.3.2.12 created 1972, modified 2005]

EC 6.3.2.13
Accepted name: UDP-N-acetylmuramoyl-L-alanyl-D-glutamate—2,6-diaminopimelate ligase

Reaction: ATP + UDP-N-acetyl-α-D-muramoyl-L-alanyl-D-glutamate + meso-2,6-diaminoheptanedioate = ADP
+ phosphate + UDP-N-acetyl-α-D-muramoyl-L-alanyl-γ-D-glutamyl-meso-2,6-diaminoheptanedioate

Other name(s): MurE synthetase [ambiguous]; UDP-N-acetylmuramoyl-L-alanyl-D-glutamate:meso-2,6-diamino-
heptanedioate ligase (ADP-forming); UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-
diaminopimelate synthetase; UDP-N-acetylmuramoylalanyl-D-glutamate—2,6-diaminopimelate lig-
ase; UDP-N-acetylmuramoyl-L-alanyl-D-glutamate:meso-2,6-diaminoheptanedioate γ-ligase (ADP-
forming)
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Systematic name: UDP-N-acetyl-α-D-muramoyl-L-alanyl-D-glutamate:meso-2,6-diaminoheptanedioate γ-ligase (ADP-
forming)

Comments: Involved in the synthesis of a cell-wall peptide in bacteria. This enzyme adds diaminopimelate in
Gram-negative organisms and in some Gram-positive organisms; in others EC 6.3.2.7 (UDP-N-
acetylmuramoyl-L-alanyl-D-glutamate—L-lysine ligase) adds lysine instead. It is the amino group
of the L-centre of the diaminopimelate that is acylated.

References: [334, 519]

[EC 6.3.2.13 created 1972, modified 2002, modified 2010]

EC 6.3.2.14
Accepted name: enterobactin synthase

Reaction: 6 ATP + 3 2,3-dihydroxybenzoate + 3 L-serine = enterobactin + 6 AMP + 6 diphosphate
Other name(s): N-(2,3-dihydroxybenzoyl)-serine synthetase; 2,3-dihydroxybenzoylserine synthetase; 2,3-

dihydroxybenzoate—serine ligase
Systematic name: 2,3-dihydroxybenzoate:L-serine ligase

Comments: This enzyme complex catalyses the conversion of three molecules each of 2,3-dihydroxybenzoate
and L-serine to form the siderophore enterobactin. In Escherichia coli the complex is formed by
EntB (an aryl carrier protein that has to be activated by 4′-phosphopantetheine), EntD (a phospho-
pantetheinyl transferase that activates EntB), EntE (catalyses the ATP-dependent condensation of
2,3-dihydroxybenzoate and holo-EntB to form the covalently arylated form of EntB), and EntF (a
four domain protein that catalyses the activation of L-serine by ATP, the condensation of the activated
L-serine with the activated 2,3-dihydroxybenzoate, and the trimerization of three such moieties to a
single enterobactin molecule).

References: [53, 435, 436, 437, 151, 458]

[EC 6.3.2.14 created 1972, modified 2012]

[6.3.2.15 Deleted entry. UDP-N-acetylmuramoylalanyl-D-glutamyl-2,6-diaminopimelate-D-alanyl-D-alanine ligase. The
activity observed is due to EC 6.3.2.10, UDP-N-acetylmuramoyl-tripeptide—D-alanyl-D-alanine ligase]

[EC 6.3.2.15 created 1976, deleted 2002]

EC 6.3.2.16
Accepted name: D-alanine—alanyl-poly(glycerolphosphate) ligase

Reaction: ATP + D-alanine + alanyl-poly(glycerolphosphate) = ADP + phosphate + D-alanyl-alanyl-
poly(glycerolphosphate)

Other name(s): D-alanyl-alanyl-poly(glycerolphosphate) synthetase; D-alanine:membrane-acceptor ligase; D-
alanylalanylpoly(phosphoglycerol) synthetase; D-alanyl-poly(phosphoglycerol) synthetase; D-alanine-
membrane acceptor-ligase

Systematic name: D-alanine:alanyl-poly(glycerolphosphate) ligase (ADP-forming)
Comments: Involved in the synthesis of teichoic acids.
References: [422]

[EC 6.3.2.16 created 1976]

EC 6.3.2.17
Accepted name: tetrahydrofolate synthase

Reaction: ATP + tetrahydropteroyl-[γ-Glu]n + L-glutamate = ADP + phosphate + tetrahydropteroyl-[γ-Glu]n+1
Other name(s): folylpolyglutamate synthase; folate polyglutamate synthetase; formyltetrahydropteroyldigluta-

mate synthetase; N10-formyltetrahydropteroyldiglutamate synthetase; folylpoly-γ-glutamate syn-
thase; folylpolyglutamyl synthetase; folylpoly(γ-glutamate) synthase; folylpolyglutamate synthetase;
FPGS; tetrahydrofolylpolyglutamate synthase; tetrahydrofolate:L-glutamate γ-ligase (ADP-forming);
tetrahydropteroyl-[γ-Glu]n:L-glutamate γ-ligase (ADP-forming)
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Systematic name: tetrahydropteroyl-γ-polyglutamate:L-glutamate γ-ligase (ADP-forming)
Comments: In some bacteria, a single protein catalyses both this activity and that of EC 6.3.2.12, dihydrofolate

synthase [46], the combined activity of which leads to the formation of the coenzyme polyglutamated
tetrahydropteroate (H4PteGlun), i.e. various tetrahydrofolates (H4folate). In contrast, the activities are
located on separate proteins in most eukaryotes studied to date [412]. In Arabidopsis thaliana, this
enzyme is present as distinct isoforms in the mitochondria, the cytosol and the chloroplast. Each iso-
form is encoded by a separate gene, a situation that is unique among eukaryotes [412]. As the affinity
of folate-dependent enzymes increases markedly with the number of glutamic residues, the tetrahy-
dropteroyl polyglutamates are the preferred coenzymes of C1 metabolism. (reviewed in [86]). The
enzymes from different sources (particularly eukaryotes versus prokaryotes) have different substrate
specificities with regard to one-carbon substituents and the number of glutamate residues present on
the tetrahydrofolates.

References: [81, 313, 46, 412, 86, 74]

[EC 6.3.2.17 created 1984, modified 2003, modified 2005]

EC 6.3.2.18
Accepted name: γ-glutamylhistamine synthase

Reaction: ATP + L-glutamate + histamine = products of ATP breakdown + Nα-γ-L-glutamylhistamine
Other name(s): γ-glutaminylhistamine synthetase; γ-GHA synthetase

Systematic name: L-glutamate:histamine ligase
References: [476]

[EC 6.3.2.18 created 1986]

[6.3.2.19 Deleted entry. ubiquitin—protein ligase. The ubiquitinylation process is now known to be performed by several
enzymes in sequence, starting with EC 6.2.1.45 (ubiquitin-activating enzyme E1) and followed by several transfer reactions,
including those of EC 2.3.2.23 (E2 ubiquitin-conjugating enzyme) and EC 2.3.2.27 (RING-type E3 ubiquitin transferase)]

[EC 6.3.2.19 created 1986, deleted 2015]

EC 6.3.2.20
Accepted name: indoleacetate—lysine synthetase

Reaction: ATP + (indol-3-yl)acetate + L-lysine = ADP + phosphate + N6-[(indol-3-yl)acetyl]-L-lysine
Other name(s): indoleacetate:L-lysine ligase (ADP-forming)

Systematic name: (indol-3-yl)acetate:L-lysine ligase (ADP-forming)
References: [159, 200]

[EC 6.3.2.20 created 1989]

[6.3.2.21 Deleted entry. ubiquitin—calmodulin ligase. The reaction is performed by the sequential action of EC 6.2.1.45
(ubiquitin-activating enzyme E1), several ubiquitin transferases and finally by EC 2.3.2.27 [ubiquitin transferase RING E3
(calmodulin-selective)]]

[EC 6.3.2.21 created 1990, deleted 2015]

[6.3.2.22 Transferred entry. diphthine—ammonia ligase. Now EC 6.3.1.14, diphthine—ammonia ligase.]

[EC 6.3.2.22 created 1990, deleted 2010]

EC 6.3.2.23
Accepted name: homoglutathione synthase

Reaction: ATP + γ-L-glutamyl-L-cysteine + β-alanine = ADP + phosphate + γ-L-glutamyl-L-cysteinyl-β-alanine
Other name(s): homoglutathione synthetase; β-alanine specific hGSH synthetase

Systematic name: γ-L-glutamyl-L-cysteine:β-alanine ligase (ADP-forming)
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Comments: Not identical with EC 6.3.2.3 glutathione synthase.
References: [287]

[EC 6.3.2.23 created 1990]

EC 6.3.2.24
Accepted name: tyrosine—arginine ligase

Reaction: ATP + L-tyrosine + L-arginine = AMP + diphosphate + L-tyrosyl-L-arginine
Other name(s): tyrosyl-arginine synthase; kyotorphin synthase; kyotorphin-synthesizing enzyme; kyotorphin syn-

thetase
Systematic name: L-tyrosine:L-arginine ligase (AMP-forming)

References: [511]

[EC 6.3.2.24 created 1992]

EC 6.3.2.25
Accepted name: tubulin—tyrosine ligase

Reaction: ATP + detyrosinated α-tubulin + L-tyrosine = α-tubulin + ADP + phosphate
Systematic name: α-tubulin:L-tyrosine ligase (ADP-forming)

Comments: L-Tyrosine is linked via a peptide bond to the C-terminus of de-tyrosinated α-tubulin (des-Tyrω-α-
tubulin). The enzyme is highly specific for α-tubulin and moderately specific for ATP and L-tyrosine.
L-Phenylalanine and 3,4-dihydroxy-L-phenylalanine are transferred but with higher Km values.

References: [539, 434]

[EC 6.3.2.25 created 1999]

EC 6.3.2.26
Accepted name: N-(5-amino-5-carboxypentanoyl)-L-cysteinyl-D-valine synthase

Reaction: 3 ATP + L-2-aminohexanedioate + L-cysteine + L-valine + H2O = 3 AMP + 3 diphosphate + N-[L-5-
amino-5-carboxypentanoyl]-L-cysteinyl-D-valine

Other name(s): L-δ-(α-aminoadipoyl)-L-cysteinyl-D-valine synthetase; ACV synthetase; L-α-aminoadipyl-cysteinyl-
valine synthetase;

Systematic name: L-2-aminohexanedioate:L-cysteine:L-valine ligase (AMP-forming, valine-inverting)
Comments: Requires Mg2+. The enzyme contains 4′-phosphopantetheine, which may be involved in the mecha-

nism of the reaction. Forms part of the penicillin biosynthesis pathway (for pathway, click here).
References: [58, 499]

[EC 6.3.2.26 created 2002]

[6.3.2.27 Deleted entry. The activity is covered by two independent enzymes, EC 6.3.2.38 N2-citryl-N6-acetyl-N6-hydroxylysine
synthase, and EC 6.3.2.39, aerobactin synthase]

[EC 6.3.2.27 created 2002, modified 2006, deleted 2012]

[6.3.2.28 Transferred entry. L-amino-acid α-ligase. Now EC 6.3.2.49, L-alanine-L-anticapsin ligase]

[EC 6.3.2.28 created 2006, deleted 2015]

EC 6.3.2.29
Accepted name: cyanophycin synthase (L-aspartate-adding)

Reaction: ATP + [L-Asp(4-L-Arg)]n + L-Asp = ADP + phosphate + [L-Asp(4-L-Arg)]n-L-Asp
Other name(s): CphA (ambiguous); CphA1 (ambiguous); CphA2 (ambiguous); cyanophycin synthetase (ambiguous);

multi-L-arginyl-poly-L-aspartate synthase (ambiguous)
Systematic name: cyanophycin:L-aspartate ligase (ADP-forming)
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Comments: Requires Mg2+ for activity. Both this enzyme and EC 6.3.2.30, cyanophycin synthase (L-arginine-
adding), are required for the elongation of cyanophycin, which is a protein-like cell inclusion that is
unique to cyanobacteria and acts as a temporary nitrogen store [4]. Both enzymes are found in the
same protein but have different active sites [4, 34]. Both L-Asp and L-Arg must be present before ei-
ther enzyme will display significant activity [4].

References: [3, 4, 11, 34, 571, 572]

[EC 6.3.2.29 created 2007]

EC 6.3.2.30
Accepted name: cyanophycin synthase (L-arginine-adding)

Reaction: ATP + [L-Asp(4-L-Arg)]n-L-Asp + L-Arg = ADP + phosphate + [L-Asp(4-L-Arg)]n+1
Other name(s): CphA (ambiguous); CphA1 (ambiguous); CphA2 (ambiguous); cyanophycin synthetase (ambiguous);

multi-L-arginyl-poly-L-aspartate synthase (ambiguous)
Systematic name: cyanophycin:L-arginine ligase (ADP-forming)

Comments: Requires Mg2+ for activity. Both this enzyme and EC 6.3.2.29, cyanophycin synthase (L-aspartate-
adding), are required for the elongation of cyanophycin, which is a protein-like cell inclusion that is
unique to cyanobacteria and acts as a temporary nitrogen store [4]. Both enzymes are found in the
same protein but have different active sites [4, 34]. Both L-Asp and L-Arg must be present before ei-
ther enzyme will display significant activity [4]. Canavanine and lysine can be incoporated into the
polymer instead of arginine [4].

References: [3, 4, 11, 34, 571, 572]

[EC 6.3.2.30 created 2007]

EC 6.3.2.31
Accepted name: coenzyme F420-0:L-glutamate ligase

Reaction: GTP + coenzyme F420-0 + L-glutamate = GDP + phosphate + coenzyme F420-1
Other name(s): CofE-AF; MJ0768; CofE

Systematic name: L-glutamate:coenzyme F420-0 ligase (GDP-forming)
Comments: This protein catalyses the successive addition of two glutamate residues to cofactor F420 by two dis-

tinct and independent reactions. In the reaction described here the enzyme attaches a glutamate via its
α-amine group to F420-0. In the second reaction (EC 6.3.2.34, coenzyme F420-1—γ-L-glutamate lig-
ase) it catalyses the addition of a second L-glutamate residue to the γ-carboxyl of the first glutamate.

References: [267, 363]

[EC 6.3.2.31 created 2010]

EC 6.3.2.32
Accepted name: coenzyme γ-F420-2:α-L-glutamate ligase

Reaction: ATP + coenzyme γ-F420-2 + L-glutamate = ADP + phosphate + coenzyme α-F420-3
Other name(s): MJ1001; CofF protein; γ-F420-2:α-L-glutamate ligase

Systematic name: L-glutamate:coenzyme γ-F420-2 (ADP-forming)
Comments: The enzyme caps the γ-glutamyl tail of the hydride carrier coenzyme F420 [268].
References: [268]

[EC 6.3.2.32 created 2010]

EC 6.3.2.33
Accepted name: tetrahydrosarcinapterin synthase

Reaction: ATP + tetrahydromethanopterin + L-glutamate = ADP + phosphate + 5,6,7,8-tetrahydrosarcinapterin
Other name(s): H4MPT:α-L-glutamate ligase; MJ0620; MptN protein

Systematic name: tetrahydromethanopterin:α-L-glutamate ligase (ADP-forming)
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Comments: This enzyme catalyses the biosynthesis of 5,6,7,8-tetrahydrosarcinapterin, a modified form of tetrahy-
dromethanopterin found in the Methanosarcinales. It does not require K+, and does not discriminate
between ATP and GTP [268].

References: [268]

[EC 6.3.2.33 created 2010]

EC 6.3.2.34
Accepted name: coenzyme F420-1:γ-L-glutamate ligase

Reaction: GTP + coenzyme F420-1 + L-glutamate = GDP + phosphate + coenzyme γ-F420-2
Other name(s): F420:γ-glutamyl ligase; CofE-AF; MJ0768; CofE

Systematic name: L-glutamate:coenzyme F420-1 ligase (GDP-forming)
Comments: This protein catalyses the successive addition of two glutamate residues to cofactor F420 by two dis-

tinct and independent reactions. In the first reaction (EC 6.3.2.31, coenzyme F420-0—L-glutamate
ligase) the enzyme attaches a glutamate via its α-amine group to F420-0. In the second reaction, which
is described here, the enzyme catalyses the addition of a second L-glutamate residue to the γ-carboxyl
of the first glutamate.

References: [267, 363]

[EC 6.3.2.34 created 2010]

EC 6.3.2.35
Accepted name: D-alanine—D-serine ligase

Reaction: D-alanine + D-serine + ATP = D-alanyl-D-serine + ADP + phosphate
Other name(s): VanC; VanE; VanG

Systematic name: D-alanine:D-serine ligase (ADP-forming)
Comments: The product of this enzyme, D-alanyl-D-serine, can be incorporated into the peptidoglycan pentapep-

tide instead of the usual D-alanyl-D-alanine dipeptide, which is formed by EC 6.3.2.4, D-alanine—
D-alanine ligase. The resulting peptidoglycan does not bind the glycopeptide antibiotics vancomycin
and teicoplanin, conferring resistance on the bacteria.

References: [118, 382, 133, 106, 534]

[EC 6.3.2.35 created 2010]

EC 6.3.2.36
Accepted name: 4-phosphopantoate—β-alanine ligase

Reaction: ATP + (R)-4-phosphopantoate + β-alanine = AMP + diphosphate + (R)-4′-phosphopantothenate
Other name(s): phosphopantothenate synthetase; TK1686 protein

Systematic name: (R)-4-phosphopantoate:β-alanine ligase (AMP-forming)
Comments: The conversion of (R)-pantoate to (R)-4′-phosphopantothenate is part of the pathway leading to

biosynthesis of 4′-phosphopantetheine, an essential cofactor of coenzyme A and acyl-carrier protein.
In bacteria and eukaryotes this conversion is performed by condensation with β-alanine, followed
by phosphorylation (EC 6.3.2.1 [pantoate—β-alanine ligase] and EC 2.7.1.33 [pantothenate kinase],
respectively). In archaea the order of these two steps is reversed, and phosphorylation precedes con-
densation with β-alanine. The two archaeal enzymes that catalyse this conversion are EC 2.7.1.169,
pantoate kinase, and this enzyme.

References: [558]

[EC 6.3.2.36 created 2011]

EC 6.3.2.37
Accepted name: UDP-N-acetylmuramoyl-L-alanyl-D-glutamate—D-lysine ligase
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Reaction: ATP + UDP-N-acetyl-α-D-muramoyl-L-alanyl-D-glutamate + D-lysine = ADP + phosphate + UDP-N-
acetyl-α-D-muramoyl-L-alanyl-γ-D-glutamyl-Nε-D-lysine

Other name(s): UDP-MurNAc-L-Ala-D-Glu:D-Lys ligase; D-lysine-adding enzyme
Systematic name: UDP-N-acetyl-α-D-muramoyl-L-alanyl-D-glutamate:D-lysine γ-ligase (ADP-forming)

Comments: Involved in the synthesis of cell-wall peptidoglycan. The D-lysine is attached to the peptide chain at
the N6 position. The enzyme from Thermotoga maritima also performs the reaction of EC 6.3.2.7,
UDP-N-acetylmuramoyl-L-alanyl-D-glutamate—L-lysine ligase.

References: [48]

[EC 6.3.2.37 created 2011, modified 2015]

EC 6.3.2.38
Accepted name: N2-citryl-N6-acetyl-N6-hydroxylysine synthase

Reaction: 2 ATP + citrate + N6-acetyl-N6-hydroxy-L-lysine + H2O = 2 ADP + 2 phosphate + N6-acetyl-N2-
citryl-N6-hydroxy-L-lysine

Other name(s): Nα-citryl-Nε-acetyl-Nε-hydroxylysine synthase; iucA (gene name)
Systematic name: citrate:N6-acetyl-N6-hydroxy-L-lysine ligase (AMP-forming)

Comments: Requires Mg2+. The enzyme is involved in the biosynthesis of aerobactin, a dihydroxamate
siderophore. It belongs to a class of siderophore synthases known as type A nonribosomal peptide
synthase-independent synthases (NIS). Type A enzymes are responsible for the formation of amide
or ester bonds between polyamines or amino alcohols and a prochiral carboxyl group of citrate. The
enzyme is believed to form an adenylate intermediate prior to ligation.

References: [156, 307, 101, 20, 66, 377]

[EC 6.3.2.38 created 2012, modified 2019]

EC 6.3.2.39
Accepted name: aerobactin synthase

Reaction: ATP + N2-citryl-N6-acetyl-N6-hydroxy-L-lysine + N6-acetyl-N6-hydroxy-L-lysine = AMP + diphos-
phate + aerobactin

Other name(s): iucC (gene name)
Systematic name: N2-citryl-N6-acetyl-N6-hydroxy-L-lysine:N6-acetyl-N6-hydroxy-L-lysine ligase (AMP-forming)

Comments: Requires Mg2+. The enzyme is involved in the biosynthesis of aerobactin, a dihydroxamate
siderophore. It belongs to a class of siderophore synthases known as type C nonribosomal peptide
synthase-independent synthases (NIS). Type C enzymes are responsible for the formation of amide or
ester bonds between a variety of substrates and a prochiral carboxyl group of a citrate molecule that
is already linked to a different moiety at its other prochiral carboxyl group. The enzyme is believed to
form an adenylate intermediate prior to ligation.

References: [156, 307, 20, 101, 102, 66, 377]

[EC 6.3.2.39 created 2012, modified 2019]

EC 6.3.2.40
Accepted name: cyclopeptine synthase

Reaction: 2 ATP + S-adenosyl-L-methionine + anthranilate + L-phenylalanine = cyclopeptine + 2 AMP + 2
diphosphate + S-adenosyl-L-homocysteine

Systematic name: S-adenosyl-L-methionine:anthranilate:L-phenylalanine ligase (cyclopeptine-forming)
Comments: Cyclopeptine synthase is the key enzyme of benzodiazepine alkaloid biosynthesis in the fungus Peni-

cillium cyclopium. The enzyme is a non-ribosomal peptide synthase.
References: [263, 154]

[EC 6.3.2.40 created 2013]
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EC 6.3.2.41
Accepted name: N-acetylaspartylglutamate synthase

Reaction: ATP + N-acetyl-L-aspartate + L-glutamate = ADP + phosphate + N-acetyl-L-aspartyl-L-glutamate
Other name(s): N-acetylaspartylglutamate synthetase; NAAG synthetase; NAAGS; RIMKLA (gene name) (ambigu-

ous); RIMKLB (gene name) (ambiguous)
Systematic name: N-acetyl-L-aspartate:L-glutamate ligase (ADP, N-acetyl-L-aspartyl-L-glutamate-forming)

Comments: The enzyme, found in animals, produces the neurotransmitter N-acetyl-L-aspartyl-L-glutamate. One
isoform also has the activity of EC 6.3.1.17, β-citrylglutamate synthase [83], while another isoform
has the activity of EC 6.3.2.42, N-acetylaspartylglutamylglutamate synthase [278].

References: [32, 83, 278]

[EC 6.3.2.41 created 2014]

EC 6.3.2.42
Accepted name: N-acetylaspartylglutamylglutamate synthase

Reaction: 2 ATP + N-acetyl-L-aspartate + 2 L-glutamate = 2 ADP + 2 phosphate + N-acetyl-L-aspartyl-L-
glutamyl-L-glutamate

Other name(s): N-acetylaspartylglutamylglutamate synthetase; NAAG(2) synthase; NAAG synthetase II; NAAGS-II;
RIMKLA (gene name) (ambiguous)

Systematic name: N-acetyl-L-aspartate:L-glutamate ligase (ADP, N-acetyl-L-aspartyl-L-glutamyl-L-glutamate-forming)
Comments: The enzyme, found in mammals, also has the activity of EC 6.3.2.41, N-acetylaspartylglutamate syn-

thase.
References: [278]

[EC 6.3.2.42 created 2014]

EC 6.3.2.43
Accepted name: [amino-group carrier protein]—L-2-aminoadipate ligase

Reaction: ATP + an [amino-group carrier protein]-C-terminal-L-glutamate + L-2-aminoadipate = ADP + phos-
phate + an [amino-group carrier protein]-C-terminal-[N-(1,4-dicarboxybutyl)-L-glutamine]

Other name(s): α-aminoadipate-lysW ligase; lysX (gene name); LysX (ambiguous); AAA—LysW ligase; [lysine-
biosynthesis-protein LysW]-C-terminal-L-glutamate:L-2-aminoadipate ligase (ADP-forming); [lysine-
biosynthesis-protein LysW]—L-2-aminoadipate ligase

Systematic name: [amino-group carrier protein]-C-terminal-L-glutamate:L-2-aminoadipate ligase (ADP-forming)
Comments: The enzymes from the thermophilic bacterium Thermus thermophilus and the thermophilic archaea

Sulfolobus acidocaldarius and Sulfolobus tokodaii protect the amino group of L-2-aminoadipate by
conjugation to the carrier protein LysW. This reaction is part of the lysine biosynthesis pathway in
these organisms.

References: [520, 193, 375]

[EC 6.3.2.43 created 2014, modified 2019]

EC 6.3.2.44
Accepted name: pantoate—β-alanine ligase (ADP-forming)

Reaction: ATP + (R)-pantoate + β-alanine = ADP + phosphate + (R)-pantothenate
Other name(s): pantothenate synthetase (ambiguous); pantoate—β-alanine ligase (ambiguous)

Systematic name: (R)-pantoate:β-alanine ligase (ADP-forming)
Comments: The enzyme, characterized from the archaeon Methanosarcina mazei, is involved in the biosynthesis

of pantothenate. It is different from EC 6.3.2.1, the AMP-forming pantoate-β-alanine ligase found in
bacteria and eukaryota.

References: [430]

[EC 6.3.2.44 created 2014]
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EC 6.3.2.45
Accepted name: UDP-N-acetylmuramate—L-alanyl-γ-D-glutamyl-meso-2,6-diaminoheptanedioate ligase

Reaction: ATP + UDP-N-acetyl-α-D-muramate + L-alanyl-γ-D-glutamyl-meso-2,6-diaminoheptanedioate =
ADP + phosphate + UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-meso-2,6-diaminoheptanedioate

Other name(s): murein peptide ligase; Mpl; yjfG (gene name); UDP-MurNAc:L-Ala-γ-D-Glu-meso-A2pm ligase;
UDP-N-acetylmuramate:L-alanyl-γ-D-glutamyl-meso-diaminopimelate ligase

Systematic name: UDP-N-acetylmuramate:L-alanyl-γ-D-glutamyl-meso-2,6-diaminoheptanedioate ligase2015
Comments: The enzyme catalyses the reincorporation into peptidoglycan of the tripeptide L-alanyl-γ-D-glutamyl-

2,6-meso-diaminoheptanedioate released during the maturation and constant remodeling of this bac-
terial cell wall polymer that occur during cell growth and division. The enzyme can also use the
tetrapeptide L-alanyl-γ-D-glutamyl-meso-2,6-diaminoheptanedioyl-D-alanine or the pentapeptide L-
alanyl-γ-D-glutamyl-meso-2,6-diaminoheptanedioyl-D-alanyl-D-alanine in vivo and in vitro. Requires
Mg2+.

References: [322, 184]

[EC 6.3.2.45 created 2014]

EC 6.3.2.46
Accepted name: fumarate—(S)-2,3-diaminopropanoate ligase

Reaction: ATP + fumarate + L-2,3-diaminopropanoate = AMP + diphosphate + N3-fumaroyl-L-2,3-
diaminopropanoate

Other name(s): DdaG; fumarate:(S)-2,3-diaminopropanoate ligase (AMP-forming)
Systematic name: fumarate:L-2,3-diaminopropanoate ligase (AMP-forming)

Comments: The enzyme, characterized from the bacterium Enterobacter agglomerans, is involved in biosynthesis
of dapdiamide tripeptide antibiotics, a family of fumaramoyl- and epoxysuccinamoyl-peptides named
for the presence of an L-2,3-diaminopropanoate (DAP) moiety and two amide linkages in their scaf-
fold.

References: [189]

[EC 6.3.2.46 created 2015]

EC 6.3.2.47
Accepted name: dapdiamide synthase

Reaction: (1) ATP + 3-[(2E)-4-amino-4-oxobut-2-enoyl]amino-L-alanine + L-valine = ADP + phosphate + 3-
[(2E)-4-amino-4-oxobut-2-enoyl]amino-L-alanyl-L-valine
(2) ATP + 3-[(2E)-4-amino-4-oxobut-2-enoyl]amino-L-alanine + L-isoleucine = ADP + phosphate +
3-[(2E)-4-amino-4-oxobut-2-enoyl]amino-L-alanyl-L-isoleucine
(3) ATP + 3-[(2E)-4-amino-4-oxobut-2-enoyl]amino-L-alanine + L-leucine = ADP + phosphate + 3-
[(2E)-4-amino-4-oxobut-2-enoyl]amino-L-alanyl-L-leucine
(4) ATP + 3-([(2R,3R)-3-carbamoyloxiran-2-yl]carbonylamino)-L-alanine + L-valine = ADP + phos-
phate + 3-([(2R,3R)-3-carbamoyloxiran-2-yl]carbonylamino)-L-alanyl-L-valine

Other name(s): DdaF; dapdiamide A synthase
Systematic name: 3-[(2E)-4-amino-4-oxobut-2-enoyl]amino-L-alanine:L-valine ligase (ADP-forming)

Comments: The enzyme, characterized from the bacterium Pantoea agglomerans, is involved in biosynthesis of
dapdiamide tripeptide antibiotics, a family of fumaramoyl- and epoxysuccinamoyl-peptides named for
the presence of an (S)-2,3-diaminopropanoate (DAP) moiety and two amide linkages in their scaffold.

References: [189, 188]

[EC 6.3.2.47 created 2015, modified 2016]

EC 6.3.2.48
Accepted name: L-arginine-specific L-amino acid ligase

Reaction: ATP + L-arginine + an L-amino acid = ADP + phosphate + an L-arginyl-L-amino acid
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Other name(s): RizA; L-amino acid ligase RizA
Systematic name: L-arginine:L-amino acid ligase (ADP-forming)

Comments: The enzyme, characterized from the bacterium Bacillus subtilis, requires Mn2+ for activity. It shows
strict substrate specificity toward L-arginine as the first (N-terminal) amino acid of the product. The
second amino acid could be any standard protein-building amino acid except for L-proline.

References: [237]

[EC 6.3.2.48 created 2015]

EC 6.3.2.49
Accepted name: L-alanine—L-anticapsin ligase

Reaction: ATP + L-alanine + L-anticapsin = ADP + phosphate + bacilysin
Other name(s): BacD; alanine-anticapsin ligase; L-Ala-L-anticapsin ligase; ywfE (gene name)

Systematic name: L-alanine:L-anticapsin ligase (ADP-forming)
Comments: The enzyme, characterized from the bacterium Bacillus subtilis, is involved in the biosynthesis of the

nonribosomally synthesized dipeptide antibiotic bacilysin, composed of L-alanine and L-anticapsin.
The enzyme requires Mg2+ or Mn2+ for activity, and has a broad substrate specificity in vitro [490].

References: [490, 509, 459, 384]

[EC 6.3.2.49 created 2006 as EC 6.3.2.28, transferred 2015 to EC 6.3.2.49]

EC 6.3.2.50
Accepted name: tenuazonic acid synthetase

Reaction: ATP + L-isoleucine + acetoacetyl-CoA = AMP + diphosphate + tenuazonic acid + CoA
Other name(s): TAS1 (gene name)

Systematic name: L-isoleucine:acetoacetyl-CoA ligase (tenuazonic acid-forming)
Comments: This fungal enzyme, isolated from Magnaporthe oryzae, is an non-ribosomal peptide synthetase

(NRPS)-polyketide synthase (PKS) hybrid protein that consists of condensation (C), adenylation
(A) and peptidyl-carrier protein (PCP) domains in the NRPS portion and a ketosynthase (KS) do-
main in the PKS portion. ATP is required for activation of isoleucine, which is then condensed with
acetoacetyl-CoA. Cyclization and release from the enzyme are catalysed by the KS domain.

References: [561]

[EC 6.3.2.50 created 2017]

EC 6.3.2.51
Accepted name: phosphopantothenate—cysteine ligase (ATP)

Reaction: ATP + (R)-4′-phosphopantothenate + L-cysteine = AMP + diphosphate + N-[(R)-4′-
phosphopantothenoyl]-L-cysteine

Other name(s): phosphopantothenoylcysteine synthetase (ambiguous); PPCS (gene name)
Systematic name: (R)-4′-phosphopantothenate:L-cysteine ligase (ATP-utilizing)

Comments: A key enzyme in the production of coenzyme A. The eukaryotic enzyme requires ATP, in contrast to
the bacterial enzyme, EC 6.3.2.5, phosphopantothenate—cysteine ligase, which requires CTP.

References: [97, 294, 250]

[EC 6.3.2.51 created 2017]

EC 6.3.2.52
Accepted name: jasmonoyl—L-amino acid ligase

Reaction: ATP + jasmonate + an L-amino acid = AMP + diphosphate + a jasmonoyl-L-amino acid
Other name(s): JAR1 (gene name); JAR4 (gene name); JAR6 (gene name); jasmonoyl—L-amino acid synthetase

Systematic name: jasmonate:L-amino acid ligase
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Comments: Two jasmonoyl-L-amino acid synthetases have been described from Nicotiana attenuata [531] and
one from Arabidopsis thaliana [472]. The N. attenuata enzymes generate jasmonoyl-L-isoleucine,
jasmonoyl-L-leucine, and jasmonoyl-L-valine. The enzyme from A. thaliana could catalyse the ad-
dition of many different amino acids to jasmonate in vitro [1,4,5]. While the abundant form of jas-
monate in plants is (–)-jasmonate, the active form of jasmonoyl-L-isoleucine is (+)-7-iso-jasmonoyl-
L-isoleucine.

References: [472, 225, 531, 170, 488]

[EC 6.3.2.52 created 2018, modified 2019]

EC 6.3.2.53
Accepted name: UDP-N-acetylmuramoyl-L-alanine—L-glutamate ligase

Reaction: ATP + UDP-N-acetyl-α-D-muramoyl-L-alanine + L-glutamate = ADP + phosphate + UDP-N-acetyl-
α-D-muramoyl-L-alanyl-L-glutamate

Other name(s): murD2 (gene name); UDP-N-acetyl-α-D-muramoyl-L-alanyl-L-glutamate synthetase; UDP-MurNAc-
L-Ala-L-Glu synthetase

Systematic name: UDP-N-acetylmuramoyl-L-alanine—L-glutamate ligase (ADP-forming)
Comments: The enzyme, characterized from the bacterium Xanthomonas oryzae, catalyses the ligation of a ter-

minal L-glutamate to UDP-N-acetyl-α-D-muramoyl-L-alanine. The combined activity of this enzyme
and EC 5.1.1.23, UDP-N-acetyl-α-D-muramoyl-L-alanyl-L-glutamate epimerase, provides an alterna-
tive route for incorporating D-glutamate into peptidoglycan, replacing the more common combination
of EC 5.1.1.3, glutamate racemase, and EC 6.3.2.9, UDP-N-acetylmuramoyl-L-alanine—D-glutamate
ligase.

References: [131]

[EC 6.3.2.53 created 2018]

EC 6.3.2.54
Accepted name: L-2,3-diaminopropanoate—citrate ligase

Reaction: ATP + L-2,3-diaminopropanoate + citrate = AMP + diphosphate + 2-[(L-alanin-3-
ylcarbamoyl)methyl]-2-hydroxybutanedioate

Other name(s): sbnE (gene name); 2-[(L-alanin-3-ylcarbamoyl)methyl]-2-hydroxybutanedioate synthtase
Systematic name: L-2,3-diaminopropanoate:citrate ligase (2-[(L-alanin-3-ylcarbamoyl)methyl]-2-hydroxybutanedioate-

forming)
Comments: Requires Mg2+. The enzyme, characterized from the bacterium Staphylococcus aureus, is involved

in the biosynthesis of the siderophore staphyloferrin B. It belongs to a class of siderophore synthases
known as type A nonribosomal peptide synthase-independent synthases (NIS). Type A NIS enzymes
are responsible for the formation of amide or ester bonds between polyamines or amino alcohols and
a prochiral carboxyl group of citrate. The enzyme forms a citrate adenylate intermediate prior to liga-
tion.

References: [94, 75]

[EC 6.3.2.54 created 2019]

EC 6.3.2.55
Accepted name: 2-[(L-alanin-3-ylcarbamoyl)methyl]-3-(2-aminoethylcarbamoyl)-2-hydroxypropanoate synthase

Reaction: ATP + 2-[(2-aminoethylcarbamoyl)methyl]-2-hydroxybutanedioate + L-2,3-diaminopropanoate
= AMP + diphosphate + 2-[(L-alanin-3-ylcarbamoyl)methyl]-3-(2-aminoethylcarbamoyl)-2-
hydroxypropanoate

Other name(s): sbnF (gene name)
Systematic name: 2-[(2-aminoethylcarbamoyl)methyl]-2-hydroxybutanedioate:L-2,3-diaminopropanoate ligase 2-[(L-

alanin-3-ylcarbamoyl)methyl]-3-(2-aminoethylcarbamoyl)-2-hydroxypropanoate-forming
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Comments: Requires Mg2+. The enzyme, characterized from the bacterium Staphylococcus aureus, is involved
in the biosynthesis of the siderophore staphyloferrin B. It belongs to a class of siderophore synthases
known as type C nonribosomal peptide synthase-independent synthases (NIS). Type C NIS enzymes
recognize esterified or amidated derivatives of carboxylic acids. The enzyme likely forms a 2-[(2-
aminoethylcarbamoyl)methyl]-2-hydroxybutanedioate adenylate intermediate prior to ligation.

References: [75]

[EC 6.3.2.55 created 2019]

EC 6.3.2.56
Accepted name: staphyloferrin B synthase

Reaction: ATP + 2-[(L-alanin-3-ylcarbamoyl)methyl]-3-(2-aminoethylcarbamoyl)-2-hydroxypropanoate + 2-
oxoglutarate = AMP + diphosphate + staphyloferrin B

Other name(s): sbnC (gene name)
Systematic name: 2-[(L-alanin-3-ylcarbamoyl)methyl]-3-(2-aminoethylcarbamoyl)-2-hydroxypropanoate:2-oxoglutarate

ligase (staphyloferrin B-forming)
Comments: Requires Mg2+. The enzyme, characterized from the bacterium Staphylococcus aureus, catalyses the

last step in the biosynthesis of the siderophore staphyloferrin B. It belongs to a class of siderophore
synthases known as type B nonribosomal peptide synthase-independent synthases (NIS). Type B NIS
enzymes recognize the δ-acid group of 2-oxoglutarate. The enzyme forms a 2-oxoglutarate adenylate
intermediate prior to ligation.

References: [75]

[EC 6.3.2.56 created 2019]

EC 6.3.2.57
Accepted name: staphyloferrin A synthase

Reaction: ATP + N5-[(S)-citryl]-D-ornithine + citrate = AMP + diphosphate + staphyloferrin A
Other name(s): sfnaB (gene name)

Systematic name: N5-[(S)-citryl]-D-ornithine:citrate ligase (staphyloferrin A-forming)
Comments: Requires Mg2+. The enzyme, characterized from the bacterium Staphylococcus aureus, catalyses the

last step in the biosynthesis of the siderophore staphyloferrin A. It belongs to a class of siderophore
synthases known as type A nonribosomal peptide synthase-independent synthases (NIS). Type A NIS
enzymes are responsible for the formation of amide or ester bonds between polyamines or amino al-
cohols and a prochiral carboxyl group of citrate. The enzyme forms a citrate adenylate intermediate
prior to ligation.

References: [87]

[EC 6.3.2.57 created 2019]

EC 6.3.2.58
Accepted name: D-ornithine—citrate ligase

Reaction: ATP + D-ornithine + citrate = AMP + diphosphate + N5-[(S)-citryl]-D-ornithine
Other name(s): sfnaD (gene name)

Systematic name: D-ornithine:citrate ligase 3-[(2-aminopentan-5-oylcarbamoyl)methyl]-3-hydroxybutanoate-forming
Comments: Requires Mg2+. The enzyme, characterized from the bacterium Staphylococcus aureus, is involved

in the biosynthesis of the siderophore staphyloferrin A. It belongs to a class of siderophore synthases
known as type A nonribosomal peptide synthase-independent synthases (NIS). Type A NIS enzymes
are responsible for the formation of amide or ester bonds between polyamines or amino alcohols and
a prochiral carboxyl group of citrate. The enzyme forms a citrate adenylate intermediate prior to liga-
tion.

References: [87]

[EC 6.3.2.58 created 2019]
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EC 6.3.2.59
Accepted name: 3-methyl-D-ornithine—L-lysine ligase

Reaction: ATP + (3R)-3-methyl-D-ornithine + L-lysine = ADP + phosphate + N6-[(3R)-3-methyl-D-ornithinyl]-
L-lysine

Other name(s): N6-[(2R,3R)-3-methylornithyl]-L-lysine synthase; 3-methylornithine—L-lysine ligase; pylC (gene
name)

Systematic name: (3R)-3-methyl-D-ornithine:L-lysine γ-ligase (ADP-forming)
Comments: The enzyme participates in the biosynthesis of L-pyrrolysine, a naturally occurring, genetically coded

amino acid found in some methanogenic archaea and a few bacterial species. L-pyrrolysine is present
in several methyltransferases that are involved in methyl transfer from methylated amine compounds
to coenzyme M.

References: [148, 62, 403]

[EC 6.3.2.59 created 2021]

EC 6.3.2.60
Accepted name: glutamate—[amino group carrier protein] ligase

Reaction: ATP + L-glutamate + an [amino-group carrier protein]-C-terminal-L-glutamate = ADP + phosphate +
an [amino-group carrier protein]-C-terminal-γ-(L-glutamyl)-L-glutamate

Other name(s): argX (gene name)
Systematic name: L-glutamate:an [amino-group carrier protein]-C-terminal-L-glutamate ligase (ADP-forming)

Comments: The enzyme, originally characterized from the archaeon Sulfolobus acidocaldarius, is involved in L-
arginine biosynthesis. The enzyme from the archaeon Thermococcus kodakarensis is bifunctional and
also catalyses the activity of EC 6.3.2.43, [amino-group carrier protein]—L-2-aminoadipate ligase.

References: [375, 560]

[EC 6.3.2.60 created 2021]

EC 6.3.2.61
Accepted name: tubulin-glutamate ligase

Reaction: n ATP + [tubulin]-L-glutamate + n L-glutamate = [tubulin]-(γ-(poly-α-L-glutamyl)-L-glutamyl)-L-
glutamate + n ADP + n phosphate (overall reaction)
(1a) ATP + [tubulin]-L-glutamate + L-glutamate = [tubulin]-(γ-L-glutamyl)-L-glutamate + ADP + phos-
phate
(1b) ATP + [tubulin]-(γ-L-glutamyl)-L-glutamate + L-glutamate = [tubulin]-(α-L-glutamyl-γ-L-
glutamyl)-L-glutamate + ADP + phosphate
(1c) ATP + [tubulin]-(α-L-glutamyl-γ-L-glutamyl)-L-glutamate + n L-glutamate = [tubulin]-(γ-(poly-
α-L-glutamyl)-L-glutamyl)-L-glutamate + n ADP + n phosphate

Other name(s): α-tubulin-glutamate ligase; tubulin polyglutamylase; TTLL1 (ambiguous); TTLL5 (ambiguous);
TTLL6 (ambiguous)

Systematic name: [tubulin]-L-glutamate:L-glutamate ligase (ADP-forming)
Comments: The eukaryotic tubulin proteins, which polymerize into microtubules, are highly modified by the ad-

dition of side-chains. The polyglutamylation reaction catalysed by this group of enzymes consists
of two biochemically distinct steps: initiation and elongation. Initiation comprises the formation of
an isopeptide bond with the γ-carboxyl group of the glutamate acceptor site in a glutamate-rich C-
terminal region of tubulin, whereas elongation consists of the addition of glutamate residues linked
by regular peptide bonds to the γ-linked residue. This entry describes enzymes that act on both α- and
β-tubulins.

References: [417, 418, 541, 215, 518, 550, 517]

[EC 6.3.2.61 created 2021]

EC 6.3.2.62
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Accepted name: β-tubulin-glutamate ligase
Reaction: n ATP + [β-tubulin]-L-glutamate + n L-glutamate = [β-tubulin]-(γ-(poly-α-L-glutamyl)-L-glutamyl)-

L-glutamate + n ADP + n phosphate (overall reaction)
(1a) ATP + [β-tubulin]-L-glutamate + L-glutamate = [β-tubulin]-(γ-L-glutamyl)-L-glutamate + ADP +
phosphate
(1b) ATP + [β-tubulin]-(γ-L-glutamyl)-L-glutamate + L-glutamate = [β-tubulin]-(α-L-glutamyl-γ-L-
glutamyl)-L-glutamate + ADP + phosphate
(1c) ATP + [β-tubulin]-(α-L-glutamyl-γ-L-glutamyl)-L-glutamate + n L-glutamate = [β-tubulin]-(γ-
(poly-α-L-glutamyl)-L-glutamyl)-L-glutamate + n ADP + n phosphate

Other name(s): β-tubulin polyglutamylase; TTLL4 (ambiguous); TTLL7 (ambiguous)
Systematic name: [β-tubulin]-L-glutamate:L-glutamate ligase (ADP-forming)

Comments: The eukaryotic tubulin proteins, which polymerize into microtubules, are highly modified by the ad-
dition of side-chains. The polyglutamylation reaction catalysed by this group of enzymes consists of
two biochemically distinct steps: initiation and elongation. Initiation comprises the formation of an
isopeptide bond with the γ-carboxyl group of the glutamate acceptor site, whereas elongation consists
of the addition of glutamate residues linked by regular peptide bonds to the γ-linked residue. This en-
try describes enzymes that act on β-tubulins and other proteins with glutamate-rich regions but not on
α-tubulins.

References: [417, 418, 203, 517]

[EC 6.3.2.62 created 2021]

EC 6.3.3 Cyclo-ligases

EC 6.3.3.1
Accepted name: phosphoribosylformylglycinamidine cyclo-ligase

Reaction: ATP + 2-(formamido)-N1-(5-phospho-D-ribosyl)acetamidine = ADP + phosphate + 5-amino-1-(5-
phospho-D-ribosyl)imidazole

Other name(s): phosphoribosylaminoimidazole synthetase; AIR synthetase; 5′-aminoimidazole ribonucleotide syn-
thetase; 2-(formamido)-1-N-(5-phosphoribosyl)acetamidine cyclo-ligase (ADP-forming)

Systematic name: 2-(formamido)-N1-(5-phosphoribosyl)acetamidine cyclo-ligase (ADP-forming)
References: [265, 264]

[EC 6.3.3.1 created 1961, modified 2000]

EC 6.3.3.2
Accepted name: 5-formyltetrahydrofolate cyclo-ligase

Reaction: ATP + 5-formyltetrahydrofolate = ADP + phosphate + 5,10-methenyltetrahydrofolate
Other name(s): 5,10-methenyltetrahydrofolate synthetase; formyltetrahydrofolic cyclodehydrase; 5-

formyltetrahydrofolate cyclodehydrase
Systematic name: 5-formyltetrahydrofolate cyclo-ligase (ADP-forming)

References: [165]

[EC 6.3.3.2 created 1972]

EC 6.3.3.3
Accepted name: dethiobiotin synthase

Reaction: ATP + 7,8-diaminononanoate + CO2 = ADP + phosphate + dethiobiotin
Other name(s): desthiobiotin synthase

Systematic name: 7,8-diaminononanoate:carbon-dioxide cyclo-ligase (ADP-forming)
Comments: CTP has half the activity of ATP.
References: [245, 555]
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[EC 6.3.3.3 created 1976]

EC 6.3.3.4
Accepted name: (carboxyethyl)arginine β-lactam-synthase

Reaction: ATP + L-N2-(2-carboxyethyl)arginine = AMP + diphosphate + deoxyamidinoproclavaminate
Other name(s): L-2-N-(2-carboxyethyl)arginine cyclo-ligase (AMP-forming)

Systematic name: L-N2-(2-carboxyethyl)arginine cyclo-ligase (AMP-forming)
Comments: Forms part of the pathway for the biosythesis of the β-lactamase inhibitor clavulanate in Streptomyces

clavuligerus. It has been proposed [25] that L-N2-(2-carboxyethyl)arginine is first converted into an
acyl-AMP by reaction with ATP and loss of diphosphate, and that the β-lactam ring is then formed by
the intramolecular attack of the β-nitrogen on the activated carboxy group.

References: [568, 506, 25]

[EC 6.3.3.4 created 2003]

EC 6.3.3.5
Accepted name: O-ureido-D-serine cyclo-ligase

Reaction: O-ureido-D-serine + ATP + H2O = D-cycloserine + CO2 + NH3 + ADP + phosphate
Other name(s): dcsG (gene name)

Systematic name: O-ureido-D-serine cyclo-ligase (D-cycloserine-forming)
Comments: The enzyme participates in the biosynthetic pathway of D-cycloserine, an antibiotic substance pro-

duced by several Streptomyces species.
References: [247, 510]

[EC 6.3.3.5 created 2013]

EC 6.3.3.6
Accepted name: carbapenam-3-carboxylate synthase

Reaction: ATP + (2S,5S)-5-carboxymethylproline = AMP + diphosphate + (3S,5S)-carbapenam 3-carboxylate
Other name(s): CarA (ambiguous); CPS (ambiguous); carbapenam-3-carboxylate ligase; 6-methyl-(2S,5S)-5-

carboxymethylproline cyclo-ligase (AMP-forming)
Systematic name: (2S,5S)-5-carboxymethylproline cyclo-ligase (AMP-forming)

Comments: The enzyme is involved in the biosynthesis of the carbapenem β-lactam antibiotic (5R)-carbapen-2-
em-3-carboxylate in the bacterium Pectobacterium carotovorum.

References: [155, 328, 404, 22]

[EC 6.3.3.6 created 2013 as 6.3.1.16, transferred 2013 to EC 6.3.3.6]

EC 6.3.3.7
Accepted name: Ni-sirohydrochlorin a,c-diamide reductive cyclase

Reaction: ATP + Ni-sirohydrochlorin a,c-diamide + 3 reduced electron acceptor + H2O = ADP + phosphate +
15,173-seco-F430-173-acid + 3 electron acceptor

Other name(s): cfbC (gene name); cfbD (gene name)
Systematic name: Ni-sirohydrochlorin a,c-diamide reductive cyclo-ligase (ADP-forming)

Comments: The enzyme, studied from the methanogenic archaeon Methanosarcina acetivorans, participates in the
biosynthesis of the nickel-containing tetrapyrrole cofactor coenzyme F430, which is required by EC
2.8.4.1, coenzyme-B sulfoethylthiotransferase.

References: [393, 566]

[EC 6.3.3.7 created 2017]
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EC 6.3.4 Other carbon-nitrogen ligases

[6.3.4.1 Transferred entry. GMP synthase. Now included in EC 6.3.5.2, GMP synthase (glutamine-hydrolysing)]

[EC 6.3.4.1 created 1961, deleted 2013]

EC 6.3.4.2
Accepted name: CTP synthase (glutamine hydrolysing)

Reaction: ATP + UTP + L-glutamine = ADP + phosphate + CTP + L-glutamate (overall reaction)
(1a) L-glutamine + H2O = L-glutamate + NH3
(1b) ATP + UTP + NH3 = ADP + phosphate + CTP

Other name(s): UTP—ammonia ligase; cytidine triphosphate synthetase; uridine triphosphate aminase; cytidine 5′-
triphosphate synthetase; CTPS (gene name); pyrG (gene name); CTP synthase; UTP:ammonia ligase
(ADP-forming)

Systematic name: UTP:L-glutamine amido-ligase (ADP-forming)
Comments: The enzyme contains three functionally distinct sites: an allosteric GTP-binding site, a glutaminase

site where glutamine hydrolysis occurs (cf. EC 3.5.1.2, glutaminase), and the active site where CTP
synthesis takes place. The reaction proceeds via phosphorylation of UTP by ATP to give an activated
intermediate 4-phosphoryl UTP and ADP [524, 266]. Ammonia then reacts with this intermediate
generating CTP and a phosphate. The enzyme can also use ammonia from the surrounding solution
[1, 525].

References: [271, 280, 1, 524, 266, 525]

[EC 6.3.4.2 created 1961, modified 2013]

EC 6.3.4.3
Accepted name: formate—tetrahydrofolate ligase

Reaction: ATP + formate + tetrahydrofolate = ADP + phosphate + 10-formyltetrahydrofolate
Other name(s): formyltetrahydrofolate synthetase; 10-formyltetrahydrofolate synthetase; tetrahydrofolic formylase;

tetrahydrofolate formylase
Systematic name: formate:tetrahydrofolate ligase (ADP-forming)

Comments: In eukaryotes occurs as a trifunctional enzyme also having methylenetetrahydrofolate dehydrogenase
(NADP+) (EC 1.5.1.5) and methenyltetrahydrofolate cyclohydrolase (EC 3.5.4.9) activity.

References: [213, 280, 405, 543]

[EC 6.3.4.3 created 1961]

EC 6.3.4.4
Accepted name: adenylosuccinate synthase

Reaction: GTP + IMP + L-aspartate = GDP + phosphate + N6-(1,2-dicarboxyethyl)-AMP
Other name(s): IMP—aspartate ligase; adenylosuccinate synthetase; succinoadenylic kinosynthetase; succino-AMP

synthetase
Systematic name: IMP:L-aspartate ligase (GDP-forming)

References: [98, 272, 556]

[EC 6.3.4.4 created 1961]

EC 6.3.4.5
Accepted name: argininosuccinate synthase

Reaction: ATP + L-citrulline + L-aspartate = AMP + diphosphate + 2-(Nω-L-arginino)succinate
Other name(s): citrulline—aspartate ligase; argininosuccinate synthetase; arginine succinate synthetase; argininosuc-

cinic acid synthetase; arginosuccinate synthetase
Systematic name: L-citrulline:L-aspartate ligase (AMP-forming)
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References: [409, 450]

[EC 6.3.4.5 created 1961]

EC 6.3.4.6
Accepted name: urea carboxylase

Reaction: ATP + urea + HCO3
− = ADP + phosphate + urea-1-carboxylate

Other name(s): urease (ATP-hydrolysing); urea carboxylase (hydrolysing); ATP—urea amidolyase; urea amidolyase;
UALase; UCA

Systematic name: urea:carbon-dioxide ligase (ADP-forming)
Comments: A biotinyl-protein. The yeast enzyme (but not that from green algae) also catalyses the reaction of EC

3.5.1.54 allophanate hydrolase, thus bringing about the hydrolysis of urea to CO2 and NH3. Previ-
ously also listed as EC 3.5.1.45. The enzyme from the prokaryotic bacterium Oleomonas sagaranen-
sis can also use acetamide and formamide as substrates [223].

References: [431, 432, 485, 223]

[EC 6.3.4.6 created 1972, modified 1986 (EC 3.5.1.45 created 1978, incorporated 1986)]

EC 6.3.4.7
Accepted name: ribose-5-phosphate—ammonia ligase

Reaction: ATP + ribose 5-phosphate + NH3 = ADP + phosphate + 5-phosphoribosylamine
Other name(s): 5-phosphoribosylamine synthetase; ribose 5-phosphate aminotransferase; ammonia-ribose 5-

phosphate aminotransferase
Systematic name: ribose-5-phosphate:ammonia ligase (ADP-forming)

References: [415]

[EC 6.3.4.7 created 1972]

EC 6.3.4.8
Accepted name: imidazoleacetate—phosphoribosyldiphosphate ligase

Reaction: ATP + imidazole-4-acetate + 5-phosphoribosyl diphosphate + H2O = ADP + phosphate + 1-(5-
phosphoribosyl)imidazole-4-acetate + diphosphate

Other name(s): 5-phosphoribosylimidazoleacetate synthetase
Systematic name: imidazoleacetate:5-phosphoribosyl-diphosphate ligase (ADP- and diphosphate-forming)

References: [91]

[EC 6.3.4.8 created 1972]

EC 6.3.4.9
Accepted name: biotin—[methylmalonyl-CoA-carboxytransferase] ligase

Reaction: ATP + biotin + apo-[methylmalonyl-CoA:pyruvate carboxytransferase] = AMP + diphosphate +
[methylmalonyl-CoA:pyruvate carboxytransferase]

Other name(s): biotin-[methylmalonyl-CoA-carboxyltransferase] synthetase; biotin-methylmalonyl coenzyme
A carboxyltransferase synthetase; biotin-transcarboxylase synthetase; methylmalonyl coenzyme
A holotranscarboxylase synthetase; biotin—[methylmalonyl-CoA-carboxyltransferase] ligase;
biotin:apo[methylmalonyl-CoA:pyruvate carboxyltransferase] ligase (AMP-forming)

Systematic name: biotin:apo[methylmalonyl-CoA:pyruvate carboxytransferase] ligase (AMP-forming)
References: [258]

[EC 6.3.4.9 created 1972]
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EC 6.3.4.10
Accepted name: biotin—[propionyl-CoA-carboxylase (ATP-hydrolysing)] ligase

Reaction: ATP + biotin + apo-[propionyl-CoA:carbon-dioxide ligase (ADP-forming)] = AMP + diphosphate +
[propionyl-CoA:carbon-dioxide ligase (ADP-forming)]

Other name(s): biotin-[propionyl-CoA-carboxylase (ATP-hydrolysing)] synthetase; biotin-propionyl coenzyme A
carboxylase synthetase; propionyl coenzyme A holocarboxylase synthetase

Systematic name: biotin:apo-[propanoyl-CoA:carbon-dioxide ligase (ADP-forming)] ligase (AMP-forming)
References: [460]

[EC 6.3.4.10 created 1972]

EC 6.3.4.11
Accepted name: biotin—[methylcrotonoyl-CoA-carboxylase] ligase

Reaction: ATP + biotin + apo-[3-methylcrotonoyl-CoA:carbon-dioxide ligase (ADP-forming)] = AMP +
diphosphate + [3-methylcrotonoyl-CoA:carbon-dioxide ligase (ADP-forming)]

Other name(s): biotin-[methylcrotonoyl-CoA-carboxylase] synthetase; biotin-β-methylcrotonyl coenzyme A car-
boxylase synthetase; β-methylcrotonyl coenzyme A holocarboxylase synthetase; holocarboxylase-
synthetase

Systematic name: biotin:apo-[3-methylcrotonoyl-CoA:carbon-dioxide ligase (ADP-forming)] ligase (AMP-forming)
References: [192]

[EC 6.3.4.11 created 1972]

EC 6.3.4.12
Accepted name: glutamate—methylamine ligase

Reaction: ATP + L-glutamate + methylamine = ADP + phosphate + N5-methyl-L-glutamine
Other name(s): γ-glutamylmethylamide synthetase

Systematic name: L-glutamate:methylamine ligase (ADP-forming)
References: [248]

[EC 6.3.4.12 created 1972]

EC 6.3.4.13
Accepted name: phosphoribosylamine—glycine ligase

Reaction: ATP + 5-phospho-D-ribosylamine + glycine = ADP + phosphate + N1-(5-phospho-D-
ribosyl)glycinamide

Other name(s): phosphoribosylglycinamide synthetase; glycinamide ribonucleotide synthetase; phosphoribosyl-
glycineamide synthetase; glycineamide ribonucleotide synthetase; 2-amino-N-ribosylacetamide 5′-
phosphate kinosynthase; 5′-phosphoribosylglycinamide synthetase; GAR

Systematic name: 5-phospho-D-ribosylamine:glycine ligase (ADP-forming)
References: [161, 176]

[EC 6.3.4.13 created 1961 as EC 6.3.1.3, transferred 1972 to EC 6.3.4.13, modified 2000]

EC 6.3.4.14
Accepted name: biotin carboxylase

Reaction: ATP + [biotin carboxyl-carrier protein]-biotin-N6-L-lysine + hydrogencarbonate- = ADP + phosphate
+ [biotin carboxyl-carrier protein]-carboxybiotin-N6-L-lysine

Other name(s): accC (gene name); biotin-carboxyl-carrier-protein:carbon-dioxide ligase (ADP-forming)
Systematic name: [biotin carboxyl-carrier protein]-biotin-N6-L-lysine:hydrogencarbonate ligase (ADP-forming)
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Comments: This enzyme, part of an acetyl-CoA carboxylase complex, acts on a biotin carboxyl-carrier protein
(BCCP) that has been biotinylated by EC 6.3.4.15, biotin—[biotin carboxyl-carrier protein] ligase.
In some organisms the enzyme is part of a multi-domain polypeptide that also includes the carrier
protein (e.g. mycobacteria). Yet in other organisms (e.g. mammals) this activity is included in a single
polypeptide that also catalyses the transfer of the carboxyl group from biotin to acetyl-CoA (see EC
6.4.1.2, acetyl-CoA carboxylase).

References: [109, 365, 214, 77, 54]

[EC 6.3.4.14 created 1976, modified 2014, modified 2018]

EC 6.3.4.15
Accepted name: biotin—[biotin carboxyl-carrier protein] ligase

Reaction: ATP + biotin + [biotin carboxyl-carrier protein]-L-lysine = AMP + diphosphate + [biotin carboxyl-
carrier protein]-N6-biotinyl-L-lysine

Other name(s): birA (gene name); HLCS (gene name); HCS1 (gene name); biotin-[acetyl-CoA carboxylase] syn-
thetase; biotin-[acetyl coenzyme A carboxylase] synthetase; acetyl coenzyme A holocarboxylase syn-
thetase; acetyl CoA holocarboxylase synthetase; biotin:apocarboxylase ligase; Biotin holoenzyme
synthetase; biotin:apo-[acetyl-CoA:carbon-dioxide ligase (ADP-forming)] ligase (AMP-forming);
biotin—[acetyl-CoA-carboxylase] ligase

Systematic name: biotin:apo-[carboxyl-carrier protein] ligase (AMP-forming)
Comments: The enzyme biotinylates a biotin carboxyl-carrier protein that is part of an acetyl-CoA carboxylase

complex, enabling its subsequent carboxylation by EC 6.3.4.14, biotin carboxylase. The carboxyl
group is eventually transferred to acetyl-CoA by EC 2.1.3.15, acetyl-CoA carboxytransferase. In
some organisms the carrier protein is part of EC 6.4.1.2, acetyl-CoA carboxylase.

References: [256, 547, 360]

[EC 6.3.4.15 created 1978, modified 2018]

EC 6.3.4.16
Accepted name: carbamoyl-phosphate synthase (ammonia)

Reaction: 2 ATP + NH3 + hydrogencarbonate = 2 ADP + phosphate + carbamoyl phosphate (overall reaction)
(1a) ATP + hydrogencarbonate = ADP + carboxyphosphate
(1b) NH3 + carboxyphosphate = carbamate + phosphate
(1c) ATP + carbamate = ADP + carbamoyl phosphate

Other name(s): carbon-dioxide—ammonia ligase; carbamoylphosphate synthase; carbamylphosphate synthetase;
carbamoylphosphate synthase (ammonia); carbamoylphosphate synthetase; carbamylphosphate
synthetase I; CPSI (gene name); carbon-dioxide:ammonia ligase (ADP-forming, carbamate-
phosphorylating)

Systematic name: hydrogencarbonate:ammonia ligase (ADP-forming, carbamate-phosphorylating)
Comments: The enzyme catalyses the first committed step in the urea cycle. The reaction proceeds via three sep-

arate chemical reactions: phosphorylation of hydrogencarbonate to carboxyphosphate; a nucleophilic
attack of ammonia on carboxyphosphate yielding carbamate; and the phosphorylation of carbamate
forming carbamoyl phosphate. Two moles of ATP are utilized for the synthesis of one molecule
of carbamyl phosphate, making the reaction essentially irreversible. The enzyme requires the al-
losteric activator N-acetyl-L-glutamate. cf. EC 6.3.5.5, carbamoyl-phosphate synthase (glutamine-
hydrolysing).

References: [127, 218, 297, 298, 396, 387]

[EC 6.3.4.16 created 1965 as EC 2.7.2.5, transferred 1978 to EC 6.3.4.16]

EC 6.3.4.17
Accepted name: formate—dihydrofolate ligase

Reaction: ATP + formate + dihydrofolate = ADP + phosphate + 10-formyldihydrofolate
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Other name(s): formyltransferase, dihydrofolate; dihydrofolate formyltransferase; formyl dihydrofolate synthase
Systematic name: formate:dihydrofolate ligase (ADP-forming)

Comments: Not identical with EC 6.3.4.3 (formate—tetrahydrofolate ligase).
References: [113]

[EC 6.3.4.17 created 1992]

EC 6.3.4.18
Accepted name: 5-(carboxyamino)imidazole ribonucleotide synthase

Reaction: ATP + 5-amino-1-(5-phospho-D-ribosyl)imidazole + HCO3
− = ADP + phosphate + 5-carboxyamino-

1-(5-phospho-D-ribosyl)imidazole
Other name(s): N5-CAIR synthetase; N5-carboxyaminoimidazole ribonucleotide synthetase; PurK

Systematic name: 5-amino-1-(5-phospho-D-ribosyl)imidazole:carbon-dioxide ligase (ADP-forming)
Comments: In Escherichia coli, this enzyme, along with EC 5.4.99.18, 5-(carboxyamino)imidazole ribonu-

cleotide mutase, is required to carry out the single reaction catalysed by EC 4.1.1.21, phosphoribo-
sylaminoimidazole carboxylase, in vertebrates. Belongs to the ATP grasp protein superfamily [502].
Carboxyphosphate is the putative acyl phosphate intermediate. Involved in the late stages of purine
biosynthesis.

References: [325, 344, 502]

[EC 6.3.4.18 created 2006]

EC 6.3.4.19
Accepted name: tRNAIle-lysidine synthase

Reaction: [tRNAIle2]-cytidine34 + L-lysine + ATP = [tRNAIle2]-lysidine34 + AMP + diphosphate + H2O
Other name(s): TilS; mesJ (gene name); yacA (gene name); isoleucine-specific transfer ribonucleate lysidine syn-

thetase; tRNAIle-lysidine synthetase
Systematic name: L-lysine:[tRNAIle2]-cytidine34 ligase (AMP-forming)

Comments: The bacterial enzyme modifies the wobble base of the CAU anticodon of tRNAIle at the oxo group
in position 2 of cytidine34. This modification determines both codon and amino acid specificities of
tRNAIle.

References: [205, 438, 354, 469, 353]

[EC 6.3.4.19 created 2011]

EC 6.3.4.20
Accepted name: 7-cyano-7-deazaguanine synthase

Reaction: 7-carboxy-7-carbaguanine + NH3 + ATP = 7-cyano-7-carbaguanine + ADP + phosphate + H2O
Other name(s): preQ0 synthase; 7-cyano-7-carbaguanine synthase; queC (gene name)

Systematic name: 7-carboxy-7-carbaguanine:ammonia ligase (ADP-forming)
Comments: Binds Zn2+. The reaction is part of the biosynthesis pathway of queuosine.
References: [310, 82]

[EC 6.3.4.20 created 2012]

EC 6.3.4.21
Accepted name: nicotinate phosphoribosyltransferase

Reaction: nicotinate + 5-phospho-α-D-ribose 1-diphosphate + ATP + H2O = β-nicotinate D-ribonucleotide +
diphosphate + ADP + phosphate

Other name(s): niacin ribonucleotidase; nicotinic acid mononucleotide glycohydrolase; nicotinic acid mononucleotide
pyrophosphorylase; nicotinic acid phosphoribosyltransferase; nicotinate-nucleotide:diphosphate
phospho-α-D-ribosyltransferase
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Systematic name: 5-phospho-α-D-ribose 1-diphosphate:nicotinate ligase (ADP, diphosphate-forming)
Comments: The enzyme, which is involved in pyridine nucleotide recycling, can form β-nicotinate D-

ribonucleotide and diphosphate from nicotinate and 5-phospho-α-D-ribose 1-diphosphate (PRPP)
in the absence of ATP. However, when ATP is available the enzyme is phosphorylated resulting in a
much lower Km for nicotinate. The phospho-enzyme is hydrolysed during the transferase reaction, re-
generating the low affinity form. The presence of ATP shifts the products/substrates equilibrium from
0.67 to 1100 [522].

References: [206, 207, 244, 522]

[EC 6.3.4.21 created 1961 as EC 2.4.2.11, transferred 2013 to EC 6.3.4.21]

EC 6.3.4.22
Accepted name: tRNAIle2-agmatinylcytidine synthase

Reaction: ATP + agmatine + [tRNAIle2]-cytidine34 + H2O = [tRNAIle2]-2-agmatinylcytidine34 + AMP + 2
phosphate

Other name(s): TiaS; AF2259; tRNAIle-2-agmatinylcytidine synthetase; tRNAIle-agm2C synthetase; tRNAIle-
agmatidine synthetase

Systematic name: agmatine:[tRNAIle]-cytidine34 ligase
Comments: The enzyme from the archaeon Archaeoglobus fulgidus modifies the wobble base of the CAU anti-

codon of the archaeal tRNAIle2 at the oxo group in position 2 of cytidine34. This modification is cru-
cial for accurate decoding of the genetic code. In bacteria EC 6.3.4.19, tRNAIle-lysidine synthase,
catalyses the modification of [tRNAIle2]-cytidine34 to [tRNAIle2]-lysidine34 .

References: [204, 497, 373]

[EC 6.3.4.22 created 2013]

EC 6.3.4.23
Accepted name: formate—phosphoribosylaminoimidazolecarboxamide ligase

Reaction: ATP + formate + 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide = ADP + phosphate +
5-formamido-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide

Other name(s): 5-formaminoimidazole-4-carboxamide ribonucleotide synthetase; 5-formaminoimidazole-4-
carboxamide-1-β-D-ribofuranosyl 5′-monophosphate synthetase; purP (gene name)

Systematic name: formate:5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide ligase (ADP-forming)
Comments: This archaeal enzyme, characterized from the methanogen Methanocaldococcus jannaschii, cataly-

ses a step in the synthesis of purine nucleotides. It differs from the orthologous bacterial/eukaryotic
enzymes, which utilize 10-formyltetrahydrofolate rather than formate and ATP. cf. EC 2.1.2.3, phos-
phoribosylaminoimidazolecarboxamide formyltransferase.

References: [378, 564]

[EC 6.3.4.23 created 2013]

EC 6.3.4.24
Accepted name: tyramine—L-glutamate ligase

Reaction: ATP + tyramine + L-glutamate = ADP + phosphate + γ-glutamyltyramine
Other name(s): mfnD (gene name)

Systematic name: tyramine:L-glutamate γ-ligase (ADP-forming)
Comments: The enzyme, which has been characterized from the archaea Methanocaldococcus fervens, partici-

pates in the biosynthesis of the cofactor methanofuran. Requires a divalent cation for activity, with
Mn2+ giving the highest activity, followed by Mg2+, Co2+, Zn2+, and Fe2+.

References: [532]

[EC 6.3.4.24 created 2014]
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EC 6.3.4.25
Accepted name: 2-amino-2′-deoxyadenylo-succinate synthase

Reaction: ATP + dGMP + L-aspartate = ADP + phosphate + 2-amino-2′-deoxy-N6-[(2S)-succino]adenylate
Other name(s): purZ (gene name)

Systematic name: dGMP:L-aspartate ligase (ADP-forming)
Comments: The enzyme, characterized from a number of bacteriophages, participates in the biosynthesis of dZTP,

which replaces dATP in the genome of these phages.
References: [569, 464]

[EC 6.3.4.25 created 2021]

EC 6.3.5 Carbon-nitrogen ligases with glutamine as amido-N-donor

EC 6.3.5.1
Accepted name: NAD+ synthase (glutamine-hydrolysing)

Reaction: ATP + deamido-NAD+ + L-glutamine + H2O = AMP + diphosphate + NAD+ + L-glutamate
Other name(s): NAD synthetase (glutamine-hydrolysing); nicotinamide adenine dinucleotide synthetase (glutamine);

desamidonicotinamide adenine dinucleotide amidotransferase; DPN synthetase
Systematic name: deamido-NAD+:L-glutamine amido-ligase (AMP-forming)

Comments: NH3 can act instead of glutamine (cf. EC 6.3.1.5 NAD+ synthase).
References: [206, 207]

[EC 6.3.5.1 created 1961]

EC 6.3.5.2
Accepted name: GMP synthase (glutamine-hydrolysing)

Reaction: ATP + XMP + L-glutamine + H2O = AMP + diphosphate + GMP + L-glutamate (overall reaction)
(1a) L-glutamine + H2O = L-glutamate + NH3
(1b) ATP + XMP + NH3 = AMP + diphosphate + GMP

Other name(s): GMP synthetase (glutamine-hydrolysing); guanylate synthetase (glutamine-hydrolyzing); guano-
sine monophosphate synthetase (glutamine-hydrolyzing); xanthosine 5′-phosphate amidotransferase;
guanosine 5′-monophosphate synthetase

Systematic name: xanthosine-5′-phosphate:L-glutamine amido-ligase (AMP-forming)
Comments: Involved in the de novo biosynthesis of guanosine nucleotides. An N-terminal glutaminase domain

binds L-glutamine and generates ammonia, which is transferred by a substrate-protective tunnel to the
ATP-pyrophosphatase domain. The enzyme can catalyse the second reaction alone in the presence of
ammonia.

References: [253, 5, 562, 2]

[EC 6.3.5.2 created 1961, modified 2013]

EC 6.3.5.3
Accepted name: phosphoribosylformylglycinamidine synthase

Reaction: ATP + N2-formyl-N1-(5-phospho-D-ribosyl)glycinamide + L-glutamine + H2O = ADP + phosphate +
2-(formamido)-N1-(5-phospho-D-ribosyl)acetamidine + L-glutamate

Other name(s): phosphoribosylformylglycinamidine synthetase; formylglycinamide ribonucleotide amidotransferase;
phosphoribosylformylglycineamidine synthetase; FGAM synthetase; FGAR amidotransferase; 5′-
phosphoribosylformylglycinamide:L-glutamine amido-ligase (ADP-forming); 2-N-formyl-1-N-(5-
phospho-D-ribosyl)glycinamide:L-glutamine amido-ligase (ADP-forming)

Systematic name: N2-formyl-N1-(5-phospho-D-ribosyl)glycinamide:L-glutamine amido-ligase (ADP-forming)
References: [320]

[EC 6.3.5.3 created 1961, modified 2000]
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EC 6.3.5.4
Accepted name: asparagine synthase (glutamine-hydrolysing)

Reaction: ATP + L-aspartate + L-glutamine + H2O = AMP + diphosphate + L-asparagine + L-glutamate (overall
reaction)
(1a) L-glutamine + H2O = L-glutamate + NH3
(1b) ATP + L-aspartate + NH3 = AMP + diphosphate + L-asparagine

Other name(s): asparagine synthetase (glutamine-hydrolysing); glutamine-dependent asparagine synthetase; as-
paragine synthetase B; AS; AS-B

Systematic name: L-aspartate:L-glutamine amido-ligase (AMP-forming)
Comments: The enzyme from Escherichia coli has two active sites [259] that are connected by an intramolecular

ammonia tunnel [198, 498]. The enzyme catalyses three distinct chemical reactions: glutamine hy-
drolysis to yield ammonia takes place in the N-terminal domain. The C-terminal active site mediates
both the synthesis of a β-aspartyl-AMP intermediate and its subsequent reaction with ammonia. The
ammonia released is channeled to the other active site to yield asparagine [498].

References: [386, 45, 423, 259, 198, 498]

[EC 6.3.5.4 created 1972, modified 2006]

EC 6.3.5.5
Accepted name: carbamoyl-phosphate synthase (glutamine-hydrolysing)

Reaction: 2 ATP + L-glutamine + hydrogencarbonate + H2O = 2 ADP + phosphate + L-glutamate + carbamoyl
phosphate (overall reaction)
(1a) L-glutamine + H2O = L-glutamate + NH3
(1b) ATP + hydrogencarbonate = ADP + carboxyphosphate
(1c) NH3 + carboxyphosphate = carbamate + phosphate
(1d) ATP + carbamate = ADP + carbamoyl phosphate

Other name(s): carbamoyl-phosphate synthetase (glutamine-hydrolysing); carbamyl phosphate synthetase (glu-
tamine); carbamoylphosphate synthetase II; glutamine-dependent carbamyl phosphate synthetase;
carbamoyl phosphate synthetase; CPS; carbon-dioxide:L-glutamine amido-ligase (ADP-forming,
carbamate-phosphorylating); carA (gene name); carB (gene name); CAD (gene name); hydrogen-
carbonate:L-glutamine amido-ligase (ADP-forming, carbamate-phosphorylating)

Systematic name: hydrogencarbonate:L-glutamine amido-ligase (ADP-forming, carbamate-phosphorylating)
Comments: The product carbamoyl phosphate is an intermediate in the biosynthesis of arginine and the pyrimi-

dine nucleotides [471]. The enzyme from Escherichia coli has three separate active sites, which are
connected by a molecular tunnel that is almost 100 Å in length [501]. The amidotransferase domain
within the small subunit of the enzyme hydrolyses glutamine to ammonia via a thioester intermediate.
The ammonia migrates through the interior of the protein, where it reacts with carboxyphosphate to
produce the carbamate intermediate. The carboxyphosphate intermediate is formed by the phosphory-
lation of hydrogencarbonate by ATP at a site contained within the N-terminal half of the large subunit.
The carbamate intermediate is transported through the interior of the protein to a second site within
the C-terminal half of the large subunit, where it is phosphorylated by another ATP to yield the final
product, carbamoyl phosphate [411]. cf. EC 6.3.4.16, carbamoyl-phosphate synthase (ammonia).

References: [14, 221, 557, 471, 187, 411, 410, 501]

[EC 6.3.5.5 created 1972 as EC 2.7.2.9, transferred 1978 to EC 6.3.5.5, modified 2006]

EC 6.3.5.6
Accepted name: asparaginyl-tRNA synthase (glutamine-hydrolysing)

Reaction: ATP + L-aspartyl-tRNAAsn + L-glutamine + H2O = ADP + phosphate + L-asparaginyl-tRNAAsn + L-
glutamate
(1a) L-glutamine + H2O = L-glutamate + NH3
(1b) ATP + L-aspartyl-tRNAAsn = ADP + 4-phosphooxy-L-aspartyl-tRNAAsn

(1c) 4-phosphooxy-L-aspartyl-tRNAAsn + NH3 = L-asparaginyl-tRNAAsn + phosphate
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Other name(s): Asp-AdT; Asp-tRNAAsn amidotransferase; aspartyl-tRNAAsn amidotransferase; Asn-tRNAAsn:L-
glutamine amido-ligase (ADP-forming); aspartyl-tRNAAsn:L-glutamine amido-ligase (ADP-forming);
GatCAB

Systematic name: L-aspartyl-tRNAAsn:L-glutamine amido-ligase (ADP-forming)
Comments: This reaction forms part of a two-reaction system for producing asparaginyl-tRNA in Deinococcus

radiodurans and other organisms lacking a specific enzyme for asparagine synthesis. In the first step,
a non-discriminating ligase (EC 6.1.1.23, aspartate—tRNAAsn ligase) mischarges tRNAAsn with as-
partate, leading to the formation of aspartyl-tRNAAsn. The aspartyl-tRNAAsn is not used in protein
synthesis until the present enzyme converts it into asparaginyl-tRNAAsn (aspartyl-tRNAAsp is not a
substrate for this enzyme). A glutaminase subunit (cf. EC 3.5.1.2, glutaminase) produces an ammonia
molecule that is transferred by a 30 Å tunnel to a synthase subunit, where it is ligated to the carboxy
group that has been activated by phosphorylation. Bacterial GatCAB complexes also has the activity
of EC 6.3.5.7 (glutaminyl-tRNA synthase [glutamine-hydrolysing]).

References: [93, 202, 330]

[EC 6.3.5.6 created 2002, modified 2012, modified 2019]

EC 6.3.5.7
Accepted name: glutaminyl-tRNA synthase (glutamine-hydrolysing)

Reaction: ATP + L-glutamyl-tRNAGln + L-glutamine = ADP + phosphate + L-glutaminyl-tRNAGln + L-
glutamate (overall reaction)
(1a) L-glutamine + H2O = L-glutamate + NH3
(1b) ATP + L-glutamyl-tRNAGln = ADP + 5-phosphooxy-L-glutamyl-tRNAGln

(1c) 5-phosphooxy-L-glutamyl-tRNAGln + NH3 = L-glutaminyl-tRNAGln + phosphate
Other name(s): Glu-AdT; Glu-tRNAGln amidotransferase; glutamyl-tRNAGln amidotransferase; Glu-tRNAGln:L-

glutamine amido-ligase (ADP-forming); GatCAB; GatFAB; GatDE
Systematic name: L-glutamyl-tRNAGln:L-glutamine amido-ligase (ADP-forming)

Comments: In systems lacking discernible glutamine—tRNA ligase (EC 6.1.1.18), glutaminyl-tRNAGln is formed
by a two-enzyme system. In the first step, a nondiscriminating ligase (EC 6.1.1.24, glutamate—
tRNAGln ligase) mischarges tRNAGln with glutamate, forming glutamyl-tRNAGln. The glutamyl-
tRNAGln is not used in protein synthesis until the present enzyme converts it into glutaminyl-tRNAGln

(glutamyl-tRNAGlu is not a substrate for this enzyme). A glutaminase subunit (cf. EC 3.5.1.2, glu-
taminase) produces an ammonia molecule that is transferred by a 30 Å tunnel to a synthase subunit,
where it is ligated to the carboxy group that has been activated by phosphorylation. Some bacte-
rial GatCAB complexes also has the activity of EC 6.3.5.6 (asparaginyl-tRNA synthase [glutamine-
hydrolysing]).

References: [93, 202, 406, 195, 130, 351, 553, 21]

[EC 6.3.5.7 created 2002, modified 2019]

[6.3.5.8 Transferred entry. aminodeoxychorismate synthase. Now EC 2.6.1.85, aminodeoxychorismate synthase. As ATP is
not hydrolysed during the reaction, the classification of the enzyme as a ligase was incorrect]

[EC 6.3.5.8 created 2003, deleted 2007]

EC 6.3.5.9
Accepted name: hydrogenobyrinic acid a,c-diamide synthase (glutamine-hydrolysing)

Reaction: 2 ATP + hydrogenobyrinic acid + 2 L-glutamine + 2 H2O = 2 ADP + 2 phosphate + hydrogenobyrinic
acid a,c-diamide + 2 L-glutamate

Other name(s): CobB
Systematic name: hydrogenobyrinic-acid:L-glutamine amido-ligase (AMP-forming)

Comments: This enzyme, which participates in the aerobic (late cobalt insertion) cobalamin biosynthesis path-
way, generates hydrogenobyrinate a,c-diamide, the substrate required by EC 6.6.1.2, cobaltochelatase,
which adds cobalt to the macrocycle. The equivalent reaction in the anaerobic cobalamin biosynthesis
pathway is catalysed by EC 6.3.5.11, cobyrinate a,c-diamide synthase.
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References: [105, 533]

[EC 6.3.5.9 created 2004]

EC 6.3.5.10
Accepted name: adenosylcobyric acid synthase (glutamine-hydrolysing)

Reaction: 4 ATP + adenosylcobyrinic acid a,c-diamide + 4 L-glutamine + 4 H2O = 4 ADP + 4 phosphate +
adenosylcobyric acid + 4 L-glutamate

Other name(s): CobQ; cobyric acid synthase; 5′-deoxy-5′-adenosylcobyrinic-acid-a,c-diamide:L-glutamine amido-
ligase; Ado-cobyric acid synthase [glutamine hydrolyzing]

Systematic name: adenosylcobyrinic-acid-a,c-diamide:L-glutamine amido-ligase (ADP-forming)
Comments: Requires Mg2+. NH3 can act instead of glutamine. This enzyme catalyses the four-step amidation se-

quence from cobyrinic acid a,c-diamide to cobyric acid via the formation of cobyrinic acid triamide,
tetraamide and pentaamide intermediates.

References: [43, 533]

[EC 6.3.5.10 created 2004]

EC 6.3.5.11
Accepted name: cobyrinate a,c-diamide synthase

Reaction: 2 ATP + cobyrinate + 2 L-glutamine + 2 H2O = 2 ADP + 2 phosphate + cobyrinate a,c-diamide + 2
L-glutamate (overall reaction)
(1a) ATP + cobyrinate + L-glutamine + H2O = ADP + phosphate + cobyrinate c-monamide + L-
glutamate
(1b) ATP + cobyrinate c-monamide + L-glutamine + H2O = ADP + phosphate + cobyrinate a,c-diamide
+ L-glutamate

Other name(s): cobyrinic acid a,c-diamide synthetase; CbiA
Systematic name: cobyrinate:L-glutamine amido-ligase (ADP-forming)

Comments: This enzyme is the first glutamine amidotransferase that participates in the anaerobic (early cobalt
insertion) biosynthetic pathway of adenosylcobalamin, and catalyses the ATP-dependent synthe-
sis of cobyrinate a,c-diamide from cobyrinate using either L-glutamine or ammonia as the nitrogen
source. It is proposed that the enzyme first catalyses the amidation of the c-carboxylate, and then the
intermediate is released into solution and binds to the same catalytic site for the amidation of the a-
carboxylate. The Km for ammonia is substantially higher than that for L-glutamine. The equivalent
reaction in the aerobic cobalamin biosynthesis pathway is catalysed by EC 6.3.5.9, hydrogenobyrinic
acid a,c-diamide synthase (glutamine-hydrolysing).

References: [138]

[EC 6.3.5.11 created 2010]

EC 6.3.5.12
Accepted name: Ni-sirohydrochlorin a,c-diamide synthase

Reaction: 2 ATP + Ni-sirohydrochlorin + 2 L-glutamine + 2 H2O = 2 ADP + 2 phosphate + Ni-sirohydrochlorin
a,c-diamide + 2 L-glutamate

Other name(s): cfbB (gene name)
Systematic name: Ni-sirohydrochlorin:L-glutamine amido-ligase (ADP-forming)

Comments: The enzyme, studied from the methanogenic archaeon Methanosarcina acetivorans, participates in the
biosynthesis of the nickel-containing tetrapyrrole cofactor coenzyme F430, which is required by EC
2.8.4.1, coenzyme-B sulfoethylthiotransferase.

References: [566]

[EC 6.3.5.12 created 2017]
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EC 6.3.5.13
Accepted name: lipid II isoglutaminyl synthase (glutamine-hydrolysing)

Reaction: ATP + β-D-GlcNAc-(1→4)-Mur2Ac(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala)-diphospho-
ditrans,octacis-undecaprenol + L-glutamine + H2O = ADP + phosphate + β-D-GlcNAc-(1→4)-
MurNAc-L-Ala-D-isoglutaminyl-L-Lys-D-Ala-D-Ala-diphospho-ditrans,octacis-undecaprenol + L-
glutamate (overall reaction)
(1a) L-glutamine + H2O = L-glutamate + NH3
(1b) ATP + β-D-GlcNAc-(1→4)-Mur2Ac(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala)-diphospho-
ditrans,octacis-undecaprenol = ADP + β-D-GlcNAc-(1→4)-MurNAc-L-Ala-γ-D-O-P-Glu-L-Lys-D-
Ala-D-Ala-diphospho-ditrans,octacis-undecaprenol
(1c) β-D-GlcNAc-(1→4)-Mur2Ac(oyl-L-Ala-γ-D-O-P-Glu-L-Lys-D-Ala-D-Ala)-diphospho-
ditrans,octacis-undecaprenol + NH3 = β-D-GlcNAc-(1→4)-MurNAc-L-Ala-D-isoglutaminyl-L-
Lys-D-Ala-D-Ala-diphospho-ditrans,octacis-undecaprenol + phosphate

Other name(s): MurT/GatD; MurT/GatD complex
Systematic name: β-D-GlcNAc-(1→4)-Mur2Ac(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala)-diphospho-ditrans,octacis-

undecaprenol:L-glutamine amidoligase (ADP-forming)
Comments: The enzyme complex, found in Gram-positive bacteria, consists of two subunits. A glutaminase sub-

unit (cf. EC 3.5.1.2, glutaminase) produces an ammonia molecule that is channeled to a ligase sub-
unit, which adds it to the activated D-glutamate residue of lipid II, converting it to an isoglutamine
residue.

References: [345, 364, 340]

[EC 6.3.5.13 created 2019]

EC 6.4 Forming carbon-carbon bonds
This subclass contains a single sub-subclass (EC 6.4.1) for enzymes that form carbon-carbon bonds. These are the carboxylating
enzymes, which are mostly biotinyl-proteins.

EC 6.4.1 Ligases that form carbon-carbon bonds (only sub-subclass identified to date)

EC 6.4.1.1
Accepted name: pyruvate carboxylase

Reaction: ATP + pyruvate + HCO3
− = ADP + phosphate + oxaloacetate

Other name(s): pyruvic carboxylase
Systematic name: pyruvate:carbon-dioxide ligase (ADP-forming)

Comments: A biotinyl-protein containing manganese (animal tissues) or zinc (yeast). The animal enzyme requires
acetyl-CoA.

References: [311, 455, 457, 513]

[EC 6.4.1.1 created 1961]

EC 6.4.1.2
Accepted name: acetyl-CoA carboxylase

Reaction: ATP + acetyl-CoA + hydrogencarbonate = ADP + phosphate + malonyl-CoA
Other name(s): HFA1 (gene name); ACC1 (gene name); acetyl coenzyme A carboxylase; acetyl-CoA:carbon-dioxide

ligase (ADP-forming)
Systematic name: acetyl-CoA:hydrogencarbonate ligase (ADP-forming)
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Comments: This enzyme is a multi-domain polypeptide that catalyses three different activities - a biotin carboxyl-
carrier protein (BCCP), a biotin carboxylase that catalyses the transfer of a carboxyl group from
hydrogencarbonate to the biotin molecule carried by the carrier protein, and the transfer of the car-
boxyl group from biotin to acetyl-CoA, forming malonyl-CoA. In some organisms these activities
are catalysed by separate enzymes (see EC 6.3.4.14, biotin carboxylase, and EC 2.1.3.15, acetyl-CoA
carboxytransferase). The carboxylation of the carrier protein requires ATP, while the transfer of the
carboxyl group to acetyl-CoA does not.

References: [526, 177, 303, 302, 514, 508, 72, 234]

[EC 6.4.1.2 created 1961, modified 2018]

EC 6.4.1.3
Accepted name: propionyl-CoA carboxylase

Reaction: ATP + propanoyl-CoA + HCO3
− = ADP + phosphate + (S)-methylmalonyl-CoA

Other name(s): propionyl coenzyme A carboxylase
Systematic name: propanoyl-CoA:carbon-dioxide ligase (ADP-forming)

Comments: A biotinyl-protein. Also carboxylates butanoyl-CoA and catalyses transcarboxylation.
References: [230, 257, 326, 342, 514]

[EC 6.4.1.3 created 1961, modified 1983]

EC 6.4.1.4
Accepted name: methylcrotonoyl-CoA carboxylase

Reaction: ATP + 3-methylcrotonoyl-CoA + HCO3
− = ADP + phosphate + 3-methylglutaconyl-CoA

Other name(s): methylcrotonyl coenzyme A carboxylase; β-methylcrotonyl coenzyme A carboxylase; β-
methylcrotonyl CoA carboxylase; methylcrotonyl-CoA carboxylase

Systematic name: 3-methylcrotonoyl-CoA:carbon-dioxide ligase (ADP-forming)
Comments: A biotinyl-protein.
References: [238, 282, 426, 514]

[EC 6.4.1.4 created 1961]

EC 6.4.1.5
Accepted name: geranoyl-CoA carboxylase

Reaction: ATP + geranoyl-CoA + HCO3
− = ADP + phosphate + 3-(4-methylpent-3-en-1-yl)pent-2-enedioyl-

CoA
Other name(s): geranoyl coenzyme A carboxylase; geranyl-CoA carboxylase

Systematic name: geranoyl-CoA:carbon-dioxide ligase (ADP-forming)
Comments: A biotinyl-protein. Also carboxylates dimethylpropenoyl-CoA and farnesoyl-CoA.
References: [456]

[EC 6.4.1.5 created 1972]

EC 6.4.1.6
Accepted name: acetone carboxylase

Reaction: acetone + hydrogen carbonate + 2 ATP + 3 H2O = acetoacetate + 2 AMP + 4 phosphate
Systematic name: acetone:carbon-dioxide ligase (AMP-forming)

Comments: Requires Mg2+ and ATP. The reaction involves separate phosphorylation of hydrogencarbonate and
acetone, forming carboxyphosphate and phosphoenolacetone, respectively, which are combined to
form the final product. The enzyme from Xanthobacter sp. strain Py2 also carboxylates butan-2-one
to 3-oxopentanoate.

References: [465, 451]
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[EC 6.4.1.6 created 2001]

EC 6.4.1.7
Accepted name: 2-oxoglutarate carboxylase

Reaction: ATP + 2-oxoglutarate + HCO3
− = ADP + phosphate + oxalosuccinate

Other name(s): oxalosuccinate synthetase; carboxylating factor for ICDH (incorrect); CFI; OGC
Comments: A biotin-containing enzyme that requires Mg2+ for activity. It was originally thought [18] that this

enzyme was a promoting factor for the carboxylation of 2-oxoglutarate by EC 1.1.1.41, isocitrate de-
hydrogenase (NAD+), but this has since been disproved [17]. The product of the reaction is unstable
and is quickly converted into isocitrate by the action of EC 1.1.1.41 [17].

References: [18, 17]

[EC 6.4.1.7 created 2006]

EC 6.4.1.8
Accepted name: acetophenone carboxylase

Reaction: 2 ATP + acetophenone + HCO3
− + H2O + H+ = 2 ADP + 2 phosphate + 3-oxo-3-phenylpropanoate

Systematic name: acetophenone:carbon-dioxide ligase (ADP-forming)
Comments: The enzyme is involved in anaerobic degradation of ethylbenzene. No activity with acetone, butanone,

4-hydroxy-acetophenone or 4-amino-acetophenone.
References: [217]

[EC 6.4.1.8 created 2011]

EC 6.4.1.9
Accepted name: coenzyme F430 synthetase

Reaction: ATP + 15,173-seco-F430-173-acid = ADP + phosphate + coenzyme F430
Other name(s): cfbE (gene name)

Systematic name: 15,173-seco-F430-173-acid cyclo-ligase (ADP-forming)
Comments: The enzyme, studied from the methanogenic archaeon Methanosarcina acetivorans, catalyses the last

step in the biosynthesis of the nickel-containing tetrapyrrole cofactor coenzyme F430, which is re-
quired by EC 2.8.4.1, coenzyme-B sulfoethylthiotransferase.

References: [566]

[EC 6.4.1.9 created 2017]

EC 6.5 Forming phosphoric-ester bonds
This subclass contains enzymes that restore broken phosphodiester bonds in nucleic acids (often called repair enzymes) in a
single sub-subclass (EC 6.5.1).

EC 6.5.1 Ligases that form phosphoric-ester bonds (only sub-subclass identified to date)

EC 6.5.1.1
Accepted name: DNA ligase (ATP)

Reaction: ATP + (deoxyribonucleotide)n-3′-hydroxyl + 5′-phospho-(deoxyribonucleotide)m =
(deoxyribonucleotide)n+m + AMP + diphosphate (overall reaction)
(1a) ATP + [DNA ligase]-L-lysine = [DNA ligase]-N6-(5′-adenylyl)-L-lysine + diphosphate
(1b) [DNA ligase]-N6-(5′-adenylyl)-L-lysine + 5′-phospho-(deoxyribonucleotide)m = 5′-(5′-
diphosphoadenosine)-(deoxyribonucleotide)m + [DNA ligase]-L-lysine
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(1c) (deoxyribonucleotide)n-3′-hydroxyl + 5′-(5′-diphosphoadenosine)-(deoxyribonucleotide)m =
(deoxyribonucleotide)n+m + AMP

Other name(s): polydeoxyribonucleotide synthase (ATP); polynucleotide ligase (ambiguous); sealase; DNA re-
pair enzyme (ambiguous); DNA joinase (ambiguous); DNA ligase (ambiguous); deoxyribonucleic
ligase (ambiguous); deoxyribonucleate ligase (ambiguous); DNA-joining enzyme (ambiguous);
deoxyribonucleic-joining enzyme (ambiguous); deoxyribonucleic acid-joining enzyme (ambiguous);
deoxyribonucleic repair enzyme (ambiguous); deoxyribonucleic joinase (ambiguous); deoxyribonu-
cleic acid ligase (ambiguous); deoxyribonucleic acid joinase (ambiguous); deoxyribonucleic acid
repair enzyme (ambiguous); poly(deoxyribonucleotide):poly(deoxyribonucleotide) ligase (AMP-
forming)

Systematic name: poly(deoxyribonucleotide)-3′-hydroxyl:5′-phospho-poly(deoxyribonucleotide) ligase (ATP)
Comments: The enzyme catalyses the ligation of DNA strands with 3′-hydroxyl and 5′-phosphate termini, form-

ing a phosphodiester and sealing certain types of single-strand breaks in duplex DNA. Catalysis oc-
curs by a three-step mechanism, starting with the activation of the enzyme by ATP, forming a phos-
phoramide bond between adenylate and a lysine residue. The adenylate group is then transferred to
the 5′-phosphate terminus of the substrate, forming the capped structure 5′-(5′-diphosphoadenosine)-
[DNA]. Finally, the enzyme catalyses a nucleophilic attack of the 3′-OH terminus on the capped ter-
minus, which results in formation of the phosphodiester bond and release of the adenylate. RNA can
also act as substrate, to some extent. cf. EC 6.5.1.2, DNA ligase (NAD+), EC 6.5.1.6, DNA ligase
(ATP or NAD+), and EC 6.5.1.7, DNA ligase (ATP, ADP or GTP).

References: [30, 41, 540, 197]

[EC 6.5.1.1 created 1972, modified 1976, modified 2016]

EC 6.5.1.2
Accepted name: DNA ligase (NAD+)

Reaction: NAD+ + (deoxyribonucleotide)n-3′-hydroxyl + 5′-phospho-(deoxyribonucleotide)m =
(deoxyribonucleotide)n+m + AMP + β-nicotinamide D-nucleotide (overall reaction)
(1a) NAD+ + [DNA ligase]-L-lysine = [DNA ligase]-N6-(5′-adenylyl)-L-lysine + β-nicotinamide D-
nucleotide
(1b) [DNA ligase]-N6-(5′-adenylyl)-L-lysine + 5′-phospho-(deoxyribonucleotide)m = 5′-(5′-
diphosphoadenosine)-(deoxyribonucleotide)m + [DNA ligase]-L-lysine
(1c) (deoxyribonucleotide)n-3′-hydroxyl + 5′-(5′-diphosphoadenosine)-(deoxyribonucleotide)m =
(deoxyribonucleotide)n+m + AMP

Other name(s): polydeoxyribonucleotide synthase (NAD+); polynucleotide ligase (NAD+); DNA repair enzyme (am-
biguous); DNA joinase (ambiguous); polynucleotide synthetase (nicotinamide adenine dinucleotide);
deoxyribonucleic-joining enzyme (ambiguous); deoxyribonucleic ligase (ambiguous); deoxyribonu-
cleic repair enzyme (ambiguous); deoxyribonucleic joinase (ambiguous); DNA ligase (ambiguous);
deoxyribonucleate ligase (ambiguous); polynucleotide ligase (ambiguous); deoxyribonucleic acid
ligase (ambiguous); polynucleotide synthetase (ambiguous); deoxyribonucleic acid joinase (ambigu-
ous); DNA-joining enzyme (ambiguous); polynucleotide ligase (nicotinamide adenine dinucleotide);
poly(deoxyribonucleotide):poly(deoxyribonucleotide) ligase (AMP-forming, NMN-forming)

Systematic name: poly(deoxyribonucleotide)-3′-hydroxyl:5′-phospho-poly(deoxyribonucleotide) ligase (NAD+)
Comments: The enzyme, typically found in bacteria, catalyses the ligation of DNA strands with 3′-hydroxyl and

5′-phosphate termini, forming a phosphodiester and sealing certain types of single-strand breaks in
duplex DNA. Catalysis occurs by a three-step mechanism, starting with the activation of the enzyme
by NAD+, forming a phosphoramide bond between adenylate and a lysine residue. The adenylate
group is then transferred to the 5′-phosphate terminus of the substrate, forming the capped structure
5′-(5′-diphosphoadenosine)-[DNA]. Finally, the enzyme catalyses a nucleophilic attack of the 3′-OH
terminus on the capped terminus, which results in formation of the phosphodiester bond and release
of the adenylate. RNA can also act as substrate, to some extent. cf. EC 6.5.1.1, DNA ligase (ATP), EC
6.5.1.6, DNA ligase (ATP or NAD+), and EC 6.5.1.7, DNA ligase (ATP, ADP or GTP).

References: [573, 276, 335, 336, 512]

[EC 6.5.1.2 created 1972, modified 1976, modified 2016]
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EC 6.5.1.3
Accepted name: RNA ligase (ATP)

Reaction: ATP + (ribonucleotide)n-3′-hydroxyl + 5′-phospho-(ribonucleotide)m = (ribonucleotide)n+m + AMP
+ diphosphate (overall reaction)
(1a) ATP + [RNA ligase]-L-lysine = [RNA ligase]-N6-(5′-adenylyl)-L-lysine + diphosphate
(1b) [RNA ligase]-N6-(5′-adenylyl)-L-lysine + 5′-phospho-(ribonucleotide)m = 5′-(5′-
diphosphoadenosine)-(ribonucleotide)m + [RNA ligase]-L-lysine
(1c) (ribonucleotide)n-3′-hydroxyl + 5′-(5′-diphosphoadenosine)-(ribonucleotide)m =
(ribonucleotide)n+m + AMP

Other name(s): polyribonucleotide synthase (ATP); RNA ligase; polyribonucleotide ligase; ribonucleic ligase;
poly(ribonucleotide):poly(ribonucleotide) ligase (AMP-forming)

Systematic name: poly(ribonucleotide)-3′-hydroxyl:5′-phospho-poly(ribonucleotide) ligase (ATP)
Comments: The enzyme catalyses the ligation of RNA strands with 3′-hydroxyl and 5′-phosphate termini, form-

ing a phosphodiester and sealing certain types of single-strand breaks in RNA. Catalysis occurs
by a three-step mechanism, starting with the activation of the enzyme by ATP, forming a phospho-
ramide bond between adenylate and a lysine residue. The adenylate group is then transferred to the 5′-
phosphate terminus of the substrate, forming the capped structure 5′-(5′-diphosphoadenosine)-[RNA].
Finally, the enzyme catalyses a nucleophilic attack of the 3′-OH terminus on the capped terminus,
which results in formation of the phosphodiester bond and release of the adenylate.

References: [462, 90, 483, 429, 186, 355]

[EC 6.5.1.3 created 1976, modified 2016]

EC 6.5.1.4
Accepted name: RNA 3′-terminal-phosphate cyclase (ATP)

Reaction: ATP + [RNA]-3′-(3′-phospho-ribonucleoside) = AMP + diphosphate + [RNA]-3′-(2′,3′-
cyclophospho)-ribonucleoside (overall reaction)
(1a) ATP + [RNA 3′-phosphate cyclase]-L-histidine = [RNA 3′-phosphate cyclase]-Nτ-(5′-adenylyl)-L-
histidine + diphosphate
(1b) [RNA 3′-phosphate cyclase]-Nτ-(5′-adenylyl)-L-histidine + [RNA]-3′-(3′-phospho-
ribonucleoside) = [RNA 3′-phosphate cyclase]-L-histidine + [RNA]-3′-ribonucleoside-3′-(5′-
diphosphoadenosine)
(1c) [RNA]-3′-ribonucleoside-3′-(5′-diphosphoadenosine) = [RNA]-3′-(2′,3′-cyclophospho)-
ribonucleoside + AMP

Other name(s): rtcA (gene name); RNA cyclase (ambiguous); RNA-3′-phosphate cyclase (ambiguous)
Systematic name: RNA-3′-phosphate:RNA ligase (cyclizing, AMP-forming)

Comments: The enzyme converts the 3′-terminal phosphate of various RNA substrates into the 2′,3′-cyclic phos-
phodiester in an ATP-dependent reaction. Catalysis occurs by a three-step mechanism, starting with
the activation of the enzyme by ATP, forming a phosphoramide bond between adenylate and a his-
tidine residue [42, 494]. The adenylate group is then transferred to the 3′-phosphate terminus of the
substrate, forming the capped structure [RNA]-3′-(5′-diphosphoadenosine). Finally, the enzyme catal-
yses an attack of the vicinal O-2′ on the 3′-phosphorus, which results in formation of cyclic phosphate
and release of the adenylate. The enzyme also has a polynucleotide 5′ adenylylation activity [63]. cf.
EC 6.5.1.5, RNA 3′-terminal-phosphate cyclase (GTP).

References: [132, 420, 152, 153, 42, 494, 63, 96]

[EC 6.5.1.4 created 1986, modified 1989, modified 2013, modified 2016]

EC 6.5.1.5
Accepted name: RNA 3′-terminal-phosphate cyclase (GTP)

Reaction: GTP + [RNA]-3′-(3′-phospho-ribonucleoside) = GMP + diphosphate + [RNA]-3′-(2′,3′-
cyclophospho)-ribonucleoside (overall reaction)
(1a) GTP + [RNA 3′-phosphate cyclase]-L-histidine = 5′-guanosyl [RNA 3′-phosphate cyclase]-Nτ-
phosphono-L-histidine + diphosphate
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(1b) 5′-guanosyl [RNA 3′-phosphate cyclase]-Nτ-phosphono-L-histidine + [RNA]-3′-(3′-phospho-
ribonucleoside) = [RNA 3′-phosphate cyclase]-L-histidine + [RNA]-3′-ribonucleoside-3′-(5′-
diphosphoguanosine)
(1c) [RNA]-3′-ribonucleoside-3′-(5′-diphosphoguanosine) = [RNA]-3′-(2′,3′-cyclophospho)-
ribonucleoside + GMP

Other name(s): Pf-Rtc; RNA-3′-phosphate cyclase (GTP)
Systematic name: RNA-3′-phosphate:RNA ligase (cyclizing, GMP-forming)

Comments: The enzyme, which is specific for GTP, was characterized from the archaeon Pyrococcus furiosus.
The enzyme converts the 3′-terminal phosphate of various RNA substrates into the 2′,3′-cyclic phos-
phodiester in a GTP-dependent reaction. Catalysis occurs by a three-step mechanism, starting with the
activation of the enzyme by GTP, forming a phosphoramide bond between guanylate and a histidine
residue. The guanylate group is then transferred to the 3′-phosphate terminus of the substrate, forming
the capped structure [RNA]-3′-(5′-diphosphoguanosine). Finally, the enzyme catalyses an attack of
the vicinal O-2′ on the 3′-phosphorus, which results in formation of cyclic phosphate and release of
the guanylate. cf. EC 6.5.1.4, RNA-3′-phosphate cyclase (ATP).

References: [443]

[EC 6.5.1.5 created 2013, modified 2016]

EC 6.5.1.6
Accepted name: DNA ligase (ATP or NAD+)

Reaction: (1) ATP + (deoxyribonucleotide)n-3′-hydroxyl + 5′-phospho-(deoxyribonucleotide)m =
(deoxyribonucleotide)n+m + AMP + diphosphate (overall reaction)
(1a) ATP + [DNA ligase]-L-lysine = 5′-adenosyl [DNA ligase]-Nε-phosphono-L-lysine + diphosphate
(1b) 5′-adenosyl [DNA ligase]-Nε-phosphono-L-lysine + 5′-phospho-(deoxyribonucleotide)m = 5′-(5′-
diphosphoadenosine)-(deoxyribonucleotide)m + [DNA ligase]-L-lysine
(1c) (deoxyribonucleotide)n-3′-hydroxyl + 5′-(5′-diphosphoadenosine)-(deoxyribonucleotide)m =
(deoxyribonucleotide)n+m + AMP
(2) NAD+ + (deoxyribonucleotide)n-3′-hydroxyl + 5′-phospho-(deoxyribonucleotide)m =
(deoxyribonucleotide)n+m + AMP + β-nicotinamide D-nucleotide (overall reaction)
(2a) NAD+ + [DNA ligase]-L-lysine = 5′-adenosyl [DNA ligase]-Nε-phosphono-L-lysine + β-
nicotinamide D-nucleotide
(2b) 5′-adenosyl [DNA ligase]-Nε-phosphono-L-lysine + 5′-phospho-(deoxyribonucleotide)m = 5′-(5′-
diphosphoadenosine)-(deoxyribonucleotide)m + [DNA ligase]-L-lysine
(2c) (deoxyribonucleotide)n-3′-hydroxyl + 5′-(5′-diphosphoadenosine)-(deoxyribonucleotide)m =
(deoxyribonucleotide)n+m + AMP

Systematic name: poly(deoxyribonucleotide)-3′-hydroxyl:5′-phospho-poly(deoxyribonucleotide) ligase (ATP or NAD+)
Comments: The enzymes from the archaea Thermococcus fumicolans and Thermococcus onnurineus show high

activity with either ATP or NAD+, and significantly lower activity with TTP, GTP, and CTP. The
enzyme catalyses the ligation of DNA strands with 3′-hydroxyl and 5′-phosphate termini, forming a
phosphodiester and sealing certain types of single-strand breaks in duplex DNA. Catalysis occurs by
a three-step mechanism, starting with the activation of the enzyme by ATP or NAD+, forming a phos-
phoramide bond between adenylate and a lysine residue. The adenylate group is then transferred to
the 5′-phosphate terminus of the substrate, forming the capped structure 5′-(5′-diphosphoadenosine)-
[DNA]. Finally, the enzyme catalyses a nucleophilic attack of the 3′-OH terminus on the capped ter-
minus, which results in formation of the phosphodiester bond and release of the adenylate. Different
from EC 6.5.1.1, DNA ligase (ATP), EC 6.5.1.2, DNA ligase (NAD+) and EC 6.5.1.7, DNA ligase
(ATP, ADP or GTP).

References: [428, 236]

[EC 6.5.1.6 created 2014, modified 2016]

EC 6.5.1.7
Accepted name: DNA ligase (ATP, ADP or GTP)
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Reaction: (1) ATP + (deoxyribonucleotide)n-3′-hydroxyl + 5′-phospho-(deoxyribonucleotide)m =
(deoxyribonucleotide)n+m + AMP + diphosphate (overall reaction)
(1a) ATP + [DNA ligase]-L-lysine = 5′-adenosyl [DNA ligase]-Nε-phosphono-L-lysine + diphosphate
(1b) 5′-adenosyl [DNA ligase]-Nε-phosphono-L-lysine + 5′-phospho-(deoxyribonucleotide)m = 5′-(5′-
diphosphoadenosine)-(deoxyribonucleotide)m + [DNA ligase]-L-lysine
(1c) (deoxyribonucleotide)n-3′-hydroxyl + 5′-(5′-diphosphoadenosine)-(deoxyribonucleotide)m =
(deoxyribonucleotide)n+m + AMP
(2) ADP + (deoxyribonucleotide)n-3′-hydroxyl + 5′-phospho-(deoxyribonucleotide)m =
(deoxyribonucleotide)n+m + AMP + phosphate (overall reaction)
(2a) ADP + [DNA ligase]-L-lysine = 5′-adenosyl [DNA ligase]-Nε-phosphono-L-lysine + phosphate
(2b) 5′-adenosyl [DNA ligase]-Nε-phosphono-L-lysine + 5′-phospho-(deoxyribonucleotide)m = 5′-(5′-
diphosphoadenosine)-(deoxyribonucleotide)m + [DNA ligase]-L-lysine
(2c) (deoxyribonucleotide)n-3′-hydroxyl + 5′-(5′-diphosphoadenosine)-(deoxyribonucleotide)m =
(deoxyribonucleotide)n+m + AMP
(3) GTP + (deoxyribonucleotide)n-3′-hydroxyl + 5′-phospho-(deoxyribonucleotide)m =
(deoxyribonucleotide)n+m + GMP + diphosphate (overall reaction)
(3a) GTP + [DNA ligase]-L-lysine = 5′-guanosyl [DNA ligase]-Nε-phosphono-L-lysine + diphosphate
(3b) 5′-guanosyl [DNA ligase]-Nε-phosphono-L-lysine + 5′-phospho-(deoxyribonucleotide)m = 5′-(5′-
diphosphoguanosine)-(deoxyribonucleotide)m + [DNA ligase]-L-lysine
(3c) (deoxyribonucleotide)n-3′-hydroxyl + 5′-(5′-diphosphoguanosine)-(deoxyribonucleotide)m =
(deoxyribonucleotide)n+m + GMP

Other name(s): poly(deoxyribonucleotide):poly(deoxyribonucleotide) ligase (ATP, ADP or GTP)
Systematic name: poly(deoxyribonucleotide)-3′-hydroxyl:5′-phospho-poly(deoxyribonucleotide) ligase (ATP, ADP or

GTP)
Comments: The enzymes from the archaea Hyperthermus butylicus and Sulfophobococcus zilligii are active with

ATP, ADP or GTP. They show no activity with NAD+. The enzyme catalyses the ligation of DNA
strands with 3′-hydroxyl and 5′-phosphate termini, forming a phosphodiester and sealing certain types
of single-strand breaks in duplex DNA. Catalysis occurs by a three-step mechanism, starting with
the activation of the enzyme by ATP, ADP, or GTP, forming a phosphoramide bond between adeny-
late/guanylate and a lysine residue. The nucleotide is then transferred to the 5′-phosphate terminus of
the substrate, forming the capped structure 5′-(5′-diphosphoadenosine/guanosine)-[DNA]. Finally, the
enzyme catalyses a nucleophilic attack of the 3′-OH terminus on the capped terminus, which results in
formation of the phosphodiester bond and release of the nucleotide. Different from EC 6.5.1.1, DNA
ligase (ATP), and EC 6.5.1.6, DNA ligase (ATP or NAD+), which cannot utilize GTP.

References: [486, 233]

[EC 6.5.1.7 created 2014, modified 2016]

EC 6.5.1.8
Accepted name: 3′-phosphate/5′-hydroxy nucleic acid ligase

Reaction: (1) (ribonucleotide)n-3′-phosphate + 5′-hydroxy-(ribonucleotide)m + GTP = (ribonucleotide)n+m +
GMP + diphosphate (overall reaction)
(1a) GTP + [RNA ligase]-L-histidine = [RNA ligase]-Nτ-(5′-guanosyl-phosphono)-L-histidine +
diphosphate
(1b) [RNA ligase]-Nτ-(5′-guanosyl-phosphono)-L-histidine + (ribonucleotide)n-3′-phosphate =
(ribonucleotide)n-3′-(5′-diphosphoguanosine) + [RNA ligase]-L-histidine
(1c) (ribonucleotide)n-3′-(5′-diphosphoguanosine) + 5′-hydroxy-(ribonucleotide)m =
(ribonucleotide)n+m + GMP
(2) (ribonucleotide)n-2′,3′-cyclophosphate + 5′-hydroxy-(ribonucleotide)m + GTP + H2O =
(ribonucleotide)n+m + GMP + diphosphate (overall reaction)
(2a) (ribonucleotide)n-2′,3′-cyclophosphate + H2O = (ribonucleotide)n-3′-phosphate
(2b) GTP + [RNA ligase]-L-histidine = [RNA ligase]-Nτ-(5′-guanosyl-phosphono)-L-histidine +
diphosphate
(2c) [RNA ligase]-Nτ-(5′-guanosyl-phosphono)-L-histidine + (ribonucleotide)n-3′-phosphate =
(ribonucleotide)n-3′-(5′-diphosphoguanosine) + [RNA ligase]-L-histidine
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(2d) (ribonucleotide)n-3′-(5′-diphosphoguanosine) + 5′-hydroxy-(ribonucleotide)m =
(ribonucleotide)n+m + GMP

Other name(s): rtcB (gene name)
Systematic name: poly(ribonucleotide)-3′-phosphate:5′-hydroxy-poly(ribonucleotide) ligase (GMP-forming)

Comments: The enzyme is a GTP- and Mn2+-dependent 3′-5′ nucleic acid ligase with the ability to join RNA
with 3′-phosphate or 2′,3′-cyclic-phosphate ends to RNA with 5′-hydroxy ends. It can also join DNA
with 3′-phosphate ends to DNA with 5′-hydroxy ends, provided the DNA termini are unpaired [64].
The enzyme is found in members of all three kingdoms of life, and is essential in metazoa for the
splicing of intron-containing tRNAs. The reaction follows a three-step mechanism with initial acti-
vation of the enzyme by GTP hydrolysis, forming a phosphoramide bond between the guanylate and
a histidine residue. The guanylate group is transferred to the 3′-phosphate terminus of the substrate,
forming the capped structure [DNA/RNA]-3′-(5′-diphosphoguanosine). When a suitable 5′-OH end is
available, the enzyme catalyses an attack of the 5′-OH on the capped end to form a 3′-5′ phosphodi-
ester splice junction, releasing the guanylate. When acting on an RNA 2′,3′-cyclic-phosphate, the en-
zyme catalyses an additional reaction, hydrolysing the cyclic phosphate to a 3′-phosphate [305]. The
metazoan enzyme requires activating cofactors in order to achieve multiple turnover catalysis [107].

References: [493, 495, 492, 108, 65, 64, 95, 107, 305]

[EC 6.5.1.8 created 2017]

EC 6.5.1.9
Accepted name: cyclic 2,3-diphosphoglycerate synthase

Reaction: ATP + 2,3-diphospho-D-glycerate = ADP + phosphate + cyclic 2,3-bisphosphoglycerate
Other name(s): cpgS (gene name)

Systematic name: (2R)-2,3-bisphosphoglycerate ligase (cyclizing)
Comments: The enzyme is present in a number of methanogenic archaeal genera that accumulate cyclic 2,3-

bisphosphoglycerate as a thermoprotectant. Activity is stimulated by potassium ions.
References: [262, 304]

[EC 6.5.1.9 created 2020]

EC 6.6 Forming nitrogen-metal bonds
This subclass contains a single sub-subclass for enzymes that form coordination complexes, i.e. form nitrogen—metal bonds
(EC 6.6.1).

EC 6.6.1 Forming coordination complexes

EC 6.6.1.1
Accepted name: magnesium chelatase

Reaction: ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+

Other name(s): protoporphyrin IX magnesium-chelatase; protoporphyrin IX Mg-chelatase; magnesium-
protoporphyrin IX chelatase; magnesium-protoporphyrin chelatase; magnesium-chelatase; Mg-
chelatase; Mg-protoporphyrin IX magnesio-lyase

Systematic name: Mg-protoporphyrin IX magnesium-lyase
Comments: This is the first committed step of chlorophyll biosynthesis and is a branchpoint of two major routes in

the tetrapyrrole pathway.
References: [528, 529, 135]

[EC 6.6.1.1 created 2003]
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EC 6.6.1.2
Accepted name: cobaltochelatase

Reaction: ATP + hydrogenobyrinate a,c-diamide + Co2+ + H2O = ADP + phosphate + cob(II)yrinate a,c-
diamide + H+

Other name(s): hydrogenobyrinic acid a,c-diamide cobaltochelatase; CobNST; CobNCobST; hydrogenobyrinic-acid-
a,c-diamide:cobalt cobalt-ligase (ADP-forming)

Systematic name: hydrogenobyrinate-a,c-diamide:cobalt cobalt-ligase (ADP-forming)
Comments: This enzyme, which forms part of the aerobic (late cobalt insertion) cobalamin biosynthesis path-

way, is a type I chelatase, being heterotrimeric and ATP-dependent. It comprises two components,
one of which corresponds to CobN and the other is composed of two polypeptides, specified by cobS
and cobT in Pseudomonas denitrificans, and named CobST [104]. Hydrogenobyrinate is a very poor
substrate. ATP can be replaced by dATP or CTP but the reaction proceeds more slowly. CobN ex-
hibits a high affinity for hydrogenobyrinate a,c-diamide. The oligomeric protein CobST possesses at
least one sulfhydryl group that is essential for ATP-binding. See EC 4.99.1.3, sirohydrochlorin cobal-
tochelatase, for the cobaltochelatase that participates in the anaerobic cobalamin biosynthesis path-
way.

References: [104, 533]

[EC 6.6.1.2 created 2004]

EC 6.7 Forming nitrogen-nitrogen bonds
This subclass contains a single sub-subclass for enzymes that form diazo bonds (EC 6.7.1).

EC 6.7.1 Forming diazo bonds

EC 6.7.1.1
Accepted name: 3-amino-2-hydroxy-4-methoxybenzoate diazotase

Reaction: ATP + 3-amino-2-hydroxy-4-methoxybenzoate + nitrite = AMP + diphosphate + cremeomycin + H2O
Other name(s): creM (gene name)

Systematic name: 3-amino-2-hydroxy-4-methoxybenzoate:nitrite ligase (AMP-forming)
Comments: The enzyme, characterized from Streptomyces cremeus, catalyses the last step in the biosynthesis of

the ortho-diazoquinone cremeomycin.
References: [527]

[EC 6.7.1.1 created 2021]
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Hefe. Biochem. Z., 340:243–262, 1964.

[304] K. Matussek, P. Moritz, N. Brunner, C. Eckerskorn, and R. Hensel. Cloning, sequencing, and expression of the gene
encoding cyclic 2, 3-diphosphoglycerate synthetase, the key enzyme of cyclic 2, 3-diphosphoglycerate metabolism in
Methanothermus fervidus. J. Bacteriol., 180:5997–6004, 1998.

[305] W.P. Maughan and S. Shuman. Distinct contributions of enzymic functional groups to the 2′,3′-cyclic phosphodiesterase,
3′-phosphate guanylylation, and 3′-ppG/5′-OH ligation steps of the Escherichia coli RtcB nucleic acid splicing pathway.
J. Bacteriol., 198:1294–1304, 2016.

[306] J.A. Maupin-Furlow. Ubiquitin-like proteins and their roles in archaea. Trends Microbiol., 21:31–38, 2013.

[307] P.J. Maurer and M. Miller. Microbial iron chelators: total synthesis of aerobactin and its constituent amino acid, N6-
acetyl-N6-hydroxylysine. J. Am. Chem. Soc., 104:3096–3101, 1982.

[308] J.J. May, T.M. Wendrich, and M.A. Marahiel. The dhb operon of Bacillus subtilis encodes the biosynthetic template for the
catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. J. Biol. Chem., 276:7209–
7217, 2001.

[309] R. Mazumder, D.R. Sanadi, and W.V. Rodwell. Purification and properties of hog kidney succinic thiokinase. J. Biol.
Chem., 235:2546–2550, 1960.

[310] R.M. McCarty, A. Somogyi, G. Lin, N.E. Jacobsen, and V. Bandarian. The deazapurine biosynthetic pathway revealed: in
vitro enzymatic synthesis of preQ0 from guanosine 5′-triphosphate in four steps. Biochemistry, 48:3847–3852, 2009.

[311] W.R. McClure, H.A. Lardy, and H.P. Kneifel. Rat liver pyruvate carboxylase. I. Preparation, properties, and cation
specificity. J. Biol. Chem., 246:3569–3578, 1971.

[312] D.J. McCorquodale. The separation and partial purification of aminoacyl-RNA synthetases from Escherichia coli.
Biochim. Biophys. Acta, 91:541–548, 1964.

[313] J.J. McGuire and J.R. Bertino. Enzymatic synthesis and function of folylpolyglutamates. Mol. Cell. Biochem., 38:19–48,
1981.

[314] J.A. McIntosh, M.S. Donia, and E.W. Schmidt. Insights into heterocyclization from two highly similar enzymes. J. Am.
Chem. Soc., 132:4089–4091, 2010.

[315] J.A. McIntosh and E.W. Schmidt. Marine molecular machines: heterocyclization in cyanobactin biosynthesis. Chem-
BioChem, 11:1413–1421, 2010.

[316] R. Meganathan and R. Bentley. Menaquinone (vitamin K2) biosynthesis: conversion of o-succinylbenzoic acid to 1,4-
dihydroxy-2-naphthoic acid by Mycobacterium phlei enzymes. J. Bacteriol., 140:92–98, 1979.

[317] A.H. Mehler and S.K. Mitra. The activation of arginyl transfer ribonucleic acid synthetase by transfer ribonucleic acid. J.
Biol. Chem., 242:5495–5499, 1967.

[318] A. Meister. Glutamine synthesis. In P.D. Boyer, H. Lardy, and K. Myrbäck, editors, The Enzymes, volume 6, pages
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[539] J. Wehland, H.C. Schröder, , and K. Isolation and purification of tubulin-tyrosine ligase. Methods Enzymol., 134:170–179,
1986.

[540] B. Weiss and C.C. Richardson. Enzymatic breakage and joining of deoxyribonucleic acid. I. Repair of single-strand
breaks in DNA by an enzyme system from Escherichia coli infected with T4 bacteriophage. Proc. Natl. Acad. Sci. USA,
57:1021–1028, 1967.

[541] S. Westermann, U. Plessmann, and K. Weber. Synthetic peptides identify the minimal substrate requirements of tubulin
polyglutamylase in side chain elongation. FEBS Lett., 459:90–94, 1999.

[542] J.B. Wheeler, D.R. Shaw, and S. Barnes. Purification and characterization of a rat liver bile acid coenzyme A ligase from
rat liver microsomes. Arch. Biochem. Biophys., 348:15–24, 1997.

98



[543] H.R. Whiteley, M.J. Osborn, and F.M. Huennekens. Purification and properties of the formate-activating enzyme from
Micrococcus aerogenes. J. Biol. Chem., 234:1538–1543, 1959.

[544] M.H. Wilbrink, M. Petrusma, L. Dijkhuizen, and R. van der Geize. FadD19 of Rhodococcus rhodochrous DSM43269,
a steroid-coenzyme A ligase essential for degradation of C-24 branched sterol side chains. Appl. Environ. Microbiol.,
77:4455–4464, 2011.

[545] N.R. Williamson, H.T. Simonsen, R.A. Ahmed, G. Goldet, H. Slater, L. Woodley, F.J. Leeper, and G.P. Salmond. Biosyn-
thesis of the red antibiotic, prodigiosin, in Serratia: identification of a novel 2-methyl-3-n-amyl-pyrrole (MAP) assembly
pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Strepto-
myces. Mol. Microbiol., 56:971–989, 2005.

[546] D.B. Wilson, S.M. Prescott, and P.W. Majerus. Discovery of an arachidonoyl coenzyme A synthetase in human platelets.
J. Biol. Chem., 257:3510–3515, 1982.

[547] K.P. Wilson, L.M. Shewchuk, R.G. Brennan, A.J. Otsuka, and B.W. Matthews. Escherichia coli biotin holoenzyme
synthetase/bio repressor crystal structure delineates the biotin- and DNA-binding domains. Proc. Natl. Acad. Sci. USA,
89:9257–9261, 1992.

[548] H.C. Winter, T.-Z. Su, and E.E. Dekker. 4-Methyleneglutamine synthetase: a new amide synthetase present in germinating
peanuts. Biochem. Biophys. Res. Commun., 111:484–489, 1983.

[549] A. Witkowski, J. Thweatt, and S. Smith. Mammalian ACSF3 protein is a malonyl-CoA synthetase that supplies the chain
extender units for mitochondrial fatty acid synthesis. J. Biol. Chem., 286:33729–33736, 2011.

[550] D. Wloga, K. Rogowski, N. Sharma, J. Van Dijk, C. Janke, B. Edde, M.H. Bre, N. Levilliers, V. Redeker, J. Duan, M.A.
Gorovsky, M. Jerka-Dziadosz, and J. Gaertig. Glutamylation on α-tubulin is not essential but affects the assembly and
functions of a subset of microtubules in Tetrahymena thermophila. Eukaryot Cell, 7:1362–1372, 2008.

[551] K.K. Wong, A. Meister, and K. Moldave. Enzymic formation of ribonucleic acid-amino acid from synthetic aminoacy-
ladenylate and ribonucleic acid. Biochim. Biophys. Acta, 36:531–533, 1959.

[552] C.A. Woolfolk, B. Shapiro, and E.R. Stadtman. Regulation of glutamine synthetase. I. Purification and properties of
glutamine synthetase from Escherichia coli. Arch. Biochem. Biophys., 116:177–192, 1966.

[553] J. Wu, W. Bu, K. Sheppard, M. Kitabatake, S.T. Kwon, D. Soll, and J.L. Smith. Insights into tRNA-dependent amido-
transferase evolution and catalysis from the structure of the Aquifex aeolicus enzyme. J. Mol. Biol., 391:703–716, 2009.

[554] E.E. Wyckoff, J.A. Stoebner, K.E. Reed, and S.M. Payne. Cloning of a Vibrio cholerae vibriobactin gene cluster: identifi-
cation of genes required for early steps in siderophore biosynthesis. J. Bacteriol., 179:7055–7062, 1997.

[555] H.-C. Yang, Y. Tani, and K. Ogata. Synthesis of biotin vitamers from biotin diaminocarboxylic acid or 7,8-
diaminopelargonic acid by a purified enzyme of Pseudomonas graveolens. Agric. Biol. Chem., 34:1748–1750, 1970.

[556] E.F. Yefimochkina and A.E. Braunstein. The amination of inosinic acid to adenylic acid in muscle extracts. Arch. Biochem.
Biophys., 83:350–352, 1959.

[557] M.C.M. Yip and W.E. Knox. Glutamine-dependent carbamyl phosphate synthetase. Properties and distribution in normal
and neoplastic rat tissues. J. Biol. Chem., 245:2199–2204, 1970.

[558] Y. Yokooji, H. Tomita, H. Atomi, and T. Imanaka. Pantoate kinase and phosphopantothenate synthetase, two novel
enzymes necessary for CoA biosynthesis in the Archaea. J. Biol. Chem., 284:28137–28145, 2009.

[559] H. Yonus, P. Neumann, S. Zimmermann, J.J. May, M.A. Marahiel, and M.T. Stubbs. Crystal structure of DltA. Implications
for the reaction mechanism of non-ribosomal peptide synthetase adenylation domains. J. Biol. Chem., 283:32484–32491,
2008.

[560] A. Yoshida, T. Tomita, H. Atomi, T. Kuzuyama, and M. Nishiyama. Lysine biosynthesis of Thermococcus kodakarensis
with the capacity to function as an ornithine biosynthetic system. J. Biol. Chem., 291:21630–21643, 2016.

[561] C.S. Yun, T. Motoyama, and H. Osada. Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS-PKS hybrid
enzyme. Nat. Commun., 6:8758–8758, 2015.

99



[562] H. Zalkin, P. Argos, S.V. Narayana, A.A. Tiedeman, and J.M. Smith. Identification of a trpG-related glutamine amide
transfer domain in Escherichia coli GMP synthetase. J. Biol. Chem., 260:3350–3354, 1985.

[563] C. Zhang, L. Kong, Q. Liu, X. Lei, T. Zhu, J. Yin, B. Lin, Z. Deng, and D. You. In vitro characterization of echinomycin
biosynthesis: formation and hydroxylation of L-tryptophanyl-S-enzyme and oxidation of (2S,3S) β-hydroxytryptophan.
PLoS One, 8:e56772–e56772, 2013.

[564] Y. Zhang, R.H. White, and S.E. Ealick. Crystal structure and function of 5-formaminoimidazole-4-carboxamide ribonu-
cleotide synthetase from Methanocaldococcus jannaschii. Biochemistry, 47:205–217, 2008.

[565] X. Zhao, J.R. Miller, Y. Jiang, M.A. Marletta, and J.E. Cronan. Assembly of the covalent linkage between lipoic acid and
its cognate enzymes. Chem. Biol., 10:1293–1302, 2003.

[566] K. Zheng, P.D. Ngo, V.L. Owens, X.P. Yang, and S.O. Mansoorabadi. The biosynthetic pathway of coenzyme F430 in
methanogenic and methanotrophic archaea. Science, 354:339–342, 2016.

[567] M. Zheng, J. Liu, Z. Yang, X. Gu, F. Li, T. Lou, C. Ji, and Y. Mao. Expression, purification and characterization of human
ubiquitin-activating enzyme, UBE1. Mol. Biol. Rep., 37:1413–1419, 2010.

[568] J. Zhou, W.L. Kelly, B.O. Bachmann, M. Gunsior, C.A. Townsend, and E.I. Solomon. Spectroscopic studies of substrate
interactions with clavaminate synthase 2, a multifunctional α-KG-dependent non-heme iron enzyme: Correlation with
mechanisms and reactivities. J. Am. Chem. Soc., 123:7388–7398, 2001.

[569] Y. Zhou, X. Xu, Y. Wei, Y. Cheng, Y. Guo, I. Khudyakov, F. Liu, P. He, Z. Song, Z. Li, Y. Gao, E.L. Ang, H. Zhao,
Y. Zhang, and S. Zhao. A widespread pathway for substitution of adenine by diaminopurine in phage genomes. Science,
372:512–516, 2021.

[570] X. Zhu, J. Liu, and W. Zhang. De novo biosynthesis of terminal alkyne-labeled natural products. Nat. Chem. Biol.,
11:115–120, 2015.

[571] K. Ziegler, R. Deutzmann, and W. Lockau. Cyanophycin synthetase-like enzymes of non-cyanobacterial eubacteria:
characterization of the polymer produced by a recombinant synthetase of Desulfitobacterium hafniense. Z. Naturforsch.
[C], 57:522–529, 2002.

[572] K. Ziegler, A. Diener, C. Herpin, R. Richter, R. Deutzmann, and W. Lockau. Molecular characterization of cyanophycin
synthetase, the enzyme catalyzing the biosynthesis of the cyanobacterial reserve material multi-L-arginyl-poly-L-aspartate
(cyanophycin). Eur. J. Biochem., 254:154–159, 1998.

[573] S.B. Zimmerman, J.W. Little, C.K. Oshinsky, and M. Gellert. Enzymatic joining of DNA strands: a novel reaction of
diphosphopyridine nucleotide. Proc. Natl. Acad. Sci. USA, 57:1841–1848, 1967.

100



Index
N-(5-amino-5-carboxypentanoyl)-L-cysteinyl-D-valine synthase,

40
L-2,3-diaminopropanoate—citrate ligase, 47
L-allo-isoleucine—holo-[CmaA peptidyl-carrier protein] ligase,

18
2-[(L-alanin-3-ylcarbamoyl)methyl]-3-(2-aminoethylcarbamoyl)-

2-hydroxypropanoate synthase, 48
3-[(3aS,4S,7aS)-7a-methyl-1,5-dioxo-octahydro-1H-inden-4-yl]propanoate—

CoA ligase, 17

acetate—[acyl-carrier protein] ligase, 15
acetate—CoA ligase, 8
acetate—CoA ligase (ADP-forming), 11
acetoacetate—CoA ligase, 11
acetone carboxylase, 64
acetophenone carboxylase, 64
acetyl-CoA carboxylase, 63
N-acetylaspartylglutamate synthase, 44
N-acetylaspartylglutamylglutamate synthase, 44
adenosylcobinamide-phosphate synthase, 31
adenosylcobyric acid synthase (glutamine-hydrolysing), 61
adenylosuccinate synthase, 53
aerobactin synthase, 43
D-alanine—(R)-lactate ligase, 7
D-alanine—D-alanine ligase, 35
D-alanine—[D-alanyl-carrier protein] ligase, 21
D-alanine—D-serine ligase, 42
L-alanine—[L-alanyl-carrier protein] ligase, 25
L-alanine—L-anticapsin ligase, 46
D-alanine—alanyl-poly(glycerolphosphate) ligase, 39
D-alanine—poly(phosphoribitol) ligase, 3
alanine—tRNA ligase, 2
2-amino-2′-deoxyadenylo-succinate synthase, 58
3-amino-2-hydroxy-4-methoxybenzoate diazotase, 71
3-amino-5-hydroxybenzoate—[acyl-carrier protein] ligase, 27
[amino-group carrier protein]—L-2-aminoadipate ligase, 44
anthranilate—CoA ligase, 15
arachidonate—CoA ligase, 11
L-arginine—[L-arginyl-carrier protein] ligase, 23
arginine—tRNA ligase, 5
L-arginine-specific L-amino acid ligase, 46
argininosuccinate synthase, 53
asparagine synthase (glutamine-hydrolysing), 59
asparagine—tRNA ligase, 5
asparaginyl-tRNA synthase (glutamine-hydrolysing), 60
D-aspartate ligase, 32
aspartate—ammonia ligase, 29
aspartate—ammonia ligase (ADP-forming), 30
aspartate—tRNA ligase, 3
aspartate—tRNAAsn ligase, 6

benzoate—CoA ligase, 13
biotin carboxylase, 55

biotin—[biotin carboxyl-carrier protein] ligase, 55
biotin—CoA ligase, 10
biotin—[methylcrotonoyl-CoA-carboxylase] ligase, 54
biotin—[methylmalonyl-CoA-carboxytransferase] ligase, 54
biotin—[propionyl-CoA-carboxylase (ATP-hydrolysing)] ligase,

54
[butirosin acyl-carrier protein]—L-glutamate ligase, 16

carbamoyl-phosphate synthase (ammonia), 55
carbamoyl-phosphate synthase (glutamine-hydrolysing), 59
carbapenam-3-carboxylate synthase, 52
5-(carboxyamino)imidazole ribonucleotide synthase, 56
(carboxyethyl)arginine β-lactam-synthase, 51
6-carboxyhexanoate—CoA ligase, 11
carboxylic acid—CoA ligase (GDP-forming), 10
carnitine—CoA ligase, 19
carnosine synthase, 37
4-chlorobenzoate—CoA ligase, 15
cholate—CoA ligase, 10
[citrate (pro-3S)-lyase] ligase, 13
citrate—CoA ligase, 12
N2-citryl-N6-acetyl-N6-hydroxylysine synthase, 43
β-citrylglutamate synthase, 33
cobaltochelatase, 70
cobyrinate a,c-diamide synthase, 61
coenzyme γ-F420-2:α-L-glutamate ligase, 42
coenzyme F420-0:L-glutamate ligase, 41
coenzyme F420-1:γ-L-glutamate ligase, 42
coenzyme F430 synthetase, 64
4-coumarate—CoA ligase, 11
CTP synthase (glutamine hydrolysing), 52
7-cyano-7-deazaguanine synthase, 57
cyanophycin synthase (L-arginine-adding), 41
cyanophycin synthase (L-aspartate-adding), 41
cyclic 2,3-diphosphoglycerate synthase, 69
cyclopeptine synthase, 44
L-cysteine—[L-cysteinyl-carrier protein] ligase, 25
cysteine—tRNA ligase, 4
L-cysteine:1D-myo-inositol 2-amino-2-deoxy-α-D-glucopyranoside

ligase, 32

dapdiamide synthase, 46
8-demethylnovobiocic acid synthase, 33
dethiobiotin synthase, 51
dicarboxylate—CoA ligase, 13
dihydrofolate synthase, 37
3α,7α-dihydroxy-5β-cholestanate—CoA ligase, 14
2,3-dihydroxybenzoate—[aryl-carrier protein] ligase, 26
3,4-dihydroxybenzoate—[aryl-carrier protein] ligase, 23
diphthine—ammonia ligase, 32
DNA ligase (ATP), 65
DNA ligase (ATP or NAD+), 67
DNA ligase (ATP, ADP or GTP), 68

101



DNA ligase (NAD+), 65

E1 NEDD8-activating enzyme, 24
E1 SAMP-activating enzyme, 21
E1 ubiquitin-activating enzyme, 18
enterobactin synthase, 38

trans-feruloyl-CoA synthase, 15
L-firefly luciferin—CoA ligase, 20
formate—dihydrofolate ligase, 56
formate—phosphoribosylaminoimidazolecarboxamide ligase, 57
formate—tetrahydrofolate ligase, 52
5-formyltetrahydrofolate cyclo-ligase, 51
fumarate—(S)-2,3-diaminopropanoate ligase, 45
2-furoate—CoA ligase, 14

geranoyl-CoA carboxylase, 64
L-glutamate—[L-glutamyl-carrier protein] ligase, 25
glutamate—[amino group carrier protein] ligase, 49
glutamate—cysteine ligase, 35
glutamate—ethylamine ligase, 30
glutamate—methylamine ligase, 54
glutamate—putrescine ligase, 31
glutamate—tRNA ligase, 4
glutamate—tRNAGln ligase, 6
glutamine synthetase, 30
glutamine—tRNA ligase, 5
glutaminyl-tRNA synthase (glutamine-hydrolysing), 60
γ-glutamylanilide synthase, 33
γ-glutamylhistamine synthase, 39
glutarate—CoA ligase, 9
glutathione synthase, 35
glutathionylspermidine synthase, 31
glycine—tRNA ligase, 4
glyine—[glycyl-carrier protein] ligase, 24
GMP synthase (glutamine-hydrolysing), 58

histidine—tRNA ligase, 5
homoglutathione synthase, 40
hydrogenobyrinic acid a,c-diamide synthase (glutamine-hydrolysing),

61
2-hydroxy-7-methoxy-5-methyl-1-naphthoate—CoA ligase, 17
4-hydroxybenzoate adenylyltransferase FadD22, 19
3-hydroxybenzoate—CoA ligase, 16
4-hydroxybenzoate—CoA ligase, 14
4-hydroxybutyrate—CoA ligase (ADP-forming), 21
4-hydroxybutyrate—CoA ligase (AMP-forming), 16
4-hydroxyphenylalkanoate adenylyltransferase FadD29, 19
3-hydroxypropionyl-CoA synthase, 15

imidazoleacetate—phosphoribosyldiphosphate ligase, 54
indoleacetate—CoA ligase, 27
indoleacetate—lysine synthetase, 39
isoleucine—tRNA ligase, 2
isophthalate—CoA ligase, 22

jasmonoyl—L-amino acid ligase, 47

leucine—tRNA ligase, 2
lipid II isoglutaminyl synthase (glutamine-hydrolysing), 62
lipoate—protein ligase, 34
long-chain fatty acid adenylase/transferase FadD23, 22
long-chain fatty acid adenylase/transferase FadD26, 22
long-chain fatty acid adenylyltransferase FadD28, 19
long-chain-fatty-acid—[acyl-carrier-protein] ligase, 12
long-chain-fatty-acid—CoA ligase, 9
long-chain-fatty-acid—protein ligase, 12
lysine—tRNA ligase, 2

magnesium chelatase, 70
malate—CoA ligase, 10
malonate—CoA ligase, 28
marinolic acid—CoA ligase, 22
medium-chain acyl-CoA ligase, 8
medium-chain-fatty-acid—[acyl-carrier-protein] ligase, 18
methionine—tRNA ligase, 3
3-methyl-D-ornithine—L-lysine ligase, 49
methylcrotonoyl-CoA carboxylase, 63
4-methyleneglutamate—ammonia ligase, 30
3-(methylthio)propionyl—CoA ligase, 17

NAD+ synthase, 30
NAD+ synthase (glutamine-hydrolysing), 58
nebramycin 5′ synthase, 7
Ni-sirohydrochlorin a,c-diamide reductive cyclase, 52
Ni-sirohydrochlorin a,c-diamide synthase, 62
nicotinate phosphoribosyltransferase, 57

olefin β-lactone synthetase, 8
D-ornithine—citrate ligase, 49
oxalate—CoA ligase, 10
oxazoline synthase, 28
3-oxocholest-4-en-26-oate—CoA ligase, 17
2-oxoglutarate carboxylase, 64

pantoate—β-alanine ligase (ADP-forming), 45
pantoate—β-alanine ligase (AMP-forming), 34
phenylacetate—CoA ligase, 14
phenylalanine—tRNA ligase, 5
3′-phosphate/5′-hydroxy nucleic acid ligase, 69
O-phospho-L-serine—tRNA ligase, 7
4-phosphopantoate—β-alanine ligase, 43
phosphopantothenate—cysteine ligase (ATP), 47
phosphopantothenate—cysteine ligase (CTP), 35
phosphoribosylamine—glycine ligase, 55
phosphoribosylaminoimidazolesuccinocarboxamide synthase, 36
phosphoribosylformylglycinamidine cyclo-ligase, 50
phosphoribosylformylglycinamidine synthase, 59
phosphoribosylglycinamide formyltransferase 2, 34
phytanate—CoA ligase, 13
prokaryotic ubiquitin-like protein ligase, 33
L-proline—[L-prolyl-carrier protein] ligase, 20
proline—tRNA ligase, 4
propionate—CoA ligase, 12
propionyl-CoA carboxylase, 63
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pyrrolysine—tRNAPyl ligase, 6
pyruvate carboxylase, 63

ribose-5-phosphate—ammonia ligase, 53
RNA 3′-terminal-phosphate cyclase (ATP), 66
RNA 3′-terminal-phosphate cyclase (GTP), 67
RNA ligase (ATP), 66

salicylate—[aryl-carrier protein] ligase, 23
salicylate—CoA ligase, 24
L-serine—[L-seryl-carrier protein] ligase, 26
serine—tRNA ligase, 3
staphyloferrin A synthase, 48
staphyloferrin B synthase, 48
succinate—CoA ligase (ADP-forming), 9
succinate—CoA ligase (GDP-forming), 9
o-succinylbenzoate—CoA ligase, 14

tenuazonic acid synthetase, 46
tetrahydrofolate synthase, 39
tetrahydrosarcinapterin synthase, 42
thiazoline synthase, 29
thioglycine synthase, 28
L-threonine—[L-threonyl-carrier protein] ligase, 26
threonine—tRNA ligase, 2
(2,2,3-trimethyl-5-oxocyclopent-3-enyl)acetyl-CoA synthase, 16
tRNAIle2-agmatinylcytidine synthase , 57
tRNAIle-lysidine synthase, 56
trypanothione synthase, 31
L-tryptophan—[L-tryptophyl-carrier protein] ligase, 27
tryptophan—tRNA ligase, 1
tubulin—tyrosine ligase, 40
β-tubulin-glutamate ligase, 50
tubulin-glutamate ligase, 50
tyramine—L-glutamate ligase, 58
tyrosine—arginine ligase, 40
tyrosine—tRNA ligase, 1

UDP-N-acetylmuramate—L-alanine ligase, 36
UDP-N-acetylmuramate—L-alanyl-γ-D-glutamyl-meso-2,6-diaminoheptanedioate

ligase, 45
UDP-N-acetylmuramoyl-L-alanine—D-glutamate ligase, 36
UDP-N-acetylmuramoyl-L-alanine—L-glutamate ligase, 47
UDP-N-acetylmuramoyl-L-alanyl-D-glutamate—2,6-diaminopimelate

ligase, 38
UDP-N-acetylmuramoyl-L-alanyl-D-glutamate—D-lysine ligase,

43
UDP-N-acetylmuramoyl-L-alanyl-D-glutamate—L-lysine ligase,

36
UDP-N-acetylmuramoyl-tripeptide—D-alanyl-D-alanine ligase,

37
urea carboxylase, 53
O-ureido-D-serine cyclo-ligase, 51

valine—tRNA ligase, 3
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