The Enzyme Database

Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB)

Proposed Changes to the Enzyme List

The entries below are proposed additions and amendments to the Enzyme Nomenclature list. They were prepared for the NC-IUBMB by Kristian Axelsen, Richard Cammack, Ron Caspi, Masaaki Kotera, Andrew McDonald, Gerry Moss, Dietmar Schomburg, Ida Schomburg and Keith Tipton. Comments and suggestions on these draft entries should be sent to Dr Andrew McDonald (Department of Biochemistry, Trinity College Dublin, Dublin 2, Ireland). The date on which an enzyme will be made official is appended after the EC number. To prevent confusion please do not quote new EC numbers until they are incorporated into the main list.

An asterisk before 'EC' indicates that this is an amendment to an existing enzyme rather than a new enzyme entry.


Contents

EC 1.1.1.5 transferred
*EC 1.1.1.76 (S,S)-butanediol dehydrogenase
EC 1.1.1.301 D-arabitol-phosphate dehydrogenase
EC 1.1.1.302 2,5-diamino-6-(ribosylamino)-4(3H)-pyrimidinone 5′-phosphate reductase
EC 1.1.1.303 diacetyl reductase [(R)-acetoin forming]
EC 1.1.1.304 diacetyl reductase [(S)-acetoin forming]
*EC 1.1.3.20 long-chain-alcohol oxidase
EC 1.1.5.6 formate dehydrogenase-N
EC 1.1.5.7 cyclic alcohol dehydrogenase (quinone)
EC 1.1.99.33 formate dehydrogenase (acceptor)
EC 1.2.1.77 3,4-dehydroadipyl-CoA semialdehyde dehydrogenase (NADP+)
EC 1.2.1.78 2-formylbenzoate dehydrogenase
EC 1.4.3.23 7-chloro-L-tryptophan oxidase
EC 1.4.5 With a quinone or other compound as acceptor
EC 1.4.5.1 D-amino acid dehydrogenase (quinone)
EC 1.5.99.13 D-proline dehydrogenase
*EC 1.7.3.3 factor-independent urate hydroxylase
EC 1.7.5 With a quinone or similar compound as acceptor
EC 1.7.5.1 nitrate reductase (quinone)
*EC 1.7.99.8 hydrazine oxidoreductase
EC 1.8.1.16 glutathione amide reductase
EC 1.11.1.17 glutathione amide-dependent peroxidase
EC 1.13.11.56 1,2-dihydroxynaphthalene dioxygenase
EC 1.13.12.17 dichloroarcyriaflavin A synthase
EC 1.14.12.21 benzoyl-CoA 2,3-dioxygenase
EC 1.14.13.111 methanesulfonate monooxygenase (NADH)
EC 1.14.13.112 3-epi-6-deoxocathasterone 23-monooxygenase
EC 1.14.13.113 FAD-dependent urate hydroxylase
EC 1.14.14.6 transferred
EC 1.14.15.8 steroid 15β-monooxygenase
EC 1.14.99.39 ammonia monooxygenase
EC 1.14.99.40 5,6-dimethylbenzimidazole synthase
EC 1.20.4.3 mycoredoxin
EC 1.22 Acting on halogen in donors
EC 1.22.1 With NAD+ or NADP+ as acceptor
EC 1.22.1.1 iodotyrosine deiodinase
*EC 2.1.1.10 homocysteine S-methyltransferase
EC 2.1.1.164 demethylrebeccamycin-D-glucose O-methyltransferase
EC 2.1.1.165 methyl halide transferase
EC 2.3.1.189 mycothiol synthase
EC 2.3.1.190 acetoin dehydrogenase
EC 2.4.1.250 D-inositol-3-phosphate glycosyltransferase
EC 2.4.2.42 UDP-D-xylose:β-D-glucoside α-1,3-D-xylosyltransferase
*EC 2.5.1.34 4-dimethylallyltryptophan synthase
EC 2.5.1.77 7,8-didemethyl-8-hydroxy-5-deazariboflavin synthase
EC 2.5.1.78 6,7-dimethyl-8-ribityllumazine synthase
EC 2.5.1.79 thermospermine synthase
EC 2.5.1.80 7-dimethylallyltryptophan synthase
EC 2.7.1.165 glycerate 2-kinase
EC 2.7.7.68 2-phospho-L-lactate guanylyltransferase
EC 2.7.8.28 2-phospho-L-lactate transferase
EC 2.8.4.2 arsenate-mycothiol transferase
EC 3.1.1.84 cocaine esterase
EC 3.1.3.80 2,3-bisphosphoglycerate 3-phosphatase
*EC 3.1.13.2 exoribonuclease H
*EC 3.1.26.4 ribonuclease H
EC 3.5.1.102 2-amino-5-formylamino-6-ribosylaminopyrimidin-4(3H)-one 5′-monophosphate deformylase
EC 3.5.1.103 N-acetyl-1-D-myo-inositol-2-amino-2-deoxy-α-D-glucopyranoside deacetylase
EC 4.1.2.44 2,3-epoxybenzoyl-CoA dihydrolase
EC 4.1.2.45 trans-o-hydroxybenzylidenepyruvate hydratase-aldolase
EC 4.3.1.26 chromopyrrolate synthase
EC 4.3.3.5 4′-demethylrebeccamycin synthase
EC 5.99.1.4 2-hydroxychromene-2-carboxylate isomerase
EC 6.3.2.31 coenzyme F420-0:L-glutamate ligase
EC 6.3.2.32 coenzyme γ-F420-2:α-L-glutamate ligase
EC 6.3.2.33 tetrahydrosarcinapterin synthase
EC 6.3.2.34 coenzyme F420-1:γ-L-glutamate ligase


EC 1.1.1.5
Transferred entry: acetoin dehydrogenase. Now EC 1.1.1.303, diacetyl reductase [(R)-acetoin forming] and EC 1.1.1.304, diacetyl reductase [(S)-acetoin forming]
[EC 1.1.1.5 created 1961, modified 1976, deleted 2010]
 
 
*EC 1.1.1.76
Accepted name: (S,S)-butanediol dehydrogenase
Reaction: (2S,3S)-butane-2,3-diol + NAD+ = (S)-acetoin + NADH + H+
Other name(s): L-butanediol dehydrogenase; L-BDH; L(+)-2,3-butanediol dehydrogenase (L-acetoin forming); (S)-acetoin reductase [(S,S)-butane-2,3-diol forming]
Systematic name: (S,S)-butane-2,3-diol:NAD+ oxidoreductase
Comments: This enzyme catalyses the reversible reduction of (S)-acetoin to (S,S)-butane-2,3-diol. It can also catalyse the irreversible reduction of diacetyl to (S)-acetoin.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Taylor, M.B. and Juni, E. Stereoisomeric specificities of 2,3-butanediol dehydrogenase. Biochim. Biophys. Acta 39 (1960) 448–457. [PMID: 13837186]
2.  Carballo, J., Martin, R., Bernardo, A. and Gonzalez, J. Purification, characterization and some properties of diacetyl(acetoin) reductase from Enterobacter aerogenes. Eur. J. Biochem. 198 (1991) 327–332. [PMID: 2040298]
3.  Takusagawa, Y., Otagiri, M., Ui, S., Ohtsuki, T., Mimura, A., Ohkuma, M. and Kudo, T. Purification and characterization of L-2,3-butanediol dehydrogenase of Brevibacterium saccharolyticum C-1012 expressed in Escherichia coli. Biosci. Biotechnol. Biochem. 65 (2001) 1876–1878. [PMID: 11577733]
[EC 1.1.1.76 created 1972, modified 2010]
 
 
EC 1.1.1.301
Accepted name: D-arabitol-phosphate dehydrogenase
Reaction: D-arabinitol 1-phosphate + NAD+ = D-xylulose 5-phosphate + NADH + H+
Other name(s): APDH; D-arabitol 1-phosphate dehydrogenase; D-arabitol 5-phosphate dehydrogenase; D-arabinitol 1-phosphate dehydrogenase; D-arabinitol 5-phosphate dehydrogenase
Systematic name: D-arabinitol-phosphate:NAD+ oxidoreductase
Comments: This enzyme participates in arabinitol catabolism. The enzyme also converts D-arabinitol 5-phosphate to D-ribulose 5-phosphate at a lower rate [1].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Povelainen, M., Eneyskaya, E.V., Kulminskaya, A.A., Ivanen, D.R., Kalkkinen, N., Neustroev, K.N. and Miasnikov, A.N. Biochemical and genetic characterization of a novel enzyme of pentitol metabolism: D-arabitol-phosphate dehydrogenase. Biochem. J. 371 (2003) 191–197. [PMID: 12467497]
[EC 1.1.1.301 created 2010]
 
 
EC 1.1.1.302
Accepted name: 2,5-diamino-6-(ribosylamino)-4(3H)-pyrimidinone 5′-phosphate reductase
Reaction: 2,5-diamino-6-(5-phospho-D-ribitylamino)pyrimidin-4(3H)-one + NAD(P)+ = 2,5-diamino-6-(5-phospho-D-ribosylamino)pyrimidin-4(3H)-one + NAD(P)H + H+
For diagram of riboflavin biosynthesis (early stages), click here
Other name(s): 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5′-phosphate reductase; MjaRED; MJ0671 (gene name)
Systematic name: 2,5-diamino-6-(5-phospho-D-ribosylamino)pyrimidin-4(3H)-one:NAD(P)+ oxidoreductase
Comments: The reaction proceeds in the opposite direction. A step in riboflavin biosynthesis, NADPH and NADH function equally well as reductant. Differs from EC 1.1.1.193 [5-amino-6-(5-phosphoribosylamino)uracil reductase] since it does not catalyse the reduction of 5-amino-6-ribosylaminopyrimidine-2,4(1H,3H)-dione 5′-phosphate [1].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Graupner, M., Xu, H. and White, R.H. The pyrimidine nucleotide reductase step in riboflavin and F420 biosynthesis in archaea proceeds by the eukaryotic route to riboflavin. J. Bacteriol. 184 (2002) 1952–1957. [PMID: 11889103]
2.  Chatwell, L., Krojer, T., Fidler, A., Romisch, W., Eisenreich, W., Bacher, A., Huber, R. and Fischer, M. Biosynthesis of riboflavin: structure and properties of 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5′-phosphate reductase of Methanocaldococcus jannaschii. J. Mol. Biol. 359 (2006) 1334–1351. [PMID: 16730025]
[EC 1.1.1.302 created 2010, modified 2011]
 
 
EC 1.1.1.303
Accepted name: diacetyl reductase [(R)-acetoin forming]
Reaction: (R)-acetoin + NAD+ = diacetyl + NADH + H+
Other name(s): (R)-acetoin dehydrogenase
Systematic name: (R)-acetoin:NAD+ oxidoreductase
Comments: The reaction is catalysed in the reverse direction. This activity is usually associated with butanediol dehydrogenase activity (EC 1.1.1.4 or EC 1.1.1.76). While the butanediol dehydrogenase activity is reversible, diacetyl reductase activity is irreversible. This enzyme has been reported in the yeast Saccharomyces cerevisiae [1,2]. Different from EC 1.1.1.304, diacetyl reductase [(S)-acetoin forming].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Heidlas, J. and Tressl, R. Purification and characterization of a (R)-2,3-butanediol dehydrogenase from Saccharomyces cerevisiae. Arch. Microbiol. 154 (1990) 267–273. [PMID: 2222122]
2.  Gonzalez, E., Fernandez, M.R., Larroy, C., Sola, L., Pericas, M.A., Pares, X. and Biosca, J.A. Characterization of a (2R,3R)-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W gene product. Disruption and induction of the gene. J. Biol. Chem. 275 (2000) 35876–35885. [PMID: 10938079]
[EC 1.1.1.303 created 2010 (EC 1.1.1.5 created 1961, modified 1976, part incorporated 2010)]
 
 
EC 1.1.1.304
Accepted name: diacetyl reductase [(S)-acetoin forming]
Reaction: (S)-acetoin + NAD+ = diacetyl + NADH + H+
Other name(s): (S)-acetoin dehydrogenase
Systematic name: (S)-acetoin:NAD+ oxidoreductase
Comments: The reaction is catalysed in the reverse direction. This activity is usually associated with butanediol dehydrogenase activity (EC 1.1.1.4 or EC 1.1.1.76). While the butanediol dehydrogenase activity is reversible, diacetyl reductase activity is irreversible. This enzyme has been reported in the bacteria Geobacillus stearothermophilus, Enterobacter aerogenes and Klebsiella pneumoniae [1-3]. Different from EC 1.1.1.303, diacetyl reductase [(R)-acetoin forming].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Giovannini, P.P., Medici, A., Bergamini, C.M. and Rippa, M. Properties of diacetyl (acetoin) reductase from Bacillus stearothermophilus. Bioorg. Med. Chem. 4 (1996) 1197–1201. [PMID: 8879540]
2.  Carballo, J., Martin, R., Bernardo, A. and Gonzalez, J. Purification, characterization and some properties of diacetyl(acetoin) reductase from Enterobacter aerogenes. Eur. J. Biochem. 198 (1991) 327–332. [PMID: 2040298]
3.  Ui, S., Okajima, Y., Mimura, A., Kanai, H., Kobayashi, T., Kudo, T. Sequence analysis of the gene for and characterization of D-acetoin forming meso-2,3-butanediol dehydrogenase of Klebsiella pneumoniae expressed in Escherichia coli. J. Ferment. Bioeng. 83 (1997) 32–37.
[EC 1.1.1.304 created 2010 (EC 1.1.1.5 created 1961, modified 1976, part incorporated 2010)]
 
 
*EC 1.1.3.20
Accepted name: long-chain-alcohol oxidase
Reaction: a long-chain alcohol + O2 = a long-chain aldehyde + H2O2
Other name(s): long-chain fatty alcohol oxidase; fatty alcohol oxidase; fatty alcohol:oxygen oxidoreductase; long-chain fatty acid oxidase
Systematic name: long-chain-alcohol:oxygen oxidoreductase
Comments: Oxidizes long-chain fatty alcohols; best substrate is dodecyl alcohol.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, CAS registry number: 129430-50-8
References:
1.  Moreau, R.A. and Huang, A.H.C. Oxidation of fatty alcohol in the cotyledons of jojoba seedlings. Arch. Biochem. Biophys. 194 (1979) 422–430. [PMID: 36040]
2.  Moreau, R.A. and Huang, A.H.C. Enzymes of wax ester catabolism in jojoba. Methods Enzymol. 71 (1981) 804–813.
3.  Cheng, Q., Liu, H.T., Bombelli, P., Smith, A. and Slabas, A.R. Functional identification of AtFao3, a membrane bound long chain alcohol oxidase in Arabidopsis thaliana. FEBS Lett. 574 (2004) 62–68. [PMID: 15358540]
4.  Zhao, S., Lin, Z., Ma, W., Luo, D. and Cheng, Q. Cloning and characterization of long-chain fatty alcohol oxidase LjFAO1 in Lotus japonicus. Biotechnol. Prog. 24 (2008) 773–779. [PMID: 18396913]
5.  Cheng, Q., Sanglard, D., Vanhanen, S., Liu, H.T., Bombelli, P., Smith, A. and Slabas, A.R. Candida yeast long chain fatty alcohol oxidase is a c-type haemoprotein and plays an important role in long chain fatty acid metabolism. Biochim. Biophys. Acta 1735 (2005) 192–203. [PMID: 16046182]
[EC 1.1.3.20 created 1984, modified 2010]
 
 
EC 1.1.5.6 – public review until 04 May 2010 [Last modified: 2010-04-06 06:17:30]
Transferred entry: formate dehydrogenase-N. Now EC 1.17.5.3, formate dehydrogenase-N
[EC 1.1.5.6 created 2010, deleted 2017]
 
 
EC 1.1.5.7
Accepted name: cyclic alcohol dehydrogenase (quinone)
Reaction: a cyclic alcohol + a quinone = a cyclic ketone + a quinol
Other name(s): cyclic alcohol dehydrogenase; MCAD
Systematic name: cyclic alcohol:quinone oxidoreductase
Comments: This enzyme oxidizes a wide variety of cyclic alcohols. Some minor enzyme activity is found with aliphatic secondary alcohols and sugar alcohols, but not primary alcohols. The enzyme is unable to catalyse the reverse reaction of cyclic ketones or aldehydes to cyclic alcohols. This enzyme differs from EC 1.1.5.5, alcohol dehydrogenase (quinone), which shows activity with ethanol [1].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Moonmangmee, D., Fujii, Y., Toyama, H., Theeragool, G., Lotong, N., Matsushita, K. and Adachi, O. Purification and characterization of membrane-bound quinoprotein cyclic alcohol dehydrogenase from Gluconobacter frateurii CHM 9. Biosci. Biotechnol. Biochem. 65 (2001) 2763–2772. [PMID: 11826975]
[EC 1.1.5.7 created 2010]
 
 
EC 1.1.99.33 – public review until 04 May 2010 [Last modified: 2010-04-06 06:17:32]
Transferred entry: formate dehydrogenase (acceptor). Now EC 1.17.99.7, formate dehydrogenase (acceptor)
[EC 1.1.99.33 created 2010, deleted 2017]
 
 
EC 1.2.1.77
Accepted name: 3,4-dehydroadipyl-CoA semialdehyde dehydrogenase (NADP+)
Reaction: 3,4-didehydroadipyl-CoA semialdehyde + NADP+ + H2O = 3,4-didehydroadipyl-CoA + NADPH + H+
For diagram of Benzoyl-CoA catabolism, click here
Other name(s): BoxD; 3,4-dehydroadipyl-CoA semialdehyde dehydrogenase
Systematic name: 3,4-didehydroadipyl-CoA semialdehyde:NADP+ oxidoreductase
Comments: This enzyme catalyses a step in the aerobic benzoyl-coenzyme A catabolic pathway in Azoarcus evansii and Burkholderia xenovorans.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, UM-BBD
References:
1.  Gescher, J., Ismail, W., Olgeschlager, E., Eisenreich, W., Worth, J. and Fuchs, G. Aerobic benzoyl-coenzyme A (CoA) catabolic pathway in Azoarcus evansii: conversion of ring cleavage product by 3,4-dehydroadipyl-CoA semialdehyde dehydrogenase. J. Bacteriol. 188 (2006) 2919–2927. [PMID: 16585753]
2.  Bains, J. and Boulanger, M.J. Structural and biochemical characterization of a novel aldehyde dehydrogenase encoded by the benzoate oxidation pathway in Burkholderia xenovorans LB400. J. Mol. Biol. 379 (2008) 597–608. [PMID: 18462753]
[EC 1.2.1.77 created 2010]
 
 
EC 1.2.1.78
Accepted name: 2-formylbenzoate dehydrogenase
Reaction: 2-formylbenzoate + NAD+ + H2O = o-phthalic acid + NADH + H+
Glossary: o-phthalic acid = benzene-1,2-dicarboxylic acid
2-formylbenzoate = 2-carboxybenzaldehyde
Other name(s): 2-carboxybenzaldehyde dehydrogenase; 2CBAL dehydrogenase; PhdK
Systematic name: 2-formylbenzoate:NAD+ oxidoreductase
Comments: The enzyme is involved in phenanthrene degradation.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Iwabuchi, T. and Harayama, S. Biochemical and genetic characterization of 2-carboxybenzaldehyde dehydrogenase, an enzyme involved in phenanthrene degradation by Nocardioides sp. strain KP7. J. Bacteriol. 179 (1997) 6488–6494. [PMID: 9335300]
2.  Kiyohara, H., Nagao, K. and Yano, K. Isolation and some properties of NAD-linked 2-carboxybenzaldehyde dehydrogenase in Alcaligenes faecalis AFK 2 grown on phenanthrene. J. Gen. Appl. Microbiol. 27 (1981) 443–455.
[EC 1.2.1.78 created 2010]
 
 
EC 1.4.3.23
Accepted name: 7-chloro-L-tryptophan oxidase
Reaction: 7-chloro-L-tryptophan + O2 = 2-imino-3-(7-chloroindol-3-yl)propanoate + H2O2
For diagram of rebeccamycin biosynthesis, click here
Other name(s): RebO
Systematic name: 7-chloro-L-tryptophan:oxygen oxidoreductase
Comments: Contains a noncovalently bound FAD [1,2]. This enzyme catalyses a step in the biosynthesis of rebeccamycin, an indolocarbazole alkaloid produced by the bacterium Lechevalieria aerocolonigenes. During catalysis, the bound FAD is reoxidized at the expense of molecular oxygen, producing one molecule of hydrogen peroxide. The enzyme shows significant preference for 7-chloro-L-tryptophan over L-tryptophan [1].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Nishizawa, T., Aldrich, C.C. and Sherman, D.H. Molecular analysis of the rebeccamycin L-amino acid oxidase from Lechevalieria aerocolonigenes ATCC 39243. J. Bacteriol. 187 (2005) 2084–2092. [PMID: 15743957]
2.  Howard-Jones, A.R. and Walsh, C.T. Enzymatic generation of the chromopyrrolic acid scaffold of rebeccamycin by the tandem action of RebO and RebD. Biochemistry 44 (2005) 15652–15663. [PMID: 16313168]
[EC 1.4.3.23 created 2010]
 
 
EC 1.4.5 With a quinone or other compound as acceptor
 
EC 1.4.5.1
Accepted name: D-amino acid dehydrogenase (quinone)
Reaction: a D-amino acid + H2O + a quinone = a 2-oxo carboxylate + NH3 + a quinol
Other name(s): DadA
Systematic name: D-amino acid:quinone oxidoreductase (deaminating)
Comments: An iron-sulfur flavoprotein (FAD). The enzyme from the bacterium Helicobacter pylori is highly specific for D-proline, while the enzyme from the bacterium Escherichia coli B is most active with D-alanine, D-phenylalanine and D-methionine. This enzyme may be the same as EC 1.4.99.6.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Olsiewski, P.J., Kaczorowski, G.J. and Walsh, C. Purification and properties of D-amino acid dehydrogenase, an inducible membrane-bound iron-sulfur flavoenzyme from Escherichia coli B. J. Biol. Chem. 255 (1980) 4487–4494. [PMID: 6102989]
2.  Tanigawa, M., Shinohara, T., Saito, M., Nishimura, K., Hasegawa, Y., Wakabayashi, S., Ishizuka, M. and Nagata, Y. D-Amino acid dehydrogenase from Helicobacter pylori NCTC 11637. Amino Acids 38 (2010) 247–255. [PMID: 19212808]
[EC 1.4.5.1 created 2010]
 
 
EC 1.5.99.13
Accepted name: D-proline dehydrogenase
Reaction: D-proline + acceptor = 1-pyrroline-2-carboxylate + reduced acceptor
Other name(s): D-Pro DH; D-Pro dehydrogenase; dye-linked D-proline dehydrogenase
Systematic name: D-proline:acceptor oxidoreductase
Comments: A flavoprotein (FAD). The enzyme prefers D-proline and acts on other D-amino acids with lower efficiency.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Tani, Y., Tanaka, K., Yabutani, T., Mishima, Y., Sakuraba, H., Ohshima, T. and Motonaka, J. Development of a D-amino acids electrochemical sensor based on immobilization of thermostable D-proline dehydrogenase within agar gel membrane. Anal. Chim. Acta 619 (2008) 215–220. [PMID: 18558115]
2.  Satomura, T., Kawakami, R., Sakuraba, H. and Ohshima, T. Dye-linked D-proline dehydrogenase from hyperthermophilic archaeon Pyrobaculum islandicum is a novel FAD-dependent amino acid dehydrogenase. J. Biol. Chem. 277 (2002) 12861–12867. [PMID: 11823469]
[EC 1.5.99.13 created 2010, modified 2011]
 
 
*EC 1.7.3.3
Accepted name: factor-independent urate hydroxylase
Reaction: urate + O2 + H2O = 5-hydroxyisourate + H2O2
For diagram of AMP catabolism, click here
Other name(s): uric acid oxidase; uricase; uricase II; urate oxidase
Systematic name: urate:oxygen oxidoreductase
Comments: This enzyme was previously thought to be a copper protein, but it is now known that the enzymes from soy bean (Glycine max), the mould Aspergillus flavus and Bacillus subtilis contains no copper nor any other transition-metal ion. The 5-hydroxyisourate formed decomposes spontaneously to form allantoin and CO2, although there is an enzyme-catalysed pathway in which EC 3.5.2.17, hydroxyisourate hydrolase, catalyses the first step. The enzyme is different from EC 1.14.13.113 (FAD-dependent urate hydroxylase).
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, PDB, UM-BBD, CAS registry number: 9002-12-4
References:
1.  London, M. and Hudson, P.B. Purification and properties of solubilized uricase. Biochim. Biophys. Acta 21 (1956) 290–298. [PMID: 13363909]
2.  Mahler, H.R., Hübscher, G. and Baum, H. Studies on uricase. I. Preparation, purification, and properties of a cuproprotein. J. Biol. Chem. 216 (1955) 625–641. [PMID: 13271340]
3.  Robbins, K.C., Barnett, E.L. and Grant, N.H. Partial purification of porcine liver uricase. J. Biol. Chem. 216 (1955) 27–35. [PMID: 13252004]
4.  Kahn, K. and Tipton, P.A. Spectroscopic characterization of intermediates in the urate oxidase reaction. Biochemistry 37 (1998) 11651–11659. [PMID: 9709003]
5.  Colloc'h, N., el Hajji, M., Bachet, B., L'Hermite, G., Schiltz, M., Prange, T., Castro, B. and Mornon, J.-P. Crystal structure of the protein drug urate oxidase-inhibitor complex at 2.05 Å resolution. Nat. Struct. Biol. 4 (1997) 947–952. [PMID: 9360612]
6.  Imhoff, R.D., Power, N.P., Borrok, M.J. and Tipton, P.A. General base catalysis in the urate oxidase reaction: evidence for a novel Thr-Lys catalytic diad. Biochemistry 42 (2003) 4094–4100. [PMID: 12680763]
[EC 1.7.3.3 created 1961, modified 2002, modified 2005, modified 2010]
 
 
EC 1.7.5 With a quinone or similar compound as acceptor
 
EC 1.7.5.1
Accepted name: nitrate reductase (quinone)
Reaction: nitrate + a quinol = nitrite + a quinone + H2O
Other name(s): nitrate reductase A; nitrate reductase Z; quinol/nitrate oxidoreductase; quinol-nitrate oxidoreductase; quinol:nitrate oxidoreductase; NarA; NarZ; NarGHI; dissimilatory nitrate reductase
Systematic name: nitrite:quinone oxidoreductase
Comments: A membrane-bound enzyme which supports anaerobic respiration on nitrate under anaerobic conditions and in the presence of nitrate. Contains the bicyclic form of the molybdo-bis(molybdopterin guanine dinucleotide) cofactor, iron-sulfur clusters and heme b. Escherichia coli expresses two forms NarA and NarZ, both being comprised of three subunits.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Enoch, H.G. and Lester, R.L. The role of a novel cytochrome b-containing nitrate reductase and quinone in the in vitro reconstruction of formate-nitrate reductase activity of E. coli. Biochem. Biophys. Res. Commun. 61 (1974) 1234–1241. [PMID: 4616697]
2.  Bertero, M.G., Rothery, R.A., Palak, M., Hou, C., Lim, D., Blasco, F., Weiner, J.H. and Strynadka, N.C. Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A. Nat. Struct. Biol. 10 (2003) 681–687. [PMID: 12910261]
3.  Lanciano, P., Magalon, A., Bertrand, P., Guigliarelli, B. and Grimaldi, S. High-stability semiquinone intermediate in nitrate reductase A (NarGHI) from Escherichia coli is located in a quinol oxidation site close to heme bD. Biochemistry 46 (2007) 5323–5329. [PMID: 17439244]
4.  Bertero, M.G., Rothery, R.A., Boroumand, N., Palak, M., Blasco, F., Ginet, N., Weiner, J.H. and Strynadka, N.C. Structural and biochemical characterization of a quinol binding site of Escherichia coli nitrate reductase A. J. Biol. Chem. 280 (2005) 14836–14843. [PMID: 15615728]
5.  Bonnefoy, V. and Demoss, J.A. Nitrate reductases in Escherichia coli. Antonie Van Leeuwenhoek 66 (1994) 47–56. [PMID: 7747940]
6.  Guigliarelli, B., Asso, M., More, C., Augier, V., Blasco, F., Pommier, J., Giordano, G. and Bertrand, P. EPR and redox characterization of iron-sulfur centers in nitrate reductases A and Z from Escherichia coli. Evidence for a high-potential and a low-potential class and their relevance in the electron-transfer mechanism. Eur. J. Biochem. 207 (1992) 61–68. [PMID: 1321049]
7.  Iobbi-Nivol, C., Santini, C.L., Blasco, F. and Giordano, G. Purification and further characterization of the second nitrate reductase of Escherichia coli K12. Eur. J. Biochem. 188 (1990) 679–687. [PMID: 2139607]
[EC 1.7.5.1 created 2010]
 
 
*EC 1.7.99.8
Transferred entry: hydrazine oxidoreductase. Now classified as EC 1.7.2.8, hydrazine dehydrogenase.
[EC 1.7.99.8 created 2003, modified 2010, deleted 2016]
 
 
EC 1.8.1.16
Accepted name: glutathione amide reductase
Reaction: 2 glutathione amide + NAD+ = glutathione amide disulfide + NADH + H+
Other name(s): GAR
Systematic name: glutathione amide:NAD+ oxidoreductase
Comments: A dimeric flavoprotein (FAD). The enzyme restores glutathione amide disulfide, which is produced during the reduction of peroxide by EC 1.11.1.17 (glutathione amide-dependent peroxidase), back to glutathione amide (it catalyses the reaction in the opposite direction to that shown). The enzyme belongs to the family of flavoprotein disulfide oxidoreductases, but unlike other members of the family, which are specific for NADPH, it prefers NADH [1].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Vergauwen, B., Pauwels, F., Jacquemotte, F., Meyer, T.E., Cusanovich, M.A., Bartsch, R.G. and Van Beeumen, J.J. Characterization of glutathione amide reductase from Chromatium gracile. Identification of a novel thiol peroxidase (Prx/Grx) fueled by glutathione amide redox cycling. J. Biol. Chem. 276 (2001) 20890–20897. [PMID: 11399772]
2.  Vergauwen, B., Van Petegem, F., Remaut, H., Pauwels, F. and Van Beeumen, J.J. Crystallization and preliminary X-ray crystallographic analysis of glutathione amide reductase from Chromatium gracile. Acta Crystallogr. D Biol. Crystallogr. 58 (2002) 339–340. [PMID: 11807270]
[EC 1.8.1.16 created 2010]
 
 
EC 1.11.1.17
Accepted name: glutathione amide-dependent peroxidase
Reaction: 2 glutathione amide + H2O2 = glutathione amide disulfide + 2 H2O
Systematic name: glutathione amide:hydrogen-peroxide oxidoreductase
Comments: This enzyme, which has been characterized from the proteobacterium Marichromatium gracile, is a chimeric protein, containing a peroxiredoxin-like N-terminus and a glutaredoxin-like C terminus. The enzyme has peroxidase activity towards hydrogen peroxide and several small alkyl hydroperoxides, and is thought to represent an early adaptation for fighting oxidative stress [1]. The glutathione amide disulfide produced by this enzyme can be restored to glutathione amide by EC 1.8.1.16 (glutathione amide reductase).
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Vergauwen, B., Pauwels, F., Jacquemotte, F., Meyer, T.E., Cusanovich, M.A., Bartsch, R.G. and Van Beeumen, J.J. Characterization of glutathione amide reductase from Chromatium gracile. Identification of a novel thiol peroxidase (Prx/Grx) fueled by glutathione amide redox cycling. J. Biol. Chem. 276 (2001) 20890–20897. [PMID: 11399772]
[EC 1.11.1.17 created 2010]
 
 
EC 1.13.11.56
Accepted name: 1,2-dihydroxynaphthalene dioxygenase
Reaction: naphthalene-1,2-diol + O2 = 2-hydroxy-2H-chromene-2-carboxylate
For diagram of naphthalene metabolism, click here
Other name(s): 1,2-DHN dioxygenase; DHNDO; 1,2-dihydroxynaphthalene oxygenase; 1,2-dihydroxynaphthalene:oxygen oxidoreductase
Systematic name: naphthalene-1,2-diol:oxygen oxidoreductase
Comments: This enzyme is involved in naphthalene degradation. Requires Fe2+.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, UM-BBD
References:
1.  Kuhm, A.E., Stolz, A., Ngai, K.L. and Knackmuss, H.J. Purification and characterization of a 1,2-dihydroxynaphthalene dioxygenase from a bacterium that degrades naphthalenesulfonic acids. J. Bacteriol. 173 (1991) 3795–3802. [PMID: 2050635]
2.  Keck, A., Conradt, D., Mahler, A., Stolz, A., Mattes, R. and Klein, J. Identification and functional analysis of the genes for naphthalenesulfonate catabolism by Sphingomonas xenophaga BN6. Microbiology 152 (2006) 1929–1940. [PMID: 16804169]
3.  Patel, T.R. and Barnsley, E.A. Naphthalene metabolism by pseudomonads: purification and properties of 1,2-dihydroxynaphthalene oxygenase. J. Bacteriol. 143 (1980) 668–673. [PMID: 7204331]
[EC 1.13.11.56 created 2010, modified 2010]
 
 
EC 1.13.12.17
Accepted name: dichloroarcyriaflavin A synthase
Reaction: dichlorochromopyrrolate + 4 O2 + 4 NADH + 4 H+ = dichloroarcyriaflavin A + 2 CO2 + 6 H2O + 4 NAD+
For diagram of rebeccamycin biosynthesis, click here
Glossary: dichloro-arcyriaflavin A = rebeccamycin aglycone
Systematic name: dichlorochromopyrrolate,NADH:oxygen 2,5-oxidoreductase (dichloroarcyriaflavin A-forming)
Comments: The conversion of dichlorochromopyrrolate to dichloroarcyriaflavin A is a complex process that involves two enzyme components. RebP is an NAD-dependent cytochrome P-450 oxygenase that performs an aryl-aryl bond formation yielding the six-ring indolocarbazole scaffold [1]. Along with RebC, a flavin-dependent hydroxylase, it also catalyses the oxidative decarboxylation of both carboxyl groups. The presence of RebC ensures that the only product is the rebeccamycin aglycone dichloroarcyriaflavin A [2]. The enzymes are similar, but not identical, to StaP and StaC, which are involved in the synthesis of staurosporine [3].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Makino, M., Sugimoto, H., Shiro, Y., Asamizu, S., Onaka, H. and Nagano, S. Crystal structures and catalytic mechanism of cytochrome P450 StaP that produces the indolocarbazole skeleton. Proc. Natl. Acad. Sci. USA 104 (2007) 11591–11596. [PMID: 17606921]
2.  Howard-Jones, A.R. and Walsh, C.T. Staurosporine and rebeccamycin aglycones are assembled by the oxidative action of StaP, StaC, and RebC on chromopyrrolic acid. J. Am. Chem. Soc. 128 (2006) 12289–12298. [PMID: 16967980]
3.  Sanchez, C., Zhu, L., Brana, A.F., Salas, A.P., Rohr, J., Mendez, C. and Salas, J.A. Combinatorial biosynthesis of antitumor indolocarbazole compounds. Proc. Natl. Acad. Sci. USA 102:461 (2005). [PMID: 15625109]
[EC 1.13.12.17 created 2010]
 
 
EC 1.14.12.21
Transferred entry: benzoyl-CoA 2,3-dioxygenase. Now EC 1.14.13.208, benzoyl-CoA 2,3-epoxidase
[EC 1.14.12.21 created 2010, deleted 2015]
 
 
EC 1.14.13.111
Accepted name: methanesulfonate monooxygenase (NADH)
Reaction: methanesulfonate + NADH + H+ + O2 = formaldehyde + NAD+ + sulfite + H2O
Glossary: methanesulfonate = CH3-SO3-
formaldehyde = H-CHO
Other name(s): mesylate monooxygenase; mesylate,reduced-FMN:oxygen oxidoreductase; MsmABC; methanesulfonic acid monooxygenase; MSA monooxygenase; MSAMO
Systematic name: methanesulfonate,NADH:oxygen oxidoreductase
Comments: A flavoprotein. Methanesulfonate is the simplest of the sulfonates and is a substrate for the growth of certain methylotrophic microorganisms. Compared with EC 1.14.14.5, alkanesulfonate monooxygenase, this enzyme has a restricted substrate range that includes only the short-chain aliphatic sulfonates (methanesulfonate to butanesulfonate) and excludes all larger molecules, such as arylsulfonates [1]. The enzyme from the bacterium Methylosulfonomonas methylovora is a multicomponent system comprising a hydroxylase, a reductase (MsmD) and a ferredoxin (MsmC). The hydroxylase has both large (MsmA) and small (MsmB) subunits, with each large subunit containing a Rieske-type [2Fe-2S] cluster. cf. EC 1.14.14.34, methanesulfonate monooxygenase (FMNH2).
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, PDB, UM-BBD
References:
1.  de Marco, P., Moradas-Ferreira, P., Higgins, T.P., McDonald, I., Kenna, E.M. and Murrell, J.C. Molecular analysis of a novel methanesulfonic acid monooxygenase from the methylotroph Methylosulfonomonas methylovora. J. Bacteriol. 181 (1999) 2244–2251. [PMID: 10094704]
2.  Higgins, T.P., Davey, M., Trickett, J., Kelly, D.P. and Murrell, J.C. Metabolism of methanesulfonic acid involves a multicomponent monooxygenase enzyme. Microbiology 142 (1996) 251–260. [PMID: 8932698]
[EC 1.14.13.111 created 2009 as EC 1.14.14.6, transferred 2010 to EC 1.14.13.111, modified 2016]
 
 
EC 1.14.13.112
Accepted name: 3-epi-6-deoxocathasterone 23-monooxygenase
Reaction: (1) 3-epi-6-deoxocathasterone + NADPH + H+ + O2 = 6-deoxotyphasterol + NADP+ + H2O
(2) (22S,24R)-22-hydroxy-5α-ergostan-3-one + NADPH + H+ + O2 = 3-dehydro-6-deoxoteasterone + NADP+ + H2O
Other name(s): cytochrome P450 90C1; CYP90D1; CYP90C1
Systematic name: 3-epi-6-deoxocathasterone,NADPH:oxygen oxidoreductase (C-23-hydroxylating)
Comments: This enzyme is involved in brassinosteroid biosynthesis. C-23 hydroxylation shortcuts bypass campestanol, 6-deoxocathasterone, and 6-deoxoteasterone and lead directly from (22S,24R)-22-hydroxy-5α-ergostan-3-one and 3-epi-6-deoxocathasterone to 3-dehydro-6-deoxoteasterone and 6-deoxotyphasterol [1].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Ohnishi, T., Szatmari, A.M., Watanabe, B., Fujita, S., Bancos, S., Koncz, C., Lafos, M., Shibata, K., Yokota, T., Sakata, K., Szekeres, M. and Mizutani, M. C-23 hydroxylation by Arabidopsis CYP90C1 and CYP90D1 reveals a novel shortcut in brassinosteroid biosynthesis. Plant Cell 18 (2006) 3275–3288. [PMID: 17138693]
[EC 1.14.13.112 created 2010]
 
 
EC 1.14.13.113
Accepted name: FAD-dependent urate hydroxylase
Reaction: urate + NADH + H+ + O2 = 5-hydroxyisourate + NAD+ + H2O
Other name(s): HpxO enzyme; FAD-dependent urate oxidase; urate hydroxylase
Systematic name: urate,NADH:oxygen oxidoreductase (5-hydroxyisourate forming)
Comments: A flavoprotein. The reaction is part of the purine catabolic pathway in the bacterium Klebsiella pneumoniae. The enzyme is different from EC 1.7.3.3, factor-independent urate hydroxylase, found in most plants, which produces hydrogen peroxide. The product of the enzyme is a substrate for EC 3.5.2.17, hydroxyisourate hydrolase.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  O'Leary, S.E., Hicks, K.A., Ealick, S.E. and Begley, T.P. Biochemical characterization of the HpxO enzyme from Klebsiella pneumoniae, a novel FAD-dependent urate oxidase. Biochemistry 48 (2009) 3033–3035. [PMID: 19260710]
[EC 1.14.13.113 created 2010]
 
 
EC 1.14.14.6
Transferred entry: methanesulfonate monooxygenase. Now EC 1.14.13.111, methanesulfonate monooxygenase. Formerly thought to involve FMNH2 but now shown to use NADH.
[EC 1.14.14.6 created 2009, deleted 2010]
 
 
EC 1.14.15.8
Accepted name: steroid 15β-monooxygenase
Reaction: progesterone + 2 reduced [2Fe-2S] ferredoxin + O2 = 15β-hydroxyprogesterone + 2 oxidized [2Fe-2S] ferredoxin + H2O
Other name(s): cytochrome P-450meg; cytochrome P450meg; steroid 15β-hydroxylase; CYP106A2; BmCYP106A2
Systematic name: progesterone,reduced-ferredoxin:oxygen oxidoreductase (15β-hydroxylating)
Comments: The enzyme from the bacterium Bacillus megaterium hydroxylates a variety of 3-oxo-Δ4-steroids in position 15β. Ring A-reduced, aromatic, and 3β-hydroxy-Δ4-steroids do not serve as substrates [2].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Berg, A., Ingelman-Sundberg, M. and Gustafsson, J.A. Purification and characterization of cytochrome P-450meg. J. Biol. Chem. 254 (1979) 5264–5271. [PMID: 109432]
2.  Berg, A., Gustafsson, J.A. and Ingelman-Sundberg, M. Characterization of a cytochrome P-450-dependent steroid hydroxylase system present in Bacillus megaterium. J. Biol. Chem. 251 (1976) 2831–2838. [PMID: 177422]
3.  Lisurek, M., Kang, M.J., Hartmann, R.W. and Bernhardt, R. Identification of monohydroxy progesterones produced by CYP106A2 using comparative HPLC and electrospray ionisation collision-induced dissociation mass spectrometry. Biochem. Biophys. Res. Commun. 319 (2004) 677–682. [PMID: 15178459]
4.  Goni, G., Zollner, A., Lisurek, M., Velazquez-Campoy, A., Pinto, S., Gomez-Moreno, C., Hannemann, F., Bernhardt, R. and Medina, M. Cyanobacterial electron carrier proteins as electron donors to CYP106A2 from Bacillus megaterium ATCC 13368. Biochim. Biophys. Acta 1794 (2009) 1635–1642. [PMID: 19635596]
5.  Lisurek, M., Simgen, B., Antes, I. and Bernhardt, R. Theoretical and experimental evaluation of a CYP106A2 low homology model and production of mutants with changed activity and selectivity of hydroxylation. Chembiochem 9 (2008) 1439–1449. [PMID: 18481342]
[EC 1.14.15.8 created 2010]
 
 
EC 1.14.99.39
Accepted name: ammonia monooxygenase
Reaction: NH3 + a reduced acceptor + O2 = NH2OH + an acceptor + H2O
Other name(s): AMO
Systematic name: ammonia,donor:oxygen oxidoreductase (hydroxylamine-producing)
Comments: The enzyme catalyses the first reaction in the pathway of ammonia oxidation to nitrite. It contains copper [1], iron [5] and possibly zinc [9]. The enzyme requires two electrons, which are derived indirectly from the quinone pool via a membrane-bound donor.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, UM-BBD
References:
1.  Ensign, S.A., Hyman, M.R. and Arp, D.J. In vitro activation of ammonia monooxygenase from Nitrosomonas europaea by copper. J. Bacteriol. 175 (1993) 1971–1980. [PMID: 8458839]
2.  Hyman, M.R., Page, C.L. and Arp, D.J. Oxidation of methyl fluoride and dimethyl ether by ammonia monooxygenase in Nitrosomonas europaea. Appl. Environ. Microbiol. 60 (1994) 3033–3035. [PMID: 8085841]
3.  Bergmann, D.J. and Hooper, A.B. Sequence of the gene, amoB, for the 43-kDa polypeptide of ammonia monoxygenase of Nitrosomonas europaea. Biochem. Biophys. Res. Commun. 204 (1994) 759–762. [PMID: 7980540]
4.  Holmes, A.J., Costello, A., Lidstrom, M.E. and Murrell, J.C. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol. Lett. 132 (1995) 203–208. [PMID: 7590173]
5.  Zahn, J.A., Arciero, D.M., Hooper, A.B. and DiSpirito, A.A. Evidence for an iron center in the ammonia monooxygenase from Nitrosomonas europaea. FEBS Lett. 397 (1996) 35–38. [PMID: 8941709]
6.  Moir, J.W., Crossman, L.C., Spiro, S. and Richardson, D.J. The purification of ammonia monooxygenase from Paracoccus denitrificans. FEBS Lett. 387 (1996) 71–74. [PMID: 8654570]
7.  Whittaker, M., Bergmann, D., Arciero, D. and Hooper, A.B. Electron transfer during the oxidation of ammonia by the chemolithotrophic bacterium Nitrosomonas europaea. Biochim. Biophys. Acta 1459 (2000) 346–355. [PMID: 11004450]
8.  Arp, D.J., Sayavedra-Soto, L.A. and Hommes, N.G. Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea. Arch. Microbiol. 178 (2002) 250–255. [PMID: 12209257]
9.  Gilch, S., Meyer, O. and Schmidt, I. A soluble form of ammonia monooxygenase in Nitrosomonas europaea. Biol. Chem. 390 (2009) 863–873. [PMID: 19453274]
[EC 1.14.99.39 created 2010]
 
 
EC 1.14.99.40
Transferred entry: 5,6-dimethylbenzimidazole synthase. Now EC 1.13.11.79, 5,6-dimethylbenzimidazole synthase
[EC 1.14.99.40 created 2010, deleted 2014]
 
 
EC 1.20.4.3
Accepted name: mycoredoxin
Reaction: arseno-mycothiol + mycoredoxin = arsenite + mycothiol-mycoredoxin disulfide
Glossary: mycothiol = 1-O-[2-(N2-acetyl-L-cysteinamido)-2-deoxy-α-D-glucopyranosyl]-1D-myo-inositol
Other name(s): Mrx1; MrxI
Systematic name: arseno-mycothiol:mycoredoxin oxidoreductase
Comments: Reduction of arsenate is part of a defense mechanism of the cell against toxic arsenate. The substrate arseno-mycothiol is formed by EC 2.8.4.2 (arsenate:mycothiol transferase). A second mycothiol recycles mycoredoxin and forms mycothione.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Ordonez, E., Van Belle, K., Roos, G., De Galan, S., Letek, M., Gil, J.A., Wyns, L., Mateos, L.M. and Messens, J. Arsenate reductase, mycothiol, and mycoredoxin concert thiol/disulfide exchange. J. Biol. Chem. 284 (2009) 15107–15116. [PMID: 19286650]
[EC 1.20.4.3 created 2010]
 
 
EC 1.22 Acting on halogen in donors
 
EC 1.22.1 With NAD+ or NADP+ as acceptor
 
EC 1.22.1.1
Transferred entry: iodotyrosine deiodinase. Now EC 1.21.1.1, iodotyrosine deiodinase
[EC 1.22.1.1 created 2010, deleted 2015]
 
 
*EC 2.1.1.10
Accepted name: homocysteine S-methyltransferase
Reaction: S-methyl-L-methionine + L-homocysteine = 2 L-methionine
Other name(s): S-adenosylmethionine homocysteine transmethylase; S-methylmethionine homocysteine transmethylase; adenosylmethionine transmethylase; methylmethionine:homocysteine methyltransferase; adenosylmethionine:homocysteine methyltransferase; homocysteine methylase; homocysteine methyltransferase; homocysteine transmethylase; L-homocysteine S-methyltransferase; S-adenosyl-L-methionine:L-homocysteine methyltransferase; S-adenosylmethionine-homocysteine transmethylase; S-adenosylmethionine:homocysteine methyltransferase
Systematic name: S-methyl-L-methionine:L-homocysteine S-methyltransferase
Comments: The enzyme uses S-adenosyl-L-methionine as methyl donor less actively than S-methyl-L-methionine.
Links to other databases: BRENDA, EXPASY, GTD, IUBMB, KEGG, CAS registry number: 9012-40-2
References:
1.  Balish, E. and Shapiro, S.K. Methionine biosynthesis in Escherichia coli: induction and repression of methylmethionine (or adenosylmethionine):homocysteine methyltransferase. Arch. Biochem. Biophys. 119 (1967) 62–68. [PMID: 4861151]
2.  Shapiro, S.K. Adenosylmethionine-homocysteine transmethylase. Biochim. Biophys. Acta 29 (1958) 405–409. [PMID: 13572358]
3.  Shapiro, S.K. and Yphantis, D.A. Assay of S-methylmethionine and S-adenosylmethionine homocysteine transmethylases. Biochim. Biophys. Acta 36 (1959) 241–244. [PMID: 14445542]
4.  Mudd, S.H. and Datko, A.H. The S-Methylmethionine Cycle in Lemna paucicostata. Plant Physiol. 93 (1990) 623–630. [PMID: 16667513]
5.  Ranocha, P., McNeil, S.D., Ziemak, M.J., Li, C., Tarczynski, M.C. and Hanson, A.D. The S-methylmethionine cycle in angiosperms: ubiquity, antiquity and activity. Plant J. 25 (2001) 575–584. [PMID: 11309147]
6.  Ranocha, P., Bourgis, F., Ziemak, M.J., Rhodes, D., Gage, D.A. and Hanson, A.D. Characterization and functional expression of cDNAs encoding methionine-sensitive and -insensitive homocysteine S-methyltransferases from Arabidopsis. J. Biol. Chem. 275 (2000) 15962–15968. [PMID: 10747987]
7.  Grue-Sørensen, G., Kelstrup, E., Kjær, A. and Madsen, J.Ø. Diastereospecific, enzymically catalysed transmethylation from S-methyl-L-methionine to L-homocysteine, a naturally occurring process. J. Chem. Soc. Perkin Trans. 1 (1984) 1091–1097.
[EC 2.1.1.10 created 1965, modified 2010]
 
 
EC 2.1.1.164
Accepted name: demethylrebeccamycin-D-glucose O-methyltransferase
Reaction: 4′-demethylrebeccamycin + S-adenosyl-L-methionine = rebeccamycin + S-adenosyl-L-homocysteine
For diagram of rebeccamycin biosynthesis, click here
Other name(s): RebM
Systematic name: S-adenosyl-L-methionine:demethylrebeccamycin-D-glucose O-methyltransferase
Comments: Catalyses the last step in the biosynthesis of rebeccamycin, an indolocarbazole alkaloid produced by the bacterium Lechevalieria aerocolonigenes. The enzyme is able to use a wide variety substrates, tolerating variation on the imide heterocycle, deoxygenation of the sugar moiety, and even indolocarbazole glycoside anomers [1]. The enzyme is a member of the general acid/base-dependent O-methyltransferase family [2].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Zhang, C., Albermann, C., Fu, X., Peters, N.R., Chisholm, J.D., Zhang, G., Gilbert, E.J., Wang, P.G., Van Vranken, D.L. and Thorson, J.S. RebG- and RebM-catalyzed indolocarbazole diversification. Chembiochem 7 (2006) 795–804. [PMID: 16575939]
2.  Singh, S., McCoy, J.G., Zhang, C., Bingman, C.A., Phillips, G.N., Jr. and Thorson, J.S. Structure and mechanism of the rebeccamycin sugar 4′-O-methyltransferase RebM. J. Biol. Chem. 283 (2008) 22628–22636. [PMID: 18502766]
[EC 2.1.1.164 created 2010]
 
 
EC 2.1.1.165
Accepted name: methyl halide transferase
Reaction: S-adenosyl-L-methionine + iodide = S-adenosyl-L-homocysteine + methyl iodide
Other name(s): MCT; methyl chloride transferase; S-adenosyl-L-methionine:halide/bisulfide methyltransferase; AtHOL1; AtHOL2; AtHOL3; HARMLESS TO OZONE LAYER protein; HMT; S-adenosyl-L-methionine: halide ion methyltransferase; SAM:halide ion methyltransferase
Systematic name: S-adenosylmethionine:iodide methyltransferase
Comments: This enzyme contributes to the methyl halide emissions from Arabidopsis [6].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Ni, X. and Hager, L.P. Expression of Batis maritima methyl chloride transferase in Escherichia coli. Proc. Natl. Acad. Sci. USA 96 (1999) 3611–3615. [PMID: 10097085]
2.  Saxena, D., Aouad, S., Attieh, J. and Saini, H.S. Biochemical characterization of chloromethane emission from the wood-rotting fungus Phellinus pomaceus. Appl. Environ. Microbiol. 64 (1998) 2831–2835. [PMID: 9687437]
3.  Attieh, J.M., Hanson, A.D. and Saini, H.S. Purification and characterization of a novel methyltransferase responsible for biosynthesis of halomethanes and methanethiol in Brassica oleracea. J. Biol. Chem. 270 (1995) 9250–9257. [PMID: 7721844]
4.  Itoh, N., Toda, H., Matsuda, M., Negishi, T., Taniguchi, T. and Ohsawa, N. Involvement of S-adenosylmethionine-dependent halide/thiol methyltransferase (HTMT) in methyl halide emissions from agricultural plants: isolation and characterization of an HTMT-coding gene from Raphanus sativus (daikon radish). BMC Plant Biol. 9 (2009) 116. [PMID: 19723322]
5.  Ohsawa, N., Tsujita, M., Morikawa, S. and Itoh, N. Purification and characterization of a monohalomethane-producing enzyme S-adenosyl-L-methionine: halide ion methyltransferase from a marine microalga, Pavlova pinguis. Biosci. Biotechnol. Biochem. 65 (2001) 2397–2404. [PMID: 11791711]
6.  Nagatoshi, Y.and Nakamura, T. Characterization of three halide methyltransferases in Arabidopsis thaliana. Plant Biotechnol. 24 (2007) 503–506.
[EC 2.1.1.165 created 2010]
 
 
EC 2.3.1.189
Accepted name: mycothiol synthase
Reaction: desacetylmycothiol + acetyl-CoA = CoA + mycothiol
For diagram of mycothiol biosynthesis, click here
Glossary: desacetylmycothiol = 1-O-[2-(L-cysteinamido)-2-deoxy-α-D-glucopyranosyl]-1D-myo-inositol
mycothiol = 1-O-[2-(N2-acetyl-L-cysteinamido)-2-deoxy-α-D-glucopyranosyl]-1D-myo-inositol
Other name(s): MshD
Systematic name: acetyl-CoA:desacetylmycothiol O-acetyltransferase
Comments: This enzyme catalyses the last step in the biosynthesis of mycothiol, the major thiol in most actinomycetes, including Mycobacterium [1]. The enzyme is a member of a large family of GCN5-related N-acetyltransferases (GNATs) [2]. The enzyme has been purified from Mycobacterium tuberculosis H37Rv. Acetyl-CoA is the preferred CoA thioester but propionyl-CoA is also a substrate [3].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Spies, H.S. and Steenkamp, D.J. Thiols of intracellular pathogens. Identification of ovothiol A in Leishmania donovani and structural analysis of a novel thiol from Mycobacterium bovis. Eur. J. Biochem. 224 (1994) 203–213. [PMID: 8076641]
2.  Koledin, T., Newton, G.L. and Fahey, R.C. Identification of the mycothiol synthase gene (mshD) encoding the acetyltransferase producing mycothiol in actinomycetes. Arch. Microbiol. 178 (2002) 331–337. [PMID: 12375100]
3.  Vetting, M.W., Roderick, S.L., Yu, M. and Blanchard, J.S. Crystal structure of mycothiol synthase (Rv0819) from Mycobacterium tuberculosis shows structural homology to the GNAT family of N-acetyltransferases. Protein Sci. 12 (2003) 1954–1959. [PMID: 12930994]
[EC 2.3.1.189 created 2010]
 
 
EC 2.3.1.190
Accepted name: acetoin dehydrogenase
Reaction: acetoin + CoA + NAD+ = acetaldehyde + acetyl-CoA + NADH + H+
Other name(s): acetoin dehydrogenase complex; acetoin dehydrogenase enzyme system; AoDH ES
Systematic name: acetyl-CoA:acetoin O-acetyltransferase
Comments: Requires thiamine diphosphate. This enzyme, which belongs to the family of 2-oxo acid dehydrogenase complexes, catalyses the oxidative-hydrolytic cleavage of acetoin to acetaldehyde and acetyl-CoA in many bacterial strains, both aerobic and anaerobic. The enzyme is composed of multiple copies of three enzymic components: acetoin oxidoreductase (E1), dihydrolipoamide acetyltransferase (E2) and dihydrolipoyl dehydrogenase (E3).
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Priefert, H., Hein, S., Kruger, N., Zeh, K., Schmidt, B. and Steinbuchel, A. Identification and molecular characterization of the Alcaligenes eutrophus H16 aco operon genes involved in acetoin catabolism. J. Bacteriol. 173 (1991) 4056–4071. [PMID: 2061286]
2.  Oppermann, F.B. and Steinbuchel, A. Identification and molecular characterization of the aco genes encoding the Pelobacter carbinolicus acetoin dehydrogenase enzyme system. J. Bacteriol. 176 (1994) 469–485. [PMID: 8110297]
3.  Kruger, N., Oppermann, F.B., Lorenzl, H. and Steinbuchel, A. Biochemical and molecular characterization of the Clostridium magnum acetoin dehydrogenase enzyme system. J. Bacteriol. 176 (1994) 3614–3630. [PMID: 8206840]
4.  Huang, M., Oppermann, F.B. and Steinbuchel, A. Molecular characterization of the Pseudomonas putida 2,3-butanediol catabolic pathway. FEMS Microbiol. Lett. 124 (1994) 141–150. [PMID: 7813883]
5.  Huang, M., Oppermann-Sanio, F.B. and Steinbuchel, A. Biochemical and molecular characterization of the Bacillus subtilis acetoin catabolic pathway. J. Bacteriol. 181 (1999) 3837–3841. [PMID: 10368162]
[EC 2.3.1.190 created 2010]
 
 
EC 2.4.1.250
Accepted name: D-inositol-3-phosphate glycosyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + 1D-myo-inositol 3-phosphate = 1-O-(2-acetamido-2-deoxy-α-D-glucopyranosyl)-1D-myo-inositol 3-phosphate + UDP
For diagram of mycothiol biosynthesis, click here
Glossary: mycothiol = 1-O-[2-(N2-acetyl-L-cysteinamido)-2-deoxy-α-D-glucopyranosyl]-1D-myo-inositol
Other name(s): mycothiol glycosyltransferases; MshA; UDP-N-acetyl-D-glucosamine:1D-myo-inositol 3-phosphate α-D-glycosyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:1D-myo-inositol 3-phosphate α-D-glycosyltransferase (configuration-retaining)
Comments: The enzyme, which belongs to the GT-B fold superfamily, catalyses the first dedicated reaction in the biosynthesis of mycothiol [1]. The substrate was initially believed to be inositol, but eventually shown to be D-myo-inositol 3-phosphate [2]. A substantial conformational change occurs upon UDP binding, which generates the binding site for D-myo-inositol 3-phosphate [3].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Newton, G.L., Koledin, T., Gorovitz, B., Rawat, M., Fahey, R.C. and Av-Gay, Y. The glycosyltransferase gene encoding the enzyme catalyzing the first step of mycothiol biosynthesis (mshA). J. Bacteriol. 185 (2003) 3476–3479. [PMID: 12754249]
2.  Newton, G.L., Ta, P., Bzymek, K.P. and Fahey, R.C. Biochemistry of the initial steps of mycothiol biosynthesis. J. Biol. Chem. 281 (2006) 33910–33920. [PMID: 16940050]
3.  Vetting, M.W., Frantom, P.A. and Blanchard, J.S. Structural and enzymatic analysis of MshA from Corynebacterium glutamicum: substrate-assisted catalysis. J. Biol. Chem. 283 (2008) 15834–15844. [PMID: 18390549]
[EC 2.4.1.250 created 2010]
 
 
EC 2.4.2.42
Accepted name: UDP-D-xylose:β-D-glucoside α-1,3-D-xylosyltransferase
Reaction: UDP-α-D-xylose + Glcβ-Ser53-EGF-like domain of bovine factor IX(45-87) = UDP + Xylα(1-3)Glcβ-Ser53-EGF-like domain of bovine factor IX(45-87)
Other name(s): β-glucoside α-1,3-xylosyltransferase
Systematic name: UDP-α-D-xylose:β-D-glucoside 3-α-D-xylosyltransferase
Comments: The enzyme is involved in the biosynthesis of the Xylα(1-3)Xylα(1-3)Glcβ-1-O-Ser on epidermal growth factor-like domains [1].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Ishimizu, T., Sano, K., Uchida, T., Teshima, H., Omichi, K., Hojo, H., Nakahara, Y. and Hase, S. Purification and substrate specificity of UDP-D-xylose:β-D-glucoside α-1,3-D-xylosyltransferase involved in the biosynthesis of the Xyl α1-3Xyl α1-3Glc β1-O-Ser on epidermal growth factor-like domains. J. Biochem. 141 (2007) 593–600. [PMID: 17317689]
2.  Omichi, K., Aoki, K., Minamida, S. and Hase, S. Presence of UDP-D-xylose: β-D-glucoside α-1,3-D-xylosyltransferase involved in the biosynthesis of the Xyl α 1-3Glc β-Ser structure of glycoproteins in the human hepatoma cell line HepG2. Eur. J. Biochem. 245 (1997) 143–146. [PMID: 9128735]
[EC 2.4.2.42 created 2010]
 
 
*EC 2.5.1.34
Accepted name: 4-dimethylallyltryptophan synthase
Reaction: dimethylallyl diphosphate + L-tryptophan = diphosphate + 4-(3-methylbut-2-enyl)-L-tryptophan
For diagram of ergot alkaloid biosynthesis, click here
Other name(s): dimethylallylpyrophosphate:L-tryptophan dimethylallyltransferase; dimethylallyltryptophan synthetase; dimethylallylpyrophosphate:tryptophan dimethylallyl transferase; DMAT synthetase; 4-(γ,γ-dimethylallyl)tryptophan synthase; tryptophan dimethylallyltransferase
Systematic name: dimethylallyl-diphosphate:L-tryptophan 4-dimethylallyltransferase
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, CAS registry number: 55127-01-0
References:
1.  Lee, S.L., Floss, H.G. and Heinstein, P. Purification and properties of dimethylallylpyrophosphate:tryptophan dimethylallyl transferase, the first enzyme of ergot alkaloid biosynthesis in Claviceps sp. SD 58. Arch. Biochem. Biophys. 177 (1976) 84–94. [PMID: 999297]
[EC 2.5.1.34 created 1984, modified 2010]
 
 
EC 2.5.1.77
Accepted name: 7,8-didemethyl-8-hydroxy-5-deazariboflavin synthase
Reaction: 5-amino-6-(D-ribitylamino)uracil + L-tyrosine + 2 S-adenosyl-L-methionine = 7,8-didemethyl-8-hydroxy-5-deazariboflavin + 2-iminoacetate + 2 L-methionine + 2 5′-deoxyadenosine + NH3
For diagram of coenzyme F420 biosynthesis, click here
Glossary: 5-amino-6-(D-ribitylamino)uracil = 5-amino-6-(1-D-ribitylamino)pyrimidine-2,4(1H,3H)-dione
Other name(s): F0 synthase; fbiC (gene name); cofGH (gene names); 5-amino-6-(D-ribitylamino)uracil:4-hydroxyphenylpyruvate, 4-methylphenol transferase
Systematic name: 5-amino-6-(D-ribitylamino)uracil:L-tyrosine, 4-methylphenol transferase
Comments: Binds a [4Fe-4S] cluster. The cluster is coordinated by 3 cysteines and an exchangeable AdoMet molecule. The first stage of catalysis is reduction of the 2 AdoMet to produce 2 methionine and 2 5′-deoxyadenosin-5-yl radicals that extract a hydrogen from each of the substrates permitting the condensation of the two [1]. The overall reaction catalysed is the transfer of the hydroxybenzyl group from 4-hydroxyphenylpyruvate (HPP) to 5-amino-6-ribitylaminopyrimidine-2,4(1H,3H)-dione to form 7,8-didemethyl-8-hydroxy-5-deazariboflavin (FO). 7,8-Didemethyl-8-hydroxy-5-deazariboflavin is the chromophore of the hydride carrier coenzyme F420 [1].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Graham, D.E., Xu, H. and White, R.H. Identification of the 7,8-didemethyl-8-hydroxy-5-deazariboflavin synthase required for coenzyme F420 biosynthesis. Arch. Microbiol. 180 (2003) 455–464. [PMID: 14593448]
2.  Choi, K.P., Kendrick, N. and Daniels, L. Demonstration that fbiC is required by Mycobacterium bovis BCG for coenzyme F420 and FO biosynthesis. J. Bacteriol. 184 (2002) 2420–2428. [PMID: 11948155]
[EC 2.5.1.77 created 2010]
 
 
EC 2.5.1.78
Accepted name: 6,7-dimethyl-8-ribityllumazine synthase
Reaction: 1-deoxy-L-glycero-tetrulose 4-phosphate + 5-amino-6-(D-ribitylamino)uracil = 6,7-dimethyl-8-(D-ribityl)lumazine + 2 H2O + phosphate
For diagram of riboflavin biosynthesis (late stages), click here and for mechanism, click here
Glossary: 5-amino-6-(D-ribitylamino)uracil = 5-amino-6-(1-D-ribitylamino)pyrimidine-2,4(1H,3H)-dione
6,7-dimethyl-8-(1-D-ribityl)lumazine = 1-deoxy-1-(6,7-dimethyl-2,4-dioxo-3,4-dihydropteridin-8(2H)-yl)-D-ribitol
Other name(s): lumazine synthase; 6,7-dimethyl-8-ribityllumazine synthase 2; 6,7-dimethyl-8-ribityllumazine synthase 1; lumazine synthase 2; lumazine synthase 1; type I lumazine synthase; type II lumazine synthase; RIB4; MJ0303; RibH; Pbls; MbtLS; RibH1 protein; RibH2 protein; RibH1; RibH2
Systematic name: 5-amino-6-(D-ribitylamino)uracil butanedionetransferase
Comments: Involved in riboflavin biosynthesis.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Kis, K., Volk, R. and Bacher, A. Biosynthesis of riboflavin. Studies on the reaction mechanism of 6,7-dimethyl-8-ribityllumazine synthase. Biochemistry 34 (1995) 2883–2892. [PMID: 7893702]
2.  Garcia-Ramirez, J.J., Santos, M.A. and Revuelta, J.L. The Saccharomyces cerevisiae RIB4 gene codes for 6,7-dimethyl-8-ribityllumazine synthase involved in riboflavin biosynthesis. Molecular characterization of the gene and purification of the encoded protein. J. Biol. Chem. 270 (1995) 23801–23807. [PMID: 7559556]
3.  Bacher, A., Fischer, M., Kis, K., Kugelbrey, K., Mörtl, S., Scheuring, J., Weinkauf, S., Eberhardt, S., Schmidt-Bäse, K., Huber, R., Ritsert, K., Cushman, M., Ladenstein, R. Biosynthesis of riboflavin: structure and mechanism of lumazine synthase. Biochem. Soc. Trans. 24 (1996) 89–94. [PMID: 8674771]
4.  Mörtl, S., Fischer, M., Richter, G., Tack, J., Weinkauf, S. and Bacher, A. Biosynthesis of riboflavin. Lumazine synthase of Escherichia coli. J. Biol. Chem. 271 (1996) 33201–33207. [PMID: 8969176]
5.  Bacher, A., Eberhardt, S., Fischer, M., Mortl, S., Kis, K., Kugelbrey, K., Scheuring, J. and Schott, K. Biosynthesis of riboflavin: lumazine synthase and riboflavin synthase. Methods Enzymol. 280 (1997) 389–399. [PMID: 9211334]
6.  Goldbaum, F.A., Velikovsky, C.A., Baldi, P.C., Mortl, S., Bacher, A. and Fossati, C.A. The 18-kDa cytoplasmic protein of Brucella species - an antigen useful for diagnosis - is a lumazine synthase. J. Med. Microbiol. 48 (1999) 833–839. [PMID: 10482294]
7.  Jordan, D.B., Bacot, K.O., Carlson, T.J., Kessel, M. and Viitanen, P.V. Plant riboflavin biosynthesis. Cloning, chloroplast localization, expression, purification, and partial characterization of spinach lumazine synthase. J. Biol. Chem. 274 (1999) 22114–22121. [PMID: 10419541]
8.  Zhang, X., Meining, W., Fischer, M., Bacher, A. and Ladenstein, R. X-ray structure analysis and crystallographic refinement of lumazine synthase from the hyperthermophile Aquifex aeolicus at 1.6 Å resolution: determinants of thermostability revealed from structural comparisons. J. Mol. Biol. 306 (2001) 1099–1114. [PMID: 11237620]
9.  Fischer, M., Haase, I., Feicht, R., Richter, G., Gerhardt, S., Changeux, J.P., Huber, R. and Bacher, A. Biosynthesis of riboflavin: 6,7-dimethyl-8-ribityllumazine synthase of Schizosaccharomyces pombe. Eur. J. Biochem. 269 (2002) 519–526. [PMID: 11856310]
10.  Cushman, M., Yang, D., Gerhardt, S., Huber, R., Fischer, M., Kis, K. and Bacher, A. Design, synthesis, and evaluation of 6-carboxyalkyl and 6-phosphonoxyalkyl derivatives of 7-oxo-8-ribitylaminolumazines as inhibitors of riboflavin synthase and lumazine synthase. J. Org. Chem. 67 (2002) 5807–5816. [PMID: 12153285]
11.  Haase, I., Mortl, S., Kohler, P., Bacher, A. and Fischer, M. Biosynthesis of riboflavin in archaea. 6,7-dimethyl-8-ribityllumazine synthase of Methanococcus jannaschii. Eur. J. Biochem. 270 (2003) 1025–1032. [PMID: 12603336]
12.  Morgunova, E., Meining, W., Illarionov, B., Haase, I., Jin, G., Bacher, A., Cushman, M., Fischer, M. and Ladenstein, R. Crystal structure of lumazine synthase from Mycobacterium tuberculosis as a target for rational drug design: binding mode of a new class of purinetrione inhibitors. Biochemistry 44 (2005) 2746–2758. [PMID: 15723519]
13.  Morgunova, E., Saller, S., Haase, I., Cushman, M., Bacher, A., Fischer, M. and Ladenstein, R. Lumazine synthase from Candida albicans as an anti-fungal target enzyme: structural and biochemical basis for drug design. J. Biol. Chem. 282 (2007) 17231–17241. [PMID: 17446177]
[EC 2.5.1.78 created 2010]
 
 
EC 2.5.1.79
Accepted name: thermospermine synthase
Reaction: S-adenosyl 3-(methylthio)propylamine + spermidine = S-methyl-5′-thioadenosine + thermospermine + H+
Glossary: thermospermine = N1-[3-(3-aminopropylamino)propyl]butane-1,4-diamine
S-adenosyl 3-(methylthio)propylamine = (3-aminopropyl){[(2S,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methyl}methylsulfonium
Other name(s): TSPMS; ACL5; SAC51
Systematic name: S-adenosyl 3-(methylthio)propylamine:spermidine 3-aminopropyltransferase (thermospermine synthesizing)
Comments: This enzyme is crucial for the proper functioning of xylem vessel elements in the vascular tissues of plants [3].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Romer, P., Faltermeier, A., Mertins, V., Gedrange, T., Mai, R. and Proff, P. Investigations about N-aminopropyl transferases probably involved in biomineralization. J. Physiol. Pharmacol. 59 Suppl 5 (2008) 27–37. [PMID: 19075322]
2.  Knott, J.M., Romer, P. and Sumper, M. Putative spermine synthases from Thalassiosira pseudonana and Arabidopsis thaliana synthesize thermospermine rather than spermine. FEBS Lett. 581 (2007) 3081–3086. [PMID: 17560575]
3.  Muniz, L., Minguet, E.G., Singh, S.K., Pesquet, E., Vera-Sirera, F., Moreau-Courtois, C.L., Carbonell, J., Blazquez, M.A. and Tuominen, H. ACAULIS5 controls Arabidopsis xylem specification through the prevention of premature cell death. Development 135 (2008) 2573–2582. [PMID: 18599510]
[EC 2.5.1.79 created 2010, modified 2013]
 
 
EC 2.5.1.80
Accepted name: 7-dimethylallyltryptophan synthase
Reaction: dimethylallyl diphosphate + L-tryptophan = diphosphate + 7-(3-methylbut-2-enyl)-L-tryptophan
Other name(s): 7-DMATS
Systematic name: dimethylallyl-diphosphate:L-tryptophan 7-dimethylallyltransferase
Comments: This enzyme is more flexible towards the aromatic substrate than EC 2.5.1.34 (4-dimethylallyltryptophan synthase), but similar to that enzyme, accepts only dimethylallyl diphosphate as the prenyl donor.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Kremer, A. and Li, S.M. Potential of a 7-dimethylallyltryptophan synthase as a tool for production of prenylated indole derivatives. Appl. Microbiol. Biotechnol. 79 (2008) 951–961. [PMID: 18481055]
2.  Kremer, A., Westrich, L. and Li, S.M. A 7-dimethylallyltryptophan synthase from Aspergillus fumigatus: overproduction, purification and biochemical characterization. Microbiology 153 (2007) 3409–3416. [PMID: 17906140]
[EC 2.5.1.80 created 2010]
 
 
EC 2.7.1.165
Accepted name: glycerate 2-kinase
Reaction: ATP + D-glycerate = ADP + 2-phospho-D-glycerate
For diagram of the Entner-Doudoroff pathway, click here
Other name(s): D-glycerate-2-kinase; glycerate kinase (2-phosphoglycerate forming); ATP:(R)-glycerate 2-phosphotransferase
Systematic name: ATP:D-glycerate 2-phosphotransferase
Comments: A key enzyme in the nonphosphorylative Entner-Doudoroff pathway in archaea [1,2]. In the bacterium Hyphomicrobium methylovorum GM2 the enzyme is involved in formaldehyde assimilation I (serine pathway) [5]. In Escherichia coli the enzyme is involved in D-glucarate/D-galactarate degradation [6]. The enzyme requires a divalent metal ion [1].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Liu, B., Wu, L., Liu, T., Hong, Y., Shen, Y. and Ni, J. A MOFRL family glycerate kinase from the thermophilic crenarchaeon, Sulfolobus tokodaii, with unique enzymatic properties. Biotechnol. Lett. 31 (2009) 1937–1941. [PMID: 19690808]
2.  Reher, M., Bott, M. and Schonheit, P. Characterization of glycerate kinase (2-phosphoglycerate forming), a key enzyme of the nonphosphorylative Entner-Doudoroff pathway, from the thermoacidophilic euryarchaeon Picrophilus torridus. FEMS Microbiol. Lett. 259 (2006) 113–119. [PMID: 16684110]
3.  Liu, B., Hong, Y., Wu, L., Li, Z., Ni, J., Sheng, D. and Shen, Y. A unique highly thermostable 2-phosphoglycerate forming glycerate kinase from the hyperthermophilic archaeon Pyrococcus horikoshii: gene cloning, expression and characterization. Extremophiles 11 (2007) 733–739. [PMID: 17563835]
4.  Noh, M., Jung, J.H. and Lee, S.B. Purification and characterization of glycerate kinase from the thermoacidophilic archaeon Thermoplasma acidophilum: an enzyme belonging to the second glycerate kinase family. Biotechnol. Bioprocess Eng. 11 (2006) 344–350.
5.  Yoshida, T., Fukuta, K., Mitsunaga, T., Yamada, H. and Izumi, Y. Purification and characterization of glycerate kinase from a serine-producing methylotroph, Hyphomicrobium methylovorum GM2. Eur. J. Biochem. 210 (1992) 849–854. [PMID: 1336459]
6.  Hubbard, B.K., Koch, M., Palmer, D.R., Babbitt, P.C. and Gerlt, J.A. Evolution of enzymatic activities in the enolase superfamily: characterization of the (D)-glucarate/galactarate catabolic pathway in Escherichia coli. Biochemistry 37 (1998) 14369–14375. [PMID: 9772162]
[EC 2.7.1.165 created 2010]
 
 
EC 2.7.7.68
Accepted name: 2-phospho-L-lactate guanylyltransferase
Reaction: (2S)-2-phospholactate + GTP = (2S)-lactyl-2-diphospho-5′-guanosine + diphosphate
For diagram of coenzyme F420 biosynthesis, click here
Glossary: (2S)-2-phospholactate = (2S)-2-(phosphonooxy)propanoate
Other name(s): CofC; MJ0887
Systematic name: GTP:2-phospho-L-lactate guanylyltransferase
Comments: This enzyme is involved in the biosynthesis of coenzyme F420, a redox-active cofactor found in all methanogenic archaea, as well as some eubacteria.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Grochowski, L.L., Xu, H. and White, R.H. Identification and characterization of the 2-phospho-L-lactate guanylyltransferase involved in coenzyme F420 biosynthesis. Biochemistry 47 (2008) 3033–3037. [PMID: 18260642]
[EC 2.7.7.68 created 2010]
 
 
EC 2.7.8.28
Accepted name: 2-phospho-L-lactate transferase
Reaction: (2S)-lactyl-2-diphospho-5′-guanosine + 7,8-didemethyl-8-hydroxy-5-deazariboflavin = GMP + coenzyme F420-0
For diagram of coenzyme F420 biosynthesis, click here
Glossary: coenzyme F420 = N-(N-{O-[5-(8-hydroxy-2,4-dioxo-2,3,4,10-tetrahydropyrimido[4,5-b]quinolin-10-yl)-5-deoxy-L-ribityl-1-phospho]-(S)-lactyl}-γ-L-glutamyl)-L-glutamate
GMP = guanosine 5′-phosphate
Other name(s): LPPG:Fo 2-phospho-L-lactate transferase; LPPG:7,8-didemethyl-8-hydroxy-5-deazariboflavin 2-phospho-L-lactate transferase; MJ1256; lactyl-2-diphospho-(5′)guanosine:Fo 2-phospho-L-lactate transferase; CofD
Systematic name: (2S)-lactyl-2-diphospho-5′-guanosine:7,8-didemethyl-8-hydroxy-5-deazariboflavin 2-phospho-L-lactate transferase
Comments: This enzyme is involved in the biosynthesis of coenzyme F420, a redox-active cofactor found in all methanogenic archaea, as well as some eubacteria.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Graupner, M., Xu, H. and White, R.H. Characterization of the 2-phospho-L-lactate transferase enzyme involved in coenzyme F420 biosynthesis in Methanococcus jannaschii. Biochemistry 41 (2002) 3754–3761. [PMID: 11888293]
2.  Forouhar, F., Abashidze, M., Xu, H., Grochowski, L.L., Seetharaman, J., Hussain, M., Kuzin, A., Chen, Y., Zhou, W., Xiao, R., Acton, T.B., Montelione, G.T., Galinier, A., White, R.H. and Tong, L. Molecular insights into the biosynthesis of the F420 coenzyme. J. Biol. Chem. 283 (2008) 11832–11840. [PMID: 18252724]
[EC 2.7.8.28 created 2010]
 
 
EC 2.8.4.2
Accepted name: arsenate-mycothiol transferase
Reaction: arsenate + mycothiol = arseno-mycothiol + H2O
Glossary: mycothiol = 1-O-[2-(N2-acetyl-L-cysteinamido)-2-deoxy--D-glucopyranosyl]-1D-myo-inositol
Other name(s): ArsC1; ArsC2; mycothiol:arsenate transferase
Systematic name: mycothiol:arsenate S-arsenotransferase
Comments: Reduction of arsenate is part of a defence mechanism of the cell against toxic arsenate. The product arseno-mycothiol is reduced by EC 1.20.4.3 (mycoredoxin) to arsenite and mycothiol-mycoredoxin disulfide. Finally, a second mycothiol recycles mycoredoxin and forms mycothione.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Ordonez, E., Van Belle, K., Roos, G., De Galan, S., Letek, M., Gil, J.A., Wyns, L., Mateos, L.M. and Messens, J. Arsenate reductase, mycothiol, and mycoredoxin concert thiol/disulfide exchange. J. Biol. Chem. 284 (2009) 15107–15116. [PMID: 19286650]
[EC 2.8.4.2 created 2010]
 
 
EC 3.1.1.84
Accepted name: cocaine esterase
Reaction: cocaine + H2O = ecgonine methyl ester + benzoate
Glossary: ecgonine methyl ester = 2β-carbomethoxy-3β-tropine = methyl (1R,2R,3S,5S)-3-hydroxy-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate
Other name(s): CocE; hCE2; hCE-2; human carboxylesterase 2
Systematic name: cocaine benzoylhydrolase
Comments: Rhodococcus sp. strain MB1 and Pseudomonas maltophilia strain MB11L can utilize cocaine as sole source of carbon and energy [2,3].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, UM-BBD
References:
1.  Gao, D., Narasimhan, D.L., Macdonald, J., Brim, R., Ko, M.C., Landry, D.W., Woods, J.H., Sunahara, R.K. and Zhan, C.G. Thermostable variants of cocaine esterase for long-time protection against cocaine toxicity. Mol. Pharmacol. 75 (2009) 318–323. [PMID: 18987161]
2.  Bresler, M.M., Rosser, S.J., Basran, A. and Bruce, N.C. Gene cloning and nucleotide sequencing and properties of a cocaine esterase from Rhodococcus sp. strain MB1. Appl. Environ. Microbiol. 66 (2000) 904–908. [PMID: 10698749]
3.  Britt, A.J., Bruce, N.C. and Lowe, C.R. Identification of a cocaine esterase in a strain of Pseudomonas maltophilia. J. Bacteriol. 174 (1992) 2087–2094. [PMID: 1551831]
4.  Larsen, N.A., Turner, J.M., Stevens, J., Rosser, S.J., Basran, A., Lerner, R.A., Bruce, N.C. and Wilson, I.A. Crystal structure of a bacterial cocaine esterase. Nat. Struct. Biol. 9 (2002) 17–21. [PMID: 11742345]
5.  Pindel, E.V., Kedishvili, N.Y., Abraham, T.L., Brzezinski, M.R., Zhang, J., Dean, R.A. and Bosron, W.F. Purification and cloning of a broad substrate specificity human liver carboxylesterase that catalyzes the hydrolysis of cocaine and heroin. J. Biol. Chem. 272 (1997) 14769–14775. [PMID: 9169443]
[EC 3.1.1.84 created 2010]
 
 
EC 3.1.3.80
Accepted name: 2,3-bisphosphoglycerate 3-phosphatase
Reaction: 2,3-bisphospho-D-glycerate + H2O = 2-phospho-D-glycerate + phosphate
Other name(s): MIPP1; 2,3-BPG 3-phosphatase
Systematic name: 2,3-bisphospho-D-glycerate 3-phosphohydrolase
Comments: This reaction is a shortcut in the Rapoport-Luebering shunt. It bypasses the reactions of EC 5.4.2.11/EC 5.4.2.12 [phosphoglycerate mutases (2,3-diphosphoglycerate-dependent and independent)] and directly forms 2-phospho-D-glycerate by removing the 3-phospho-group of 2,3-diphospho-D-glycerate [1]. The MIPP1 protein also catalyses the reaction of EC 3.1.3.62 (multiple inositol-polyphosphate phosphatase).
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Cho, J., King, J.S., Qian, X., Harwood, A.J. and Shears, S.B. Dephosphorylation of 2,3-bisphosphoglycerate by MIPP expands the regulatory capacity of the Rapoport-Luebering glycolytic shunt. Proc. Natl. Acad. Sci. USA 105 (2008) 5998–6003. [PMID: 18413611]
[EC 3.1.3.80 created 2010]
 
 
*EC 3.1.13.2
Accepted name: exoribonuclease H
Reaction: 3′-end directed exonucleolytic cleavage of viral RNA-DNA hybrid
Comments: This is a secondary reaction to the RNA 5′-end directed cleavage 13-19 nucleotides from the RNA end performed by EC 3.1.26.13 (retroviral ribonuclease H).
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Schatz, O., Mous, J. and Le Grice, S.F. HIV-1 RT-associated ribonuclease H displays both endonuclease and 3′—5′ exonuclease activity. EMBO J. 9 (1990) 1171–1176. [PMID: 1691093]
[EC 3.1.13.2 created 1978, modified 2010]
 
 
*EC 3.1.26.4
Accepted name: ribonuclease H
Reaction: Endonucleolytic cleavage to 5′-phosphomonoester
Other name(s): endoribonuclease H (calf thymus); RNase H; RNA*DNA hybrid ribonucleotidohydrolase; hybrid ribonuclease; hybridase; hybridase (ribonuclease H); ribonuclease H; hybrid nuclease; calf thymus ribonuclease H
Comments: Acts on RNA-DNA hybrids.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, PDB, CAS registry number: 9050-76-4
References:
1.  Haberkern, R.C. and Cantoni, G.L. Studies on a calf thymus ribonuclease specific for ribonucleic acid-deoxyribonucleic acid hybrids. Biochemistry 12 (1973) 2389–2395. [PMID: 4709937]
2.  Stavrianopoulos, J.G. and Chargaff, E. Purification and properties of ribonuclease H of calf thymus. Proc. Natl. Acad. Sci. USA 70 (1973) 1959–1963. [PMID: 4516197]
[EC 3.1.26.4 created 1978, modified 2010]
 
 
EC 3.5.1.102
Accepted name: 2-amino-5-formylamino-6-ribosylaminopyrimidin-4(3H)-one 5′-monophosphate deformylase
Reaction: 2-amino-5-formylamino-6-(5-phospho-D-ribosylamino)pyrimidin-4(3H)-one + H2O = 2,5-diamino-6-(5-phospho-D-ribosylamino)pyrimidin-4(3H)-one + formate
Other name(s): ArfB
Systematic name: 2-amino-5-formylamino-6-(5-phospho-D-ribosylamino)pyrimidin-4(3H)-one amidohydrolase
Comments: The enzyme catalyses the second step in archaeal riboflavin and 7,8-didemethyl-8-hydroxy-5-deazariboflavin biosynthesis. The first step is catalysed by EC 3.5.4.29 (GTP cyclohydrolase IIa). The bacterial enzyme, EC 3.5.4.25 (GTP cyclohydrolase II) catalyses both reactions.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Grochowski, L.L., Xu, H. and White, R.H. An iron(II) dependent formamide hydrolase catalyzes the second step in the archaeal biosynthetic pathway to riboflavin and 7,8-didemethyl-8-hydroxy-5-deazariboflavin. Biochemistry 48 (2009) 4181–4188. [PMID: 19309161]
[EC 3.5.1.102 created 2010, modified 2011]
 
 
EC 3.5.1.103
Accepted name: N-acetyl-1-D-myo-inositol-2-amino-2-deoxy-α-D-glucopyranoside deacetylase
Reaction: 1-O-(2-acetamido-2-deoxy-α-D-glucopyranosyl)-1D-myo-inositol + H2O = 1-O-(2-amino-2-deoxy-α-D-glucopyranosyl)-1D-myo-inositol + acetate
For diagram of mycothiol biosynthesis, click here
Glossary: mycothiol = 1-O-[2-(N2-acetyl-L-cysteinamido)-2-deoxy-α-D-glucopyranosyl]-1D-myo-inositol
Other name(s): MshB
Systematic name: 1-(2-acetamido-2-deoxy-α-D-glucopyranosyl)-1D-myo-inositol acetylhydrolase
Comments: This enzyme is considered the key enzyme and rate limiting step in the mycothiol biosynthesis pathway [1]. In addition to acetylase activity, the enzyme possesses weak activity of EC 3.5.1.115, mycothiol S-conjugate amidase, and shares sequence similarity with that enzyme [2]. The enzyme requires a divalent transition metal ion for activity, believed to be Zn2+ [3].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Rawat, M., Kovacevic, S., Billman-Jacobe, H. and Av-Gay, Y. Inactivation of mshB, a key gene in the mycothiol biosynthesis pathway in Mycobacterium smegmatis. Microbiology 149 (2003) 1341–1349. [PMID: 12724395]
2.  Newton, G.L., Av-Gay, Y. and Fahey, R.C. N-Acetyl-1-D-myo-inosityl-2-amino-2-deoxy-α-D-glucopyranoside deacetylase (MshB) is a key enzyme in mycothiol biosynthesis. J. Bacteriol. 182 (2000) 6958–6963. [PMID: 11092856]
3.  Maynes, J.T., Garen, C., Cherney, M.M., Newton, G., Arad, D., Av-Gay, Y., Fahey, R.C. and James, M.N. The crystal structure of 1-D-myo-inosityl 2-acetamido-2-deoxy-α-D-glucopyranoside deacetylase (MshB) from Mycobacterium tuberculosis reveals a zinc hydrolase with a lactate dehydrogenase fold. J. Biol. Chem. 278 (2003) 47166–47170. [PMID: 12958317]
[EC 3.5.1.103 created 2010]
 
 
EC 4.1.2.44
Accepted name: 2,3-epoxybenzoyl-CoA dihydrolase
Reaction: 2,3-epoxy-2,3-dihydrobenzoyl-CoA + 2 H2O = (3Z)-6-oxohex-3-enoyl-CoA + formate
For diagram of Benzoyl-CoA catabolism, click here
Glossary: (3Z)-6-oxohex-3-enoyl-CoA = 3,4-didehydroadipyl-CoA semialdehyde
Other name(s): 2,3-dihydro-2,3-dihydroxybenzoyl-CoA lyase/hydrolase (deformylating); BoxC; dihydrodiol transforming enzyme; benzoyl-CoA oxidation component C; 2,3-dihydro-2,3-dihydroxybenzoyl-CoA 3,4-didehydroadipyl-CoA semialdehyde-lyase (formate-forming); benzoyl-CoA-dihydrodiol lyase (incorrect); 2,3-dihydro-2,3-dihydroxybenzoyl-CoA 3,4-didehydroadipyl-CoA-semialdehyde-lyase (formate-forming)
Systematic name: 2,3-epoxy-2,3-dihydrobenzoyl-CoA (3Z)-6-oxohex-3-enoyl-CoA-lyase (formate-forming)
Comments: The enzyme is involved in the aerobic benzoyl-CoA catabolic pathway of the bacterium Azoarcus evansii. The enzyme converts 2,3-epoxy-2,3-dihydrobenzoyl-CoA to its oxepin form prior to the ring-opening and the formation of a dialdehyde intermediate.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, UM-BBD
References:
1.  Gescher, J., Eisenreich, W., Worth, J., Bacher, A. and Fuchs, G. Aerobic benzoyl-CoA catabolic pathway in Azoarcus evansii: studies on the non-oxygenolytic ring cleavage enzyme. Mol. Microbiol. 56 (2005) 1586–1600. [PMID: 15916608]
2.  Rather, L.J., Knapp, B., Haehnel, W. and Fuchs, G. Coenzyme A-dependent aerobic metabolism of benzoate via epoxide formation. J. Biol. Chem. 285 (2010) 20615–20624. [PMID: 20452977]
[EC 4.1.2.44 created 2010, modified 2015]
 
 
EC 4.1.2.45
Accepted name: trans-o-hydroxybenzylidenepyruvate hydratase-aldolase
Reaction: (3E)-4-(2-hydroxyphenyl)-2-oxobut-3-enoate + H2O = salicylaldehyde + pyruvate
For diagram of naphthalene metabolism, click here
Glossary: (3E)-4-(2-hydroxyphenyl)-2-oxobut-3-enoate = (E)-2′-hydroxybenzylidenepyruvate
salicylaldehyde = 2-hydroxybenzaldehyde
Other name(s): 2′-hydroxybenzalpyruvate aldolase; NsaE; tHBPA hydratase-aldolase
Systematic name: (3E)-4-(2-hydroxyphenyl)-2-oxobut-3-enoate hydro-lyase
Comments: This enzyme is involved in naphthalene degradation. The enzyme catalyses a retro-aldol reaction in vitro, and it accepts a broad range of aldehydes and 4-substituted 2-oxobut-3-enoates as substrates [4].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Kuhm, A.E., Knackmuss, H.J. and Stolz, A. Purification and properties of 2′-hydroxybenzalpyruvate aldolase from a bacterium that degrades naphthalenesulfonates. J. Biol. Chem. 268 (1993) 9484–9489. [PMID: 8486638]
2.  Keck, A., Conradt, D., Mahler, A., Stolz, A., Mattes, R. and Klein, J. Identification and functional analysis of the genes for naphthalenesulfonate catabolism by Sphingomonas xenophaga BN6. Microbiology 152 (2006) 1929–1940. [PMID: 16804169]
3.  Eaton, R.W. Organization and evolution of naphthalene catabolic pathways: sequence of the DNA encoding 2-hydroxychromene-2-carboxylate isomerase and trans-o-hydroxybenzylidenepyruvate hydratase-aldolase from the NAH7 plasmid. J. Bacteriol. 176 (1994) 7757–7762. [PMID: 8002605]
4.  Eaton, R.W. trans-o-Hydroxybenzylidenepyruvate hydratase-aldolase as a biocatalyst. Appl. Environ. Microbiol. 66 (2000) 2668–2672. [PMID: 10831455]
[EC 4.1.2.45 created 2010, modified 2011]
 
 
EC 4.3.1.26
Transferred entry: chromopyrrolate synthase. Now EC 1.21.3.9, dichlorochromopyrrolate synthase
[EC 4.3.1.26 created 2010, deleted 2013]
 
 
EC 4.3.3.5
Accepted name: 4′-demethylrebeccamycin synthase
Reaction: 4′-O-demethylrebeccamycin + H2O = dichloro-arcyriaflavin A + β-D-glucose
For diagram of rebeccamycin biosynthesis, click here
Glossary: dichloro-arcyriaflavin A = rebeccamycin aglycone
Other name(s): arcyriaflavin A N-glycosyltransferase; RebG
Systematic name: 4′-demethylrebeccamycin D-glucose-lyase
Comments: This enzyme catalyses a step in the biosynthesis of rebeccamycin, an indolocarbazole alkaloid produced by the bacterium Lechevalieria aerocolonigenes. The enzyme is a glycosylase, and acts in the reverse direction to that shown. It has a wide substrate range, and was shown to glycosylate several substrates, including the staurosporine aglycone, EJG-III-108A, J-104303, 6-N-methyl-arcyriaflavin C and indolo-[2,3-a]-carbazole [1,2].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Ohuchi, T., Ikeda-Araki, A., Watanabe-Sakamoto, A., Kojiri, K., Nagashima, M., Okanishi, M. and Suda, H. Cloning and expression of a gene encoding N-glycosyltransferase (ngt) from Saccharothrix aerocolonigenes ATCC39243. J. Antibiot. (Tokyo) 53 (2000) 393–403. [PMID: 10866221]
2.  Zhang, C., Albermann, C., Fu, X., Peters, N.R., Chisholm, J.D., Zhang, G., Gilbert, E.J., Wang, P.G., Van Vranken, D.L. and Thorson, J.S. RebG- and RebM-catalyzed indolocarbazole diversification. Chembiochem 7 (2006) 795–804. [PMID: 16575939]
[EC 4.3.3.5 created 2010]
 
 
EC 5.99.1.4
Accepted name: 2-hydroxychromene-2-carboxylate isomerase
Reaction: 2-hydroxy-2H-chromene-2-carboxylate = (3E)-4-(2-hydroxyphenyl)-2-oxobut-3-enoate
For diagram of naphthalene metabolism, click here
Other name(s): HCCA isomerase; 2HC2CA isomerase; 2-hydroxychromene-2-carboxylic acid isomerase
Systematic name: 2-hydroxy-2H-chromene-2-carboxylate—(3E)-4-(2-hydroxyphenyl)-2-oxobut-3-enoate isomerase
Comments: This enzyme is involved in naphthalene degradation.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, UM-BBD
References:
1.  Ohmoto, T., Kinoshita, T., Moriyoshi, K., Sakai, K., Hamada, N. and Ohe, T. Purification and some properties of 2-hydroxychromene-2-carboxylate isomerase from naphthalenesulfonate-assimilating Pseudomonas sp. TA-2. J. Biochem. 124 (1998) 591–597. [PMID: 9722670]
2.  Keck, A., Conradt, D., Mahler, A., Stolz, A., Mattes, R. and Klein, J. Identification and functional analysis of the genes for naphthalenesulfonate catabolism by Sphingomonas xenophaga BN6. Microbiology 152 (2006) 1929–1940. [PMID: 16804169]
3.  Eaton, R.W. Organization and evolution of naphthalene catabolic pathways: sequence of the DNA encoding 2-hydroxychromene-2-carboxylate isomerase and trans-o-hydroxybenzylidenepyruvate hydratase-aldolase from the NAH7 plasmid. J. Bacteriol. 176 (1994) 7757–7762. [PMID: 8002605]
4.  Thompson, L.C., Ladner, J.E., Codreanu, S.G., Harp, J., Gilliland, G.L. and Armstrong, R.N. 2-Hydroxychromene-2-carboxylic acid isomerase: a kappa class glutathione transferase from Pseudomonas putida. Biochemistry 46 (2007) 6710–6722. [PMID: 17508726]
[EC 5.99.1.4 created 2010]
 
 
EC 6.3.2.31
Accepted name: coenzyme F420-0:L-glutamate ligase
Reaction: GTP + coenzyme F420-0 + L-glutamate = GDP + phosphate + coenzyme F420-1
For diagram of coenzyme F420 biosynthesis, click here
Glossary: coenzyme F420 = N-(N-{O-[5-(8-hydroxy-2,4-dioxo-2,3,4,10-tetrahydropyrimido[4,5-b]quinolin-10-yl)-5-deoxy-L-ribityl-1-phospho]-(S)-lactyl}-γ-L-glutamyl)-L-glutamate
Other name(s): CofE-AF; MJ0768; CofE
Systematic name: L-glutamate:coenzyme F420-0 ligase (GDP-forming)
Comments: This protein catalyses the successive addition of two glutamate residues to cofactor F420 by two distinct and independent reactions. In the reaction described here the enzyme attaches a glutamate via its α-amine group to F420-0. In the second reaction (EC 6.3.2.34, coenzyme F420-1—γ-L-glutamate ligase) it catalyses the addition of a second L-glutamate residue to the γ-carboxyl of the first glutamate.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Li, H., Graupner, M., Xu, H. and White, R.H. CofE catalyzes the addition of two glutamates to F420-0 in F420 coenzyme biosynthesis in Methanococcus jannaschii. Biochemistry 42 (2003) 9771–9778. [PMID: 12911320]
2.  Nocek, B., Evdokimova, E., Proudfoot, M., Kudritska, M., Grochowski, L.L., White, R.H., Savchenko, A., Yakunin, A.F., Edwards, A. and Joachimiak, A. Structure of an amide bond forming F420:γ-glutamyl ligase from Archaeoglobus fulgidus — a member of a new family of non-ribosomal peptide synthases. J. Mol. Biol. 372 (2007) 456–469. [PMID: 17669425]
[EC 6.3.2.31 created 2010]
 
 
EC 6.3.2.32
Accepted name: coenzyme γ-F420-2:α-L-glutamate ligase
Reaction: ATP + coenzyme γ-F420-2 + L-glutamate = ADP + phosphate + coenzyme α-F420-3
For diagram of coenzyme F420 biosynthesis, click here
Other name(s): MJ1001; CofF protein; γ-F420-2:α-L-glutamate ligase
Systematic name: L-glutamate:coenzyme γ-F420-2 (ADP-forming)
Comments: The enzyme caps the γ-glutamyl tail of the hydride carrier coenzyme F420 [1].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Li, H., Xu, H., Graham, D.E. and White, R.H. Glutathione synthetase homologs encode α-L-glutamate ligases for methanogenic coenzyme F420 and tetrahydrosarcinapterin biosyntheses. Proc. Natl. Acad. Sci. USA 100 (2003) 9785–9790. [PMID: 12909715]
[EC 6.3.2.32 created 2010]
 
 
EC 6.3.2.33
Accepted name: tetrahydrosarcinapterin synthase
Reaction: ATP + tetrahydromethanopterin + L-glutamate = ADP + phosphate + 5,6,7,8-tetrahydrosarcinapterin
For diagram of methanopterin biosynthesis (part 4), click here
Other name(s): H4MPT:α-L-glutamate ligase; MJ0620; MptN protein
Systematic name: tetrahydromethanopterin:α-L-glutamate ligase (ADP-forming)
Comments: This enzyme catalyses the biosynthesis of 5,6,7,8-tetrahydrosarcinapterin, a modified form of tetrahydromethanopterin found in the Methanosarcinales. It does not require K+, and does not discriminate between ATP and GTP [1].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Li, H., Xu, H., Graham, D.E. and White, R.H. Glutathione synthetase homologs encode α-L-glutamate ligases for methanogenic coenzyme F420 and tetrahydrosarcinapterin biosyntheses. Proc. Natl. Acad. Sci. USA 100 (2003) 9785–9790. [PMID: 12909715]
[EC 6.3.2.33 created 2010]
 
 
EC 6.3.2.34
Accepted name: coenzyme F420-1:γ-L-glutamate ligase
Reaction: GTP + coenzyme F420-1 + L-glutamate = GDP + phosphate + coenzyme γ-F420-2
For diagram of coenzyme F420 biosynthesis, click here
Glossary: coenzyme F420 = N-(N-{O-[5-(8-hydroxy-2,4-dioxo-2,3,4,10-tetrahydropyrimido[4,5-b]quinolin-10-yl)-5-deoxy-L-ribityl-1-phospho]-(S)-lactyl}-γ-L-glutamyl)-L-glutamate
Other name(s): F420:γ-glutamyl ligase; CofE-AF; MJ0768; CofE
Systematic name: L-glutamate:coenzyme F420-1 ligase (GDP-forming)
Comments: This protein catalyses the successive addition of two glutamate residues to cofactor F420 by two distinct and independent reactions. In the first reaction (EC 6.3.2.31, coenzyme F420-0—L-glutamate ligase) the enzyme attaches a glutamate via its α-amine group to F420-0. In the second reaction, which is described here, the enzyme catalyses the addition of a second L-glutamate residue to the γ-carboxyl of the first glutamate.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Li, H., Graupner, M., Xu, H. and White, R.H. CofE catalyzes the addition of two glutamates to F420-0 in F420 coenzyme biosynthesis in Methanococcus jannaschii. Biochemistry 42 (2003) 9771–9778. [PMID: 12911320]
2.  Nocek, B., Evdokimova, E., Proudfoot, M., Kudritska, M., Grochowski, L.L., White, R.H., Savchenko, A., Yakunin, A.F., Edwards, A. and Joachimiak, A. Structure of an amide bond forming F420:γ-glutamyl ligase from Archaeoglobus fulgidus — a member of a new family of non-ribosomal peptide synthases. J. Mol. Biol. 372 (2007) 456–469. [PMID: 17669425]
[EC 6.3.2.34 created 2010]
 
 


Data © 2001–2017 IUBMB
Web site © 2005–2017 Andrew McDonald