The Enzyme Database

Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB)

Proposed Changes to the Enzyme List

The entries below are proposed additions and amendments to the Enzyme Nomenclature list. They were prepared for the NC-IUBMB by Kristian Axelsen, Richard Cammack, Ron Caspi, Masaaki Kotera, Andrew McDonald, Gerry Moss, Dietmar Schomburg, Ida Schomburg and Keith Tipton. Comments and suggestions on these draft entries should be sent to Dr Andrew McDonald (Department of Biochemistry, Trinity College Dublin, Dublin 2, Ireland). The date on which an enzyme will be made official is appended after the EC number. To prevent confusion please do not quote new EC numbers until they are incorporated into the main list.

An asterisk before 'EC' indicates that this is an amendment to an existing enzyme rather than a new enzyme entry.


Contents

*EC 1.1.1.50 3α-hydroxysteroid 3-dehydrogenase (Si-specific)
*EC 1.1.1.62 17β-estradiol 17-dehydrogenase
EC 1.1.1.63 transferred
*EC 1.1.1.136 UDP-N-acetylglucosamine 6-dehydrogenase
EC 1.1.1.161 deleted
*EC 1.1.1.170 3β-hydroxysteroid-4α-carboxylate 3-dehydrogenase (decarboxylating)
*EC 1.1.1.213 3α-hydroxysteroid 3-dehydrogenase (Re-specific)
*EC 1.1.1.239 3α(17β)-hydroxysteroid dehydrogenase (NAD+)
*EC 1.1.1.270 3β-hydroxysteroid 3-dehydrogenase
EC 1.1.1.328 nicotine blue oxidoreductase
EC 1.1.1.329 2-deoxy-scyllo-inosamine dehydrogenase
EC 1.1.1.330 very-long-chain 3-oxoacyl-CoA reductase
EC 1.1.1.331 secoisolariciresinol dehydrogenase
EC 1.1.1.332 chanoclavine-I dehydrogenase
EC 1.1.1.333 decaprenylphospho-β-D-erythro-pentofuranosid-2-ulose 2-reductase
EC 1.1.1.334 methylecgonone reductase
EC 1.1.1.335 UDP-N-acetyl-2-amino-2-deoxyglucuronate dehydrogenase
EC 1.1.1.336 UDP-N-acetyl-D-mannosamine dehydrogenase
EC 1.1.1.337 L-2-hydroxycarboxylate dehydrogenase (NAD+)
EC 1.1.1.338 (2R)-3-sulfolactate dehydrogenase (NADP+)
EC 1.1.1.339 dTDP-6-deoxy-L-talose 4-dehydrogenase (NAD+)
EC 1.1.1.340 1-deoxy-11β-hydroxypentalenate dehydrogenase
EC 1.1.1.341 CDP-abequose synthase
EC 1.1.1.342 CDP-paratose synthase
EC 1.1.3.43 paromamine 6′-oxidase
EC 1.1.3.44 6′′′-hydroxyneomycin C oxidase
EC 1.1.98.3 decaprenylphospho-β-D-ribofuranose 2-dehydrogenase
EC 1.1.99.38 2-deoxy-scyllo-inosamine dehydrogenase (AdoMet-dependent)
EC 1.2.1.40 deleted
EC 1.2.1.83 3-succinoylsemialdehyde-pyridine dehydrogenase
EC 1.2.1.84 alcohol-forming fatty acyl-CoA reductase
EC 1.2.1.85 2-hydroxymuconate-6-semialdehyde dehydrogenase
EC 1.2.1.86 geranial dehydrogenase
*EC 1.2.3.1 aldehyde oxidase
EC 1.2.3.11 deleted
EC 1.3.1.4 transferred
*EC 1.3.1.22 3-oxo-5α-steroid 4-dehydrogenase (NADP+)
EC 1.3.1.30 transferred
EC 1.3.1.93 very-long-chain enoyl-CoA reductase
EC 1.3.1.94 polyprenol reductase
EC 1.3.1.95 acrylyl-CoA reductase (NADH)
EC 1.3.1.96 Botryococcus squalene synthase
EC 1.3.1.97 botryococcene synthase
EC 1.3.7.10 pentalenolactone synthase
*EC 1.3.99.5 3-oxo-5α-steroid 4-dehydrogenase (acceptor)
EC 1.4.1.24 3-dehydroquinate synthase II
*EC 1.4.3.15 D-glutamate(D-aspartate) oxidase
EC 1.4.3.24 pseudooxynicotine oxidase
EC 1.5.1.43 carboxynorspermidine synthase
EC 1.5.1.44 festuclavine dehydrogenase
EC 1.5.1.45 FAD reductase [NAD(P)H]
EC 1.5.3.19 4-methylaminobutanoate oxidase (formaldehyde-forming)
EC 1.5.3.20 N-alkylglycine oxidase
EC 1.5.3.21 4-methylaminobutanoate oxidase (methylamine-forming)
EC 1.5.99.14 6-hydroxypseudooxynicotine dehydrogenase
EC 1.7.2.6 hydroxylamine dehydrogenase
*EC 1.11.1.8 iodide peroxidase
*EC 1.13.11.12 linoleate 13S-lipoxygenase
*EC 1.13.11.16 3-carboxyethylcatechol 2,3-dioxygenase
*EC 1.13.11.35 pyrogallol 1,2-oxygenase
EC 1.13.11.64 5-nitrosalicylate dioxygenase
EC 1.13.11.65 carotenoid isomerooxygenase
EC 1.13.11.66 hydroquinone 1,2-dioxygenase
EC 1.13.11.67 8′-apo-β-carotenoid 14′,13′-cleaving dioxygenase
EC 1.13.11.68 9-cis-β-carotene 9′,10′-cleaving dioxygenase
EC 1.13.11.69 carlactone synthase
EC 1.13.11.70 all-trans-10′-apo-β-carotenal 13,14-cleaving dioxygenase
EC 1.13.11.71 carotenoid-9′,10′-cleaving dioxygenase
EC 1.13.11.72 2-hydroxyethylphosphonate dioxygenase
EC 1.13.11.73 methylphosphonate synthase
EC 1.13.12.12 transferred
EC 1.14.11.35 1-deoxypentalenic acid 11β-hydroxylase
EC 1.14.11.36 pentalenolactone F synthase
*EC 1.14.12.13 2-halobenzoate 1,2-dioxygenase
*EC 1.14.13.15 cholestanetriol 26-monooxygenase
*EC 1.14.13.39 nitric-oxide synthase (NADPH)
*EC 1.14.13.59 L-lysine N6-monooxygenase (NADPH)
EC 1.14.13.163 6-hydroxy-3-succinoylpyridine 3-monooxygenase
EC 1.14.13.165 nitric-oxide synthase [NAD(P)H]
EC 1.14.13.166 4-nitrocatechol 4-monooxygenase
EC 1.14.13.167 4-nitrophenol 4-monooxygenase
EC 1.14.13.168 indole-3-pyruvate monooxygenase
EC 1.14.13.169 sphinganine C4-monooxygenase
EC 1.14.13.170 pentalenolactone D synthase
EC 1.14.13.171 neopentalenolactone D synthase
EC 1.14.14.13 4-(γ-L-glutamylamino)butanoyl-[BtrI acyl-carrier protein] monooxygenase
EC 1.14.15.2 transferred
EC 1.14.15.11 pentalenic acid synthase
*EC 1.14.18.1 tyrosinase
EC 1.14.99.47 (+)-larreatricin hydroxylase
*EC 1.18.1.2 ferredoxin—NADP+ reductase
EC 1.18.1.6 adrenodoxin-NADP+ reductase
*EC 1.21.3.6 aureusidin synthase
EC 1.21.3.7 tetrahydrocannabinolic acid synthase
EC 1.21.3.8 cannabidiolic acid synthase
*EC 2.1.1.61 tRNA (5-methylaminomethyl-2-thiouridylate)-methyltransferase
*EC 2.1.1.127 [ribulose-bisphosphate carboxylase]-lysine N-methyltransferase
EC 2.1.1.258 5-methyltetrahydrofolate:corrinoid/iron-sulfur protein Co-methyltransferase
EC 2.1.1.259 [fructose-bisphosphate aldolase]-lysine N-methyltransferase
EC 2.1.1.260 rRNA small subunit pseudouridine methyltransferase Nep1
EC 2.1.1.261 4-dimethylallyltryptophan N-methyltransferase
EC 2.1.1.262 squalene methyltransferase
EC 2.1.1.263 botryococcene C-methyltransferase
EC 2.1.1.264 23S rRNA (guanine2069-N7)-methyltransferase
EC 2.1.1.265 tellurite methyltransferase
*EC 2.3.1.177 3,5-dihydroxybiphenyl synthase
EC 2.3.1.199 very-long-chain 3-oxoacyl-CoA synthase
EC 2.3.1.200 lipoyl amidotransferase
EC 2.3.1.201 UDP-2-acetamido-3-amino-2,3-dideoxy-glucuronate N-acetyltransferase
EC 2.3.1.202 UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine N-acetyltransferase
EC 2.3.1.203 UDP-N-acetylbacillosamine N-acetyltransferase
EC 2.3.1.204 octanoyl-[GcvH]:protein N-octanoyltransferase
EC 2.3.1.205 fumigaclavine B O-acetyltransferase
EC 2.3.1.206 3,5,7-trioxododecanoyl-CoA synthase
EC 2.3.1.207 β-ketodecanoyl-[acyl-carrier-protein] synthase
EC 2.3.1.208 4-hydroxycoumarin synthase
EC 2.3.1.209 dTDP-4-amino-4,6-dideoxy-D-glucose acyltransferase
EC 2.3.1.210 dTDP-4-amino-4,6-dideoxy-D-galactose acyltransferase
EC 2.3.2.19 ribostamycin:4-(γ-L-glutamylamino)-(S)-2-hydroxybutanoyl-[BtrI acyl-carrier protein] 4-(γ-L-glutamylamino)-(S)-2-hydroxybutanoate transferase
*EC 2.4.1.60 abequosyltransferase
EC 2.4.1.119 transferred
*EC 2.4.1.131 GDP-Man:Man3GlcNAc2-PP-dolichol α-1,2-mannosyltransferase
*EC 2.4.1.202 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one 2-D-glucosyltransferase
*EC 2.4.1.256 dolichyl-P-Glc:Glc2Man9GlcNAc2-PP-dolichol α-1,2-glucosyltransferase
*EC 2.4.1.257 GDP-Man:Man2GlcNAc2-PP-dolichol α-1,6-mannosyltransferase
*EC 2.4.1.261 dolichyl-P-Man:Man8GlcNAc2-PP-dolichol α-1,2-mannosyltransferase
EC 2.4.1.282 3-O-α-D-glucosyl-L-rhamnose phosphorylase
EC 2.4.1.283 2-deoxystreptamine N-acetyl-D-glucosaminyltransferase
EC 2.4.1.284 2-deoxystreptamine glucosyltransferase
EC 2.4.1.285 UDP-GlcNAc:ribostamycin N-acetylglucosaminyltransferase
EC 2.4.1.286 chalcone 4′-O-glucosyltransferase
EC 2.4.1.287 rhamnopyranosyl-N-acetylglucosaminyl-diphospho-decaprenol β-1,4/1,5-galactofuranosyltransferase
EC 2.4.1.288 galactofuranosylgalactofuranosylrhamnosyl-N-acetylglucosaminyl-diphospho-decaprenol β-1,5/1,6-galactofuranosyltransferase
EC 2.4.1.289 N-acetylglucosaminyl-diphospho-decaprenol L-rhamnosyltransferase
EC 2.4.1.290 N,N′-diacetylbacillosaminyl-diphospho-undecaprenol α-1,3-N-acetylgalactosaminyltransferase
EC 2.4.1.291 N-acetylgalactosamine-N,N′-diacetylbacillosaminyl-diphospho-undecaprenol 4-α-N-acetylgalactosaminyltransferase
EC 2.4.1.292 GalNAc-α-(1→4)-GalNAc-α-(1→3)-diNAcBac-PP-undecaprenol α-1,4-N-acetyl-D-galactosaminyltransferase
EC 2.4.1.293 GalNAc5-diNAcBac-PP-undecaprenol β-1,3-glucosyltransferase
EC 2.4.2.45 decaprenyl-phosphate phosphoribosyltransferase
EC 2.4.2.46 galactan 5-O-arabinofuranosyltransferase
EC 2.4.2.47 arabinofuranan 3-O-arabinosyltransferase
EC 2.4.2.48 tRNA-guanine15 transglycosylase
EC 2.4.99.17 S-adenosylmethionine:tRNA ribosyltransferase-isomerase
EC 2.4.99.18 dolichyl-diphosphooligosaccharide—protein glycotransferase
EC 2.4.99.19 undecaprenyl-diphosphooligosaccharide—protein glycotransferase
*EC 2.5.1.21 squalene synthase
*EC 2.5.1.32 15-cis-phytoene synthase
EC 2.5.1.99 all-trans-phytoene synthase
EC 2.5.1.100 fumigaclavine A dimethylallyltransferase
EC 2.5.1.101 N,N′-diacetyllegionaminate synthase
EC 2.5.1.102 geranyl-pyrophosphate—olivetolic acid geranyltransferase
EC 2.5.1.103 presqualene diphosphate synthase
*EC 2.6.1.19 4-aminobutyrate—2-oxoglutarate transaminase
EC 2.6.1.93 neamine transaminase
EC 2.6.1.94 2′-deamino-2′-hydroxyneamine transaminase
EC 2.6.1.95 neomycin C transaminase
EC 2.6.1.96 4-aminobutyrate—pyruvate transaminase
EC 2.6.1.97 archaeosine synthase
EC 2.6.1.98 UDP-2-acetamido-2-deoxy-ribo-hexuluronate aminotransferase
EC 2.6.1.99 L-tryptophan—pyruvate aminotransferase
*EC 2.7.1.31 glycerate 3-kinase
EC 2.7.1.177 L-threonine kinase
EC 2.7.4.26 isopentenyl phosphate kinase
EC 2.7.4.27 [pyruvate, phosphate dikinase]-phosphate phosphotransferase
EC 2.7.4.28 [pyruvate, water dikinase]-phosphate phosphotransferase
*EC 2.7.7.23 UDP-N-acetylglucosamine diphosphorylase
EC 2.7.7.82 CMP-N,N′-diacetyllegionaminic acid synthase
EC 2.7.7.83 UDP-N-acetylgalactosamine diphosphorylase
EC 2.7.8.35 UDP-N-acetylglucosamine—decaprenyl-phosphate N-acetylglucosaminephosphotransferase
EC 2.7.8.36 undecaprenyl phosphate N,N′-diacetylbacillosamine 1-phosphate transferase
EC 2.7.8.37 α-D-ribose 1-methylphosphonate 5-triphosphate synthase
EC 2.7.11.32 [pyruvate, phosphate dikinase] kinase
EC 2.7.11.33 [pyruvate, water dikinase] kinase
EC 3.1.1.91 2-oxo-3-(5-oxofuran-2-ylidene)propanoate lactonase
EC 3.1.1.92 4-sulfomuconolactone hydrolase
EC 3.1.1.93 mycophenolic acid acyl-glucuronide esterase
EC 3.1.3.88 5′′-phosphoribostamycin phosphatase
*EC 3.2.1.89 arabinogalactan endo-β-1,4-galactanase
EC 3.2.1.181 galactan endo-β-1,3-galactanase
EC 3.2.1.182 4-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl glucoside β-D-glucosidase
EC 3.2.1.183 UDP-N-acetylglucosamine 2-epimerase (hydrolysing)
EC 3.2.1.184 UDP-N,N′-diacetylbacillosamine 2-epimerase (hydrolysing)
EC 3.5.1.111 2-oxoglutaramate amidase
EC 3.5.1.112 2′-N-acetylparomamine deacetylase
EC 3.5.1.113 2′′′-acetyl-6′′′-hydroxyneomycin C deacetylase
*EC 3.5.99.5 2-aminomuconate deaminase
EC 3.5.99.9 2-nitroimidazole nitrohydrolase
*EC 3.6.1.27 undecaprenyl-diphosphate phosphatase
EC 3.6.1.63 α-D-ribose 1-methylphosphonate 5-triphosphate diphosphatase
*EC 3.7.1.14 2-hydroxy-6-oxonona-2,4-dienedioate hydrolase
EC 3.7.1.19 2,6-dihydroxypseudooxynicotine hydrolase
EC 3.7.1.20 3-fumarylpyruvate hydrolase
*EC 4.1.1.77 2-oxo-3-hexenedioate decarboxylase
EC 4.1.1.95 L-glutamyl-[BtrI acyl-carrier protein] decarboxylase
EC 4.1.1.96 carboxynorspermidine decarboxylase
*EC 4.1.3.17 4-hydroxy-4-methyl-2-oxoglutarate aldolase
*EC 4.2.1.33 3-isopropylmalate dehydratase
EC 4.2.1.52 transferred
*EC 4.2.1.54 lactoyl-CoA dehydratase
EC 4.2.1.58 deleted
*EC 4.2.1.59 3-hydroxyacyl-[acyl-carrier-protein] dehydratase
EC 4.2.1.60 deleted
EC 4.2.1.61 deleted
*EC 4.2.1.93 ATP-dependent NAD(P)H-hydrate dehydratase
EC 4.2.1.134 very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase
EC 4.2.1.135 UDP-N-acetylglucosamine 4,6-dehydratase (configuration-retaining)
EC 4.2.1.136 ADP-dependent NAD(P)H-hydrate dehydratase
EC 4.2.1.137 sporulenol synthase
*EC 4.2.3.32 levopimaradiene synthase
EC 4.2.3.131 miltiradiene synthase
EC 4.2.3.132 neoabietadiene synthase
EC 4.2.3.133 α-copaene synthase
EC 4.2.3.134 5-phosphonooxy-L-lysine phospho-lyase
EC 4.2.3.135 Δ6-protoilludene synthase
EC 4.2.3.136 α-isocomene synthase
EC 4.2.3.137 (E)-2-epi-β-caryophyllene synthase
EC 4.2.3.138 (+)-epi-α-bisabolol synthase
EC 4.2.3.139 valerena-4,7(11)-diene synthase
EC 4.2.3.140 cis-abienol synthase
EC 4.3.1.28 L-lysine cyclodeaminase
EC 4.3.2.6 γ-L-glutamyl-butirosin B γ-glutamyl cyclotransferase
EC 4.3.3.7 4-hydroxy-tetrahydrodipicolinate synthase
EC 4.4.1.26 olivetolic acid cyclase
*EC 5.1.3.14 UDP-N-acetylglucosamine 2-epimerase (non-hydrolysing)
EC 5.1.3.25 dTDP-L-rhamnose 4-epimerase
EC 5.1.99.6 NAD(P)H-hydrate epimerase
EC 5.2.1.14 β-carotene isomerase
EC 5.3.2.6 2-hydroxymuconate tautomerase
EC 5.4.3.9 glutamate 2,3-aminomutase
EC 5.4.99.58 methylornithine synthase
*EC 5.5.1.12 copalyl diphosphate synthase
EC 6.1.1.25 deleted
EC 6.2.1.39 [butirosin acyl-carrier protein]—L-glutamate ligase
EC 6.3.2.27 deleted
EC 6.3.2.38 N2-citryl-N6-acetyl-N6-hydroxylysine synthase
EC 6.3.2.39 aerobactin synthase


*EC 1.1.1.50
Accepted name: 3α-hydroxysteroid 3-dehydrogenase (Si-specific)
Reaction: a 3α-hydroxysteroid + NAD(P)+ = a 3-oxosteroid + NAD(P)H + H+
Other name(s): hydroxyprostaglandin dehydrogenase; 3α-hydroxysteroid oxidoreductase; sterognost 3α; 3α-hydroxysteroid dehydrogenase (B-specific); 3α-hydroxysteroid 3-dehydrogenase (B-specific); 3α-hydroxysteroid:NAD(P)+ 3-oxidoreductase (B-specific)
Systematic name: 3α-hydroxysteroid:NAD(P)+ 3-oxidoreductase (Si-specific)
Comments: The enzyme acts on androsterone and other 3α-hydroxysteroids and on 9-, 11- and 15-hydroxyprostaglandin. Si-specific with respect to NAD+ or NADP+. cf. EC 1.1.1.213, 3α-hydroxysteroid 3-dehydrogenase (Re-specific).
Links to other databases: BRENDA, EXPASY, GTD, IUBMB, KEGG, PDB, CAS registry number: 9028-56-2
References:
1.  Jarabak, J. and Talalay, P. Stereospecificity of hydrogen transfer by pyridine nucleotide-linked hydroxysteroid hydrogenase. J. Biol. Chem. 235 (1960) 2147–2151. [PMID: 14406805]
2.  Kochakian, C.D., Carroll, B.R. and Uhri, B. Comparisons of the oxidation of C19-hydroxysteroids by guinea pig liver homogenates. J. Biol. Chem. 224 (1957) 811–818. [PMID: 13405910]
3.  Marcus, P.I. and Talalay, P. Induction and purification of α- and β-hydroxysteroid dehydrogenases. J. Biol. Chem. 218 (1956) 661–674. [PMID: 13295221]
4.  Penning, T.M. and Sharp, R.B. Prostaglandin dehydrogenase activity of purified rat liver 3α-hydroxysteroid dehydrogenase. Biochem. Biophys. Res. Commun. 148 (1987) 646–652. [PMID: 3479982]
[EC 1.1.1.50 created 1961, modified 1986, modified 1990, modified 2012, modified 2013]
 
 
*EC 1.1.1.62
Accepted name: 17β-estradiol 17-dehydrogenase
Reaction: 17β-estradiol + NAD(P)+ = estrone + NAD(P)H + H+
Other name(s): 20α-hydroxysteroid dehydrogenase; 17β,20α-hydroxysteroid dehydrogenase; 17β-estradiol dehydrogenase; estradiol dehydrogenase; estrogen 17-oxidoreductase; 17β-HSD; HSD17B7
Systematic name: 17β-estradiol:NAD(P)+ 17-oxidoreductase
Comments: The enzyme oxidizes or reduces the hydroxy/keto group on C17 of estrogens and androgens in mammals and regulates the biological potency of these steroids. The mammalian enzyme is bifunctional and also catalyses EC 1.1.1.270, 3β-hydroxysteroid 3-dehydrogenase [3]. The enzyme also acts on (S)-20-hydroxypregn-4-en-3-one and related compounds, oxidizing the (S)-20-group, but unlike EC 1.1.1.149, 20α-hydroxysteroid dehydrogenase, it is Si-specific with respect to NAD(P)+.
Links to other databases: BRENDA, EXPASY, GTD, IUBMB, KEGG, PDB, CAS registry number: 9028-61-9
References:
1.  Kautsky, M.P. and Hagerman, D.D. 17β-Estradiol dehydrogenase of ovine ovaries. J. Biol. Chem. 245 (1970) 1978–1984. [PMID: 4314937]
2.  Langer, L.J., Alexander, J.A. and Engel, L.L. Human placental estradiol-17β dehydrogenase. II. Kinetics and substrate specificities. J. Biol. Chem. 234 (1959) 2609–2614. [PMID: 14413943]
3.  Marijanovic, Z., Laubner, D., Moller, G., Gege, C., Husen, B., Adamski, J. and Breitling, R. Closing the gap: identification of human 3-ketosteroid reductase, the last unknown enzyme of mammalian cholesterol biosynthesis. Mol. Endocrinol. 17 (2003) 1715–1725. [PMID: 12829805]
[EC 1.1.1.62 created 1965, modified 1983, modified 1986, modified 2012]
 
 
EC 1.1.1.63
Transferred entry: testosterone 17β-dehydrogenase. Now EC 1.1.1.239, 3α(17β)-hydroxysteroid dehydrogenase (NAD+)
[EC 1.1.1.63 created 1965, deleted 2012]
 
 
*EC 1.1.1.136
Accepted name: UDP-N-acetylglucosamine 6-dehydrogenase
Reaction: UDP-N-acetyl-α-D-glucosamine + 2 NAD+ + H2O = UDP-2-acetamido-2-deoxy-α-D-glucuronate + 2 NADH + 2 H+
For diagram of UDP-N-acetylgalactosamine and UDP-N-acetylmannosamine biosynthesis, click here
Other name(s): uridine diphosphoacetylglucosamine dehydrogenase; UDP-acetylglucosamine dehydrogenase; UDP-2-acetamido-2-deoxy-D-glucose:NAD oxidoreductase; UDP-GlcNAc dehydrogenase; WbpA; WbpO
Systematic name: UDP-N-acetyl-α-D-glucosamine:NAD+ 6-oxidoreductase
Comments: This enzyme participates in the biosynthetic pathway for UDP-α-D-ManNAc3NAcA (UDP-2,3-diacetamido-2,3-dideoxy-α-D-mannuronic acid), an important precursor of B-band lipopolysaccharide.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, CAS registry number: 9054-83-5
References:
1.  Fan, D.-F., John, C.E., Zalitis, J. and Feingold, D.S. UDPacetylglucosamine dehydrogenase from Achromobacter georgiopolitanum. Arch. Biochem. Biophys. 135 (1969) 45–49. [PMID: 4312076]
2.  Miller, W.L., Wenzel, C.Q., Daniels, C., Larocque, S., Brisson, J.R. and Lam, J.S. Biochemical characterization of WbpA, a UDP-N-acetyl-D-glucosamine 6-dehydrogenase involved in O-antigen biosynthesis in Pseudomonas aeruginosa PAO1. J. Biol. Chem. 279 (2004) 37551–37558. [PMID: 15226302]
[EC 1.1.1.136 created 1972, modified 2012]
 
 
EC 1.1.1.161
Deleted entry: cholestanetetraol 26-dehydrogenase. The activity is part of EC 1.14.13.15, cholestanetriol 26-monooxygenase
[EC 1.1.1.161 created 1976, deleted 2012]
 
 
*EC 1.1.1.170
Accepted name: 3β-hydroxysteroid-4α-carboxylate 3-dehydrogenase (decarboxylating)
Reaction: a 3β-hydroxysteroid-4α-carboxylate + NAD(P)+ = a 3-oxosteroid + CO2 + NAD(P)H
For diagram of sterol ring A modification, click here
Other name(s): 3β-hydroxy-4β-methylcholestenecarboxylate 3-dehydrogenase (decarboxylating); 3β-hydroxy-4β-methylcholestenoate dehydrogenase; sterol 4α-carboxylic decarboxylase; sterol-4α-carboxylate 3-dehydrogenase (decarboxylating) (ambiguous); ERG26 (gene name); NSDHL (gene name)
Systematic name: 3β-hydroxysteroid-4α-carboxylate:NAD(P)+ 3-oxidoreductase (decarboxylating)
Comments: The enzyme catalyses the decarboxylation of the C-4 carbon and the dehydrogenation of a 3β hydroxyl at the C-3 carbon of 3β-hydroxysteroid-4α-carboxylates. It is involved in zymosterol and cholesterol biosynthesis.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, CAS registry number: 71822-23-6
References:
1.  Brady, D.R., Crowder, R.D. and Hayes, W.J. Mixed function oxidases in sterol metabolism. Source of reducing equivalents. J. Biol. Chem. 255 (1980) 10624–10629. [PMID: 7430141]
2.  Rahimtula, A.D. and Gaylor, J.L. Partial purification of a microsomal sterol 4α-carboxylic acid decarboxylase. J. Biol. Chem. 247 (1972) 9–15. [PMID: 4401584]
3.  Gachotte, D., Barbuch, R., Gaylor, J., Nickel, E. and Bard, M. Characterization of the Saccharomyces cerevisiae ERG26 gene encoding the C-3 sterol dehydrogenase (C-4 decarboxylase) involved in sterol biosynthesis. Proc. Natl. Acad. Sci. USA 95 (1998) 13794–13799. [PMID: 9811880]
4.  Caldas, H. and Herman, G.E. NSDHL, an enzyme involved in cholesterol biosynthesis, traffics through the Golgi and accumulates on ER membranes and on the surface of lipid droplets. Hum. Mol. Genet. 12 (2003) 2981–2991. [PMID: 14506130]
[EC 1.1.1.170 created 1978, modified 2002, modified 2012]
 
 
*EC 1.1.1.213
Accepted name: 3α-hydroxysteroid 3-dehydrogenase (Re-specific)
Reaction: a 3α-hydroxysteroid + NAD(P)+ = a 3-oxosteroid + NAD(P)H + H+
Other name(s): 3α-hydroxysteroid dehydrogenase; 3α-hydroxysteroid:NAD(P)+ 3-oxidoreductase (A-specific); 3α-hydroxysteroid 3-dehydrogenase (A-specific)
Systematic name: 3α-hydroxysteroid:NAD(P)+ 3-oxidoreductase (Re-specific)
Comments: The enzyme acts on multiple 3α-hydroxysteroids. Re-specific with respect to NAD+ or NADP+ [cf. EC 1.1.1.50, 3α-hydroxysteroid 3-dehydrogenase (Si-specific)]. Enzymes whose stereo-specificity with respect to NAD+ or NADP+ is not known are described by EC 1.1.1.357, 3α-hydroxysteroid 3-dehydrogenase.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, PDB, CAS registry number: 9028-56-2
References:
1.  Björkhem, I. and Danielsson, H. Stereochemistry of hydrogen transfer from pyridine nucleotides catalyzed by Δ4-3-oxosteroid 5-β-reductase and 3-α-hydroxysteroid dehydrogenase from rat liver. Eur. J. Biochem. 12 (1970) 80–84. [PMID: 4392180]
2.  Tomkins, G.M. A mammalian 3α-hydroxysteroid dehydrogenase. J. Biol. Chem. 218 (1956) 437–447. [PMID: 13278351]
[EC 1.1.1.213 created 1986, modified 2012]
 
 
*EC 1.1.1.239
Accepted name: 3α(17β)-hydroxysteroid dehydrogenase (NAD+)
Reaction: testosterone + NAD+ = androstenedione + NADH + H+
Glossary: androstenedione = androst-4-ene-3,17-dione
Other name(s): 3α,17β-hydroxy steroid dehydrogenase; 3α(17β)-HSD; 17-ketoreductase (ambiguous); 17β-HSD (ambiguous); HSD17B6 (gene name); HSD17B8 (gene name)
Systematic name: 3α(or 17β)-hydroxysteroid:NAD+ oxidoreductase
Comments: Also acts on other 17β-hydroxysteroids and on the 3α-hydroxy group of pregnanes and bile acids. Different from EC 1.1.1.50 3α-hydroxysteroid dehydrogenase (Si-specific) or EC 1.1.1.213 3α-hydroxysteroid dehydrogenase (Re-specific).
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, CAS registry number: 126469-82-7
References:
1.  Sweat, M.L., Samuels, L.T. and Lumry, R. Preparation and characterisation of the enzyme which converts testosterone to androstendione. J. Biol. Chem. 185 (1950) 75–84. [PMID: 15436478]
2.  Villee, C.A. and Spencer, J.M. Some properties of the pyridine nucleotide-specific 17β-hydroxy steroid dehydrogenase of guinea pig liver. J. Biol. Chem. 235 (1960) 3615–3619. [PMID: 13781425]
3.  Endahl, G.L., Kochakia, C.D. and Hamm, D. Separation of a triphosphopyridine nucleotide-specific from a diphosphopyridine-specific 17β-hydroxy (testosterone) dehydrogenase of guinea pig liver. J. Biol. Chem. 235 (1960) 2792–2796. [PMID: 13696735]
4.  Ohmura, M., Hara, A., Nakagawa, M. and Sawada, H. Demonstration of 3α(17β)-hydroxysteroid dehydrogenase distinct from 3α-hydroxysteroid dehydrogenase in hamster liver. Biochem. J. 266 (1990) 583–589. [PMID: 2317205]
[EC 1.1.1.239 created 1992, modified 2012 (EC 1.1.1.63 created 1965, incorporated 2012)]
 
 
*EC 1.1.1.270
Accepted name: 3β-hydroxysteroid 3-dehydrogenase
Reaction: a 3β-hydroxysteroid + NADP+ = a 3-oxosteroid + NADPH + H+
For diagram of sterol ring A modification, click here
Other name(s): 3-keto-steroid reductase; 3-KSR; HSD17B7 (gene name); ERG27 (gene name)
Systematic name: 3β-hydroxysteroid:NADP+ 3-oxidoreductase
Comments: The enzyme acts on multiple 3β-hydroxysteroids. Participates in the biosynthesis of zemosterol and cholesterol, where it catalyses the reaction in the opposite direction to that shown. The mammalian enzyme is bifunctional and also catalyses EC 1.1.1.62, 17β-estradiol 17-dehydrogenase [4].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, CAS registry number: 42616-29-5
References:
1.  Swindell, A.C. and Gaylor, J.L. Investigation of the component reactions of oxidative sterol demethylation. Formation and metabolism of 3-ketosteroid intermediates. J. Biol. Chem. 243 (1968) 5546–5555. [PMID: 4387005]
2.  Billheimer, J.T., Alcorn, M. and Gaylor, J.L. Solubilization and partial purification of a microsomal 3-ketosteroid reductase of cholesterol biosynthesis. Purification and properties of 3β-hydroxysteroid dehydrogenase and Δ5-3-ketosteroid isomerase from bovine corpora lutea. Arch. Biochem. Biophys. 211 (1981) 430–438. [PMID: 6946726]
3.  Gachotte, D., Sen, S.E., Eckstein, J., Barbuch, R., Krieger, M., Ray, B.D. and Bard, M. Characterization of the Saccharomyces cerevisiae ERG27 gene encoding the 3-keto reductase involved in C-4 sterol demethylation. Proc. Natl. Acad. Sci. USA 96 (1999) 12655–12660. [PMID: 10535978]
4.  Marijanovic, Z., Laubner, D., Moller, G., Gege, C., Husen, B., Adamski, J. and Breitling, R. Closing the gap: identification of human 3-ketosteroid reductase, the last unknown enzyme of mammalian cholesterol biosynthesis. Mol. Endocrinol. 17 (2003) 1715–1725. [PMID: 12829805]
[EC 1.1.1.270 created 2002, modified 2012]
 
 
EC 1.1.1.328
Accepted name: nicotine blue oxidoreductase
Reaction: 3,3′-bipyridine-2,2′,5,5′,6,6′-hexol + NAD(P)+ = (E)-2,2′,5,5′-tetrahydroxy-6H,6′H-[3,3′-bipyridinylidene]-6,6′-dione + NAD(P)H + H+
For diagram of nicotine catabolism by arthrobacter, click here
Glossary: 3,3′-bipyridine-2,2′,5,5′,6,6′-hexol = nicotine blue leuco form
(E)-2,2′,5,5′-tetrahydroxy-6H,6′H-[3,3′-bipyridinylidene]-6,6′-dione = nicotine blue
Other name(s): nboR (gene name)
Systematic name: 3,3′-bipyridine-2,2′,5,5′,6,6′-hexol:NADP+ 11-oxidoreductase
Comments: The enzyme, characterized from the nicotine degrading bacterium Arthrobacter nicotinovorans, catalyses the reduction of "nicotine blue" to its hydroquinone form (the opposite direction from that shown). Nicotine blue is the name given to the compound formed by the autocatalytic condensation of two molecules of 2,3,6-trihydroxypyridine, an intermediate in the nicotine degradation pathway. The main role of the enzyme may be to prevent the intracellular formation of nicotine blue semiquinone radicals, which by redox cycling would lead to the formation of toxic reactive oxygen species. The enzyme possesses a slight preference for NADH over NADPH.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Mihasan, M., Chiribau, C.B., Friedrich, T., Artenie, V. and Brandsch, R. An NAD(P)H-nicotine blue oxidoreductase is part of the nicotine regulon and may protect Arthrobacter nicotinovorans from oxidative stress during nicotine catabolism. Appl. Environ. Microbiol. 73 (2007) 2479–2485. [PMID: 17293530]
[EC 1.1.1.328 created 2012]
 
 
EC 1.1.1.329
Accepted name: 2-deoxy-scyllo-inosamine dehydrogenase
Reaction: 2-deoxy-scyllo-inosamine + NAD(P)+ = 3-amino-2,3-dideoxy-scyllo-inosose + NAD(P)H + H+
For diagram of paromamine biosynthesis, click here
Glossary: 2-deoxy-scyllo-inosamine = (1R,2S,3S,4R,5S)-5-aminocyclohexane-1,2,3,4-tetrol
Other name(s): neoA (gene name); kanK (gene name, ambiguous); kanE (gene name, ambiguous)
Systematic name: 2-deoxy-scyllo-inosamine:NAD(P)+ 1-oxidoreductase
Comments: Requires zinc. Involved in the biosynthetic pathways of several clinically important aminocyclitol antibiotics, including kanamycin, neomycin and ribostamycin. cf. EC 1.1.99.38, 2-deoxy-scyllo-inosamine dehydrogenase (AdoMet-dependent).
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Kudo, F., Yamamoto, Y., Yokoyama, K., Eguchi, T. and Kakinuma, K. Biosynthesis of 2-deoxystreptamine by three crucial enzymes in Streptomyces fradiae NBRC 12773. J. Antibiot. (Tokyo) 58 (2005) 766–774. [PMID: 16506694]
2.  Nepal, K.K., Oh, T.J. and Sohng, J.K. Heterologous production of paromamine in Streptomyces lividans TK24 using kanamycin biosynthetic genes from Streptomyces kanamyceticus ATCC12853. Mol. Cells 27 (2009) 601–608. [PMID: 19466609]
[EC 1.1.1.329 created 2012]
 
 
EC 1.1.1.330
Accepted name: very-long-chain 3-oxoacyl-CoA reductase
Reaction: a very-long-chain (3R)-3-hydroxyacyl-CoA + NADP+ = a very-long-chain 3-oxoacyl-CoA + NADPH + H+
Glossary: a very-long-chain acyl-CoA = an acyl-CoA thioester where the acyl chain contains 23 or more carbon atoms.
Other name(s): very-long-chain 3-ketoacyl-CoA reductase; very-long-chain β-ketoacyl-CoA reductase; KCR (gene name); IFA38 (gene name)
Systematic name: (3R)-3-hydroxyacyl-CoA:NADP+ oxidoreductase
Comments: The second component of the elongase, a microsomal protein complex responsible for extending palmitoyl-CoA and stearoyl-CoA (and modified forms thereof) to very-long-chain acyl CoAs. The enzyme is active with substrates with chain length of C16 to C34, depending on the species. cf. EC 2.3.1.199, very-long-chain 3-oxoacyl-CoA synthase, EC 4.2.1.134, very-long-chain (3R)-3-hydroxyacyl-[acyl-carrier protein] dehydratase, and EC 1.3.1.93, very-long-chain enoyl-CoA reductase.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Beaudoin, F., Gable, K., Sayanova, O., Dunn, T. and Napier, J.A. A Saccharomyces cerevisiae gene required for heterologous fatty acid elongase activity encodes a microsomal β-keto-reductase. J. Biol. Chem. 277 (2002) 11481–11488. [PMID: 11792704]
2.  Han, G., Gable, K., Kohlwein, S.D., Beaudoin, F., Napier, J.A. and Dunn, T.M. The Saccharomyces cerevisiae YBR159w gene encodes the 3-ketoreductase of the microsomal fatty acid elongase. J. Biol. Chem. 277 (2002) 35440–35449. [PMID: 12087109]
3.  Beaudoin, F., Wu, X., Li, F., Haslam, R.P., Markham, J.E., Zheng, H., Napier, J.A. and Kunst, L. Functional characterization of the Arabidopsis β-ketoacyl-coenzyme A reductase candidates of the fatty acid elongase. Plant Physiol. 150 (2009) 1174–1191. [PMID: 19439572]
[EC 1.1.1.330 created 2012]
 
 
EC 1.1.1.331
Accepted name: secoisolariciresinol dehydrogenase
Reaction: (–)-secoisolariciresinol + 2 NAD+ = (–)-matairesinol + 2 NADH + 2 H+
For diagram of matairesinol biosynthesis, click here
Systematic name: (–)-secoisolariciresinol:NAD+ oxidoreductase
Comments: Isolated from the plants Forsythia intermedia [1] and Podophyllum peltatum [1-3]. An intermediate lactol is detected in vitro.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Xia, Z.Q., Costa, M.A., Pelissier, H.C., Davin, L.B. and Lewis, N.G. Secoisolariciresinol dehydrogenase purification, cloning, and functional expression. Implications for human health protection. J. Biol. Chem. 276 (2001) 12614–12623. [PMID: 11278426]
2.  Youn, B., Moinuddin, S.G., Davin, L.B., Lewis, N.G. and Kang, C. Crystal structures of apo-form and binary/ternary complexes of Podophyllum secoisolariciresinol dehydrogenase, an enzyme involved in formation of health-protecting and plant defense lignans. J. Biol. Chem. 280 (2005) 12917–12926. [PMID: 15653677]
3.  Moinuddin, S.G., Youn, B., Bedgar, D.L., Costa, M.A., Helms, G.L., Kang, C., Davin, L.B. and Lewis, N.G. Secoisolariciresinol dehydrogenase: mode of catalysis and stereospecificity of hydride transfer in Podophyllum peltatum. Org. Biomol. Chem. 4 (2006) 808–816. [PMID: 16493463]
[EC 1.1.1.331 created 2012]
 
 
EC 1.1.1.332
Accepted name: chanoclavine-I dehydrogenase
Reaction: chanoclavine-I + NAD+ = chanoclavine-I aldehyde + NADH + H+
For diagram of ergot alkaloid biosynthesis, click here
Glossary: chanoclavine-I = (1E)-2-methyl-3-[(4R,5R)-4-(methylamino)-1,3,4,5-tetrahydrobenz[cd]indol-5-yl]prop-2-en-1-ol
chanoclavine-I aldehyde = (1E)-2-methyl-3-[(4R,5R)-4-(methylamino)-1,3,4,5-tetrahydrobenz[cd]indol-5-yl]prop-2-enal
Other name(s): easD (gene name); fgaDH (gene name)
Systematic name: chanoclavine-I:NAD+ oxidoreductase
Comments: The enzyme catalyses a step in the pathway of ergot alkaloid biosynthesis in certain fungi.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Wallwey, C., Matuschek, M. and Li, S.M. Ergot alkaloid biosynthesis in Aspergillus fumigatus: conversion of chanoclavine-I to chanoclavine-I aldehyde catalyzed by a short-chain alcohol dehydrogenase FgaDH. Arch. Microbiol. 192 (2010) 127–134. [PMID: 20039019]
2.  Wallwey, C., Heddergott, C., Xie, X., Brakhage, A.A. and Li, S.M. Genome mining reveals the presence of a conserved gene cluster for the biosynthesis of ergot alkaloid precursors in the fungal family Arthrodermataceae. Microbiology 158 (2012) 1634–1644. [PMID: 22403186]
[EC 1.1.1.332 created 2012]
 
 
EC 1.1.1.333
Accepted name: decaprenylphospho-β-D-erythro-pentofuranosid-2-ulose 2-reductase
Reaction: trans,octacis-decaprenylphospho-β-D-arabinofuranose + NAD+ = trans,octacis-decaprenylphospho-β-D-erythro-pentofuranosid-2-ulose + NADH + H+
For diagram of decaprenylphosphoarabinofuranose biosynthesis, click here
Other name(s): decaprenylphospho-β-D-ribofuranose 2′-epimerase; Rv3791; DprE2
Systematic name: trans,octacis-decaprenylphospho-β-D-arabinofuranose:NAD+ 2-oxidoreductase
Comments: The reaction is catalysed in the reverse direction. The enzyme, isolated from the bacterium Mycobacterium smegmatis, is involved, along with EC 1.1.98.3, decaprenylphospho-β-D-ribofuranose 2-oxidase, in the epimerization of trans,octacis-decaprenylphospho-β-D-ribofuranose to trans,octacis-decaprenylphospho-β-D-arabinoofuranose, the arabinosyl donor for the biosynthesis of mycobacterial cell wall arabinan polymers.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Trefzer, C., Škovierová, H., Buroni, S., Bobovská, A., Nenci, S., Molteni, E., Pojer, F., Pasca, M.R., Makarov, V., Cole, S.T., Riccardi, G., Mikušová, K. and Johnsson, K. Benzothiazinones are suicide inhibitors of mycobacterial decaprenylphosphoryl-β-D-ribofuranose 2′-oxidase DprE1. J. Am. Chem. Soc. 134 (2012) 912–915. [PMID: 22188377]
[EC 1.1.1.333 created 2012]
 
 
EC 1.1.1.334
Accepted name: methylecgonone reductase
Reaction: ecgonine methyl ester + NADP+ = ecgonone methyl ester + NADPH + H+
Glossary: ecgonine methyl ester = 2β-carbomethoxy-3β-tropine = methyl (1R,2R,3S,5S)-3-hydroxy-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate
ecgonone methyl ester = 2β-carbomethoxy-3-tropinone = methyl (1R,2R,5S)-8-methyl-3-oxo-8-azabicyclo[3.2.1]octane-2-carboxylate
Other name(s): MecgoR (gene name)
Systematic name: ecgonine methyl ester:NADP+ oxidoreductase
Comments: The enzyme from the plant Erythroxylum coca catalyses the penultimate step in the biosynthesis of cocaine. In vivo the reaction proceeds in the opposite direction. With NADH instead of NADPH the reaction rate is reduced to 14%. The enzyme also reduces tropinone, nortropinone and 6-hydroxytropinone but with lower reaction rates.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Jirschitzka, J., Schmidt, G.W., Reichelt, M., Schneider, B., Gershenzon, J. and D'Auria, J.C. Plant tropane alkaloid biosynthesis evolved independently in the Solanaceae and Erythroxylaceae. Proc. Natl. Acad. Sci. USA 109 (2012) 10304–10309. [PMID: 22665766]
[EC 1.1.1.334 created 2012]
 
 
EC 1.1.1.335
Accepted name: UDP-N-acetyl-2-amino-2-deoxyglucuronate dehydrogenase
Reaction: UDP-N-acetyl-2-amino-2-deoxy-α-D-glucuronate + NAD+ = UDP-2-acetamido-2-deoxy-α-D-ribo-hex-3-uluronate + NADH + H+
For diagram of UDP-2,3-diacetamido-2,3-dideoxy-D-mannuronate biosynthesis, click here
Other name(s): WlbA; WbpB
Systematic name: UDP-N-acetyl-2-amino-2-deoxy-α-D-glucuronate:NAD+ 3-oxidoreductase
Comments: This enzyme participates in the biosynthetic pathway for UDP-α-D-ManNAc3NAcA (UDP-2,3-diacetamido-2,3-dideoxy-α-D-mannuronic acid), an important precursor of B-band lipopolysaccharide. The enzymes from Pseudomonas aeruginosa serotype O5 and Thermus thermophilus form a complex with the the enzyme catalysing the next step the pathway (EC 2.6.1.98, UDP-2-acetamido-2-deoxy-ribo-hexuluronate aminotransferase). The enzyme also possesses an EC 1.1.99.2 (L-2-hydroxyglutarate dehydrogenase) activity, and utilizes the 2-oxoglutarate produced by EC 2.6.1.98 to regenerate the tightly bound NAD+. The enzymes from Bordetella pertussis and Chromobacterium violaceum do not bind NAD+ as tightly and do not require 2-oxoglutarate to function.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Westman, E.L., McNally, D.J., Charchoglyan, A., Brewer, D., Field, R.A. and Lam, J.S. Characterization of WbpB, WbpE, and WbpD and reconstitution of a pathway for the biosynthesis of UDP-2,3-diacetamido-2,3-dideoxy-D-mannuronic acid in Pseudomonas aeruginosa. J. Biol. Chem. 284 (2009) 11854–11862. [PMID: 19282284]
2.  Larkin, A. and Imperiali, B. Biosynthesis of UDP-GlcNAc(3NAc)A by WbpB, WbpE, and WbpD: enzymes in the Wbp pathway responsible for O-antigen assembly in Pseudomonas aeruginosa PAO1. Biochemistry 48 (2009) 5446–5455. [PMID: 19348502]
3.  Thoden, J.B. and Holden, H.M. Structural and functional studies of WlbA: A dehydrogenase involved in the biosynthesis of 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid. Biochemistry 49 (2010) 7939–7948. [PMID: 20690587]
4.  Thoden, J.B. and Holden, H.M. Biochemical and structural characterization of WlbA from Bordetella pertussis and Chromobacterium violaceum: enzymes required for the biosynthesis of 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid. Biochemistry 50 (2011) 1483–1491. [PMID: 21241053]
[EC 1.1.1.335 created 2012]
 
 
EC 1.1.1.336
Accepted name: UDP-N-acetyl-D-mannosamine dehydrogenase
Reaction: UDP-N-acetyl-α-D-mannosamine + 2 NAD+ + H2O = UDP-N-acetyl-α-D-mannosaminuronate + 2 NADH + 2 H+
For diagram of UDP-N-acetylgalactosamine and UDP-N-acetylmannosamine biosynthesis, click here
Other name(s): UDP-ManNAc 6-dehydrogenase; wecC (gene name)
Systematic name: UDP-N-acetyl-α-D-mannosamine:NAD+ 6-oxidoreductase
Comments: Part of the pathway for acetamido sugar biosynthesis in bacteria and archaea. The enzyme has no activity with NADP+.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Namboori, S.C. and Graham, D.E. Acetamido sugar biosynthesis in the Euryarchaea. J. Bacteriol. 190 (2008) 2987–2996. [PMID: 18263721]
[EC 1.1.1.336 created 2012]
 
 
EC 1.1.1.337
Accepted name: L-2-hydroxycarboxylate dehydrogenase (NAD+)
Reaction: a (2S)-2-hydroxycarboxylate + NAD+ = a 2-oxocarboxylate + NADH + H+
Other name(s): (R)-sulfolactate:NAD+ oxidoreductase; L-sulfolactate dehydrogenase; (R)-sulfolactate dehydrogenase; L-2-hydroxyacid dehydrogenase (NAD+); ComC
Systematic name: (2S)-2-hydroxycarboxylate:NAD+ oxidoreductase
Comments: The enzyme from the archaeon Methanocaldococcus jannaschii acts on multiple (S)-2-hydroxycarboxylates including (2R)-3-sulfolactate, (S)-malate, (S)-lactate, and (S)-2-hydroxyglutarate [3]. Note that (2R)-3-sulfolactate has the same stereo configuration as (2S)-2-hydroxycarboxylates.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, PDB, CAS registry number: 81210-65-3
References:
1.  Graupner, M., Xu, H. and White, R.H. Identification of an archaeal 2-hydroxy acid dehydrogenase catalyzing reactions involved in coenzyme biosynthesis in methanoarchaea. J. Bacteriol. 182 (2000) 3688–3692. [PMID: 10850983]
2.  Graupner, M. and White, R.H. The first examples of (S)-2-hydroxyacid dehydrogenases catalyzing the transfer of the pro-4S hydrogen of NADH are found in the archaea. Biochim. Biophys. Acta 1548 (2001) 169–173. [PMID: 11451450]
3.  Graham, D.E. and White, R.H. Elucidation of methanogenic coenzyme biosyntheses: from spectroscopy to genomics. Nat. Prod. Rep. 19 (2002) 133–147. [PMID: 12013276]
4.  Rein, U., Gueta, R., Denger, K., Ruff, J., Hollemeyer, K. and Cook, A.M. Dissimilation of cysteate via 3-sulfolactate sulfo-lyase and a sulfate exporter in Paracoccus pantotrophus NKNCYSA. Microbiology 151 (2005) 737–747. [PMID: 15758220]
[EC 1.1.1.337 created 2012]
 
 
EC 1.1.1.338
Accepted name: (2R)-3-sulfolactate dehydrogenase (NADP+)
Reaction: (2R)-3-sulfolactate + NADP+ = 3-sulfopyruvate + NADPH + H+
For diagram of coenzyme-M biosynthesis, click here
Other name(s): (R)-sulfolactate:NADP+ oxidoreductase; L-sulfolactate dehydrogenase; (R)-sulfolactate dehydrogenase; ComC
Systematic name: (2R)-3-sulfolactate:NADP+ oxidoreductase
Comments: The enzyme from the bacterium Chromohalobacter salexigens can only utilize NADP+. It functions both biosynthetically in coenzyme M biosynthesis and degradatively, in the degradation of sulfolactate. It can not use (S)-malate and (S)-lactate.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, PDB, CAS registry number: 81210-65-3
References:
1.  Denger, K. and Cook, A.M. Racemase activity effected by two dehydrogenases in sulfolactate degradation by Chromohalobacter salexigens: purification of (S)-sulfolactate dehydrogenase. Microbiology 156 (2010) 967–974. [PMID: 20007648]
[EC 1.1.1.338 created 2012]
 
 
EC 1.1.1.339
Accepted name: dTDP-6-deoxy-L-talose 4-dehydrogenase (NAD+)
Reaction: dTDP-6-deoxy-β-L-talose + NAD+ = dTDP-4-dehydro-β-L-rhamnose + NADH + H+
Glossary: dTDP-4-dehydro-β-L-rhamnose = dTDP-4-dehydro-6-deoxy-β-L-mannose
dTDP-6-deoxy-β-L-talose = dTDP-β-L-pneumose
Other name(s): tll (gene name)
Systematic name: dTDP-6-deoxy-β-L-talose:NAD+ 4-oxidoreductase
Comments: The enzyme has been characterized from the bacterium Aggregatibacter actinomycetemcomitans, in which it participates in the biosynthesis of the serotype c-specific polysaccharide antigen. Shows no activity with NADP+.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Nakano, Y., Suzuki, N., Yoshida, Y., Nezu, T., Yamashita, Y. and Koga, T. Thymidine diphosphate-6-deoxy-L-lyxo-4-hexulose reductase synthesizing dTDP-6-deoxy-L-talose from Actinobacillus actinomycetemcomitans. J. Biol. Chem. 275 (2000) 6806–6812. [PMID: 10702238]
[EC 1.1.1.339 created 2012]
 
 
EC 1.1.1.340
Accepted name: 1-deoxy-11β-hydroxypentalenate dehydrogenase
Reaction: 1-deoxy-11β-hydroxypentalenate + NAD+ = 1-deoxy-11-oxopentalenate + NADH + H+
For diagram of pentalenolactone biosynthesis, click here
Glossary: 1-deoxy-11β-hydroxypentalenate = (1S,2R,3aR,5aS,8aR)-2-hydroxy-1,7,7-trimethyl-1,2,3,3a,5a,6,7,8-octahydrocyclopenta[c]pentalene-4-carboxylate
1-deoxy-11-oxopentalenate = (1S,3aR,5aS)-1,7,7-trimethyl-2-oxo-1,2,3,3a,5a,6,7,8-octahydrocyclopenta[c]pentalene-4-carboxylate
Other name(s): 1-deoxy-11β-hydroxypentalenic acid dehydrogenase; ptlF (gene name); penF (gene name)
Systematic name: 1-deoxy-11β-hydroxypentalenate:NAD+ oxidoreductase
Comments: Isolated from the bacterium Streptomyces avermitilis and present in many other Streptomyces species. Part of the pathway for pentalenolactone biosynthesis.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  You, Z., Omura, S., Ikeda, H. and Cane, D.E. Pentalenolactone biosynthesis: Molecular cloning and assignment of biochemical function to PtlF, a short-chain dehydrogenase from Streptomyces avermitilis, and identification of a new biosynthetic intermediate. Arch. Biochem. Biophys. 459 (2007) 233–240. [PMID: 17178094]
[EC 1.1.1.340 created 2012]
 
 
EC 1.1.1.341
Accepted name: CDP-abequose synthase
Reaction: CDP-α-D-abequose + NADP+ = CDP-4-dehydro-3,6-dideoxy-α-D-glucose + NADPH + H+
For diagram of CDP-abequose, CDP-ascarylose, CDP-paratose and CDP-tyrelose biosynthesis, click here
Glossary: CDP-α-D-abequose = CDP-3,6-dideoxy-α-D-xylo-hexose
Other name(s): rfbJ (gene name)
Systematic name: CDP-α-D-abequose:NADP+ 4-oxidoreductase
Comments: Isolated from Yersinia pseudotuberculosis [1,3] and Salmonella enterica [1,2].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Kessler, A.C., Brown, P.K., Romana, L.K. and Reeves, P.R. Molecular cloning and genetic characterization of the rfb region from Yersinia pseudotuberculosis serogroup IIA, which determines the formation of the 3,6-dideoxyhexose abequose. J. Gen. Microbiol. 137 (1991) 2689–2695. [PMID: 1724263]
2.  Wyk, P. and Reeves, P. Identification and sequence of the gene for abequose synthase, which confers antigenic specificity on group B salmonellae: homology with galactose epimerase. J. Bacteriol. 171 (1989) 5687–5693. [PMID: 2793832]
3.  Thorson, J.S., Lo, S.F., Ploux, O., He, X. and Liu, H.W. Studies of the biosynthesis of 3,6-dideoxyhexoses: molecular cloning and characterization of the asc (ascarylose) region from Yersinia pseudotuberculosis serogroup VA. J. Bacteriol. 176 (1994) 5483–5493. [PMID: 8071227]
[EC 1.1.1.341 created 2012]
 
 
EC 1.1.1.342
Accepted name: CDP-paratose synthase
Reaction: CDP-α-D-paratose + NADP+ = CDP-4-dehydro-3,6-dideoxy-α-D-glucose + NADPH + H+
For diagram of CDP-abequose, CDP-ascarylose, CDP-paratose and CDP-tyrelose biosynthesis, click here
Glossary: CDP-α-D-paratose = CDP-3,6-dideoxy-α-D-glucose = CDP-3,6-dideoxy-α-D-ribo-hexose
Other name(s): rfbS (gene name)
Systematic name: CDP-α-D-paratose:NADP+ 4-oxidoreductase
Comments: The enzyme is involved in synthesis of paratose and tyvelose, unusual 3,6-dideoxyhexose sugars that form part of the O-antigen in the lipopolysaccharides of several enteric bacteria. Isolated from Salmonella enterica subsp. enterica serovar Typhi (Salmonella typhi).
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Verma, N. and Reeves, P. Identification and sequence of rfbS and rfbE, which determine antigenic specificity of group A and group D salmonellae. J. Bacteriol. 171 (1989) 5694–5701. [PMID: 2793833]
2.  Hallis, T.M., Lei, Y., Que, N.L. and Liu, H. Mechanistic studies of the biosynthesis of paratose: purification and characterization of CDP-paratose synthase. Biochemistry 37 (1998) 4935–4945. [PMID: 9538012]
[EC 1.1.1.342 created 2012]
 
 
EC 1.1.3.43
Accepted name: paromamine 6′-oxidase
Reaction: paromamine + O2 = 6′-dehydroparomamine + H2O2
For diagram of neamine and ribostamycin biosynthesis, click here
Other name(s): btrQ (gene name); neoG (gene name); kanI (gene name); tacB (gene name); neoQ (obsolete gene name)
Systematic name: paromamine:oxygen 6′-oxidoreductase
Comments: Contains FAD. Involved in the biosynthetic pathways of several clinically important aminocyclitol antibiotics, including kanamycin, butirosin, neomycin and ribostamycin. Works in combination with EC 2.6.1.93, neamine transaminase, to replace the 6′-hydroxy group of paromamine with an amino group. The enzyme from the bacterium Streptomyces fradiae also catalyses EC 1.1.3.44, 6′′′-hydroxyneomycin C oxidase.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Huang, F., Spiteller, D., Koorbanally, N.A., Li, Y., Llewellyn, N.M. and Spencer, J.B. Elaboration of neosamine rings in the biosynthesis of neomycin and butirosin. ChemBioChem. 8 (2007) 283–288. [PMID: 17206729]
2.  Yu, Y., Hou, X., Ni, X. and Xia, H. Biosynthesis of 3′-deoxy-carbamoylkanamycin C in a Streptomyces tenebrarius mutant strain by tacB gene disruption. J. Antibiot. (Tokyo) 61 (2008) 63–69. [PMID: 18408324]
3.  Clausnitzer, D., Piepersberg, W. and Wehmeier, U.F. The oxidoreductases LivQ and NeoQ are responsible for the different 6′-modifications in the aminoglycosides lividomycin and neomycin. J. Appl. Microbiol. 111 (2011) 642–651. [PMID: 21689223]
[EC 1.1.3.43 created 2012]
 
 
EC 1.1.3.44
Accepted name: 6′′′-hydroxyneomycin C oxidase
Reaction: 6′′′-deamino-6′′′-hydroxyneomycin C + O2 = 6′′′-deamino-6′′′-oxoneomycin C + H2O2
Other name(s): neoG (gene name); neoQ (obsolete gene name)
Systematic name: 6′′′-deamino-6′′′-hydroxyneomycin C:oxygen 6′′′-oxidoreductase
Comments: Contains FAD. Involved in the biosynthetic pathway of aminoglycoside antibiotics of the neomycin family. Works in combination with EC 2.6.1.95, neomycin C transaminase, to replace the 6′′′-hydroxy group of 6′′′-hydroxyneomycin C with an amino group. Also catalyses EC 1.1.3.43, paromamine 6′-oxidase.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Huang, F., Spiteller, D., Koorbanally, N.A., Li, Y., Llewellyn, N.M. and Spencer, J.B. Elaboration of neosamine rings in the biosynthesis of neomycin and butirosin. ChemBioChem. 8 (2007) 283–288. [PMID: 17206729]
2.  Clausnitzer, D., Piepersberg, W. and Wehmeier, U.F. The oxidoreductases LivQ and NeoQ are responsible for the different 6′-modifications in the aminoglycosides lividomycin and neomycin. J. Appl. Microbiol. 111 (2011) 642–651. [PMID: 21689223]
[EC 1.1.3.44 created 2012]
 
 
EC 1.1.98.3
Accepted name: decaprenylphospho-β-D-ribofuranose 2-dehydrogenase
Reaction: trans,octacis-decaprenylphospho-β-D-ribofuranose + FAD = trans,octacis-decaprenylphospho-β-D-erythro-pentofuranosid-2-ulose + FADH2
For diagram of decaprenylphosphoarabinofuranose biosynthesis, click here
Other name(s): decaprenylphosphoryl-β-D-ribofuranose 2′-epimerase; Rv3790; DprE1; decaprenylphospho-β-D-ribofuranose 2-oxidase
Systematic name: trans,octacis-decaprenylphospho-β-D-ribofuranose:FAD 2-oxidoreductase
Comments: The enzyme, isolated from the bacterium Mycobacterium smegmatis, is involved, along with EC 1.1.1.333, decaprenylphospho-D-erythro-pentofuranosid-2-ulose 2-reductase, in the epimerization of trans,octacis-decaprenylphospho-β-D-ribofuranose to trans,octacis-decaprenylphospho-β-D-arabinofuranose, the arabinosyl donor for the biosynthesis of mycobacterial cell wall arabinan polymers.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Ribeiro, A.L., Degiacomi, G., Ewann, F., Buroni, S., Incandela, M.L., Chiarelli, L.R., Mori, G., Kim, J., Contreras-Dominguez, M., Park, Y.S., Han, S.J., Brodin, P., Valentini, G., Rizzi, M., Riccardi, G. and Pasca, M.R. Analogous mechanisms of resistance to benzothiazinones and dinitrobenzamides in Mycobacterium smegmatis. PLoS One 6:e26675 (2011). [PMID: 22069462]
2.  Trefzer, C., Škovierová, H., Buroni, S., Bobovská, A., Nenci, S., Molteni, E., Pojer, F., Pasca, M.R., Makarov, V., Cole, S.T., Riccardi, G., Mikušová, K. and Johnsson, K. Benzothiazinones are suicide inhibitors of mycobacterial decaprenylphosphoryl-β-D-ribofuranose 2′-oxidase DprE1. J. Am. Chem. Soc. 134 (2012) 912–915. [PMID: 22188377]
[EC 1.1.98.3 created 2012, modified 2014]
 
 
EC 1.1.99.38
Accepted name: 2-deoxy-scyllo-inosamine dehydrogenase (AdoMet-dependent)
Reaction: 2-deoxy-scyllo-inosamine + S-adenosyl-L-methionine = 3-amino-2,3-dideoxy-scyllo-inosose + 5′-deoxyadenosine + L-methionine
For diagram of paromamine biosynthesis, click here
Other name(s): btrN (gene name); 2-deoxy-scyllo-inosamine dehydrogenase (SAM-dependent)
Systematic name: 2-deoxy-scyllo-inosamine:S-adenosyl-L-methionine 1-oxidoreductase
Comments: Involved in the biosynthetic pathway of the aminoglycoside antibiotics of the butirosin family. The enzyme from Bacillus circulans was shown to be a radical S-adenosyl-L-methionine (SAM) enzyme. cf. EC 1.1.1.329, 2-deoxy-scyllo-inosamine dehydrogenase.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Yokoyama, K., Numakura, M., Kudo, F., Ohmori, D. and Eguchi, T. Characterization and mechanistic study of a radical SAM dehydrogenase in the biosynthesis of butirosin. J. Am. Chem. Soc. 129 (2007) 15147–15155. [PMID: 18001019]
2.  Yokoyama, K., Ohmori, D., Kudo, F. and Eguchi, T. Mechanistic study on the reaction of a radical SAM dehydrogenase BtrN by electron paramagnetic resonance spectroscopy. Biochemistry 47 (2008) 8950–8960. [PMID: 18672902]
[EC 1.1.99.38 created 2012, modified 2013]
 
 
EC 1.2.1.40
Deleted entry: 3α,7α,12α-trihydroxycholestan-26-al 26-oxidoreductase. The activity is part of EC 1.14.13.15, cholestanetriol 26-monooxygenase
[EC 1.2.1.40 created 1976, deleted 2012]
 
 
EC 1.2.1.83
Accepted name: 3-succinoylsemialdehyde-pyridine dehydrogenase
Reaction: 4-oxo-4-(pyridin-3-yl)butanal + NADP+ + H2O = 4-oxo-4-(pyridin-3-yl)butanoate + NADPH + H+
Glossary: 4-oxo-4-(pyridin-3-yl)butanal = 3-succinoylsemialdehyde-pyridine
4-oxo-4-(3-pyridyl)-butanoate = 3-succinoyl-pyridine
Systematic name: 4-oxo-4-(pyridin-3-yl)butanal:NADP+ oxidoreductase
Comments: The enzyme has been characterized from the soil bacterium Pseudomonas sp. HZN6. It participates in the nicotine degradation pathway.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Qiu, J., Ma, Y., Wen, Y., Chen, L., Wu, L. and Liu, W. Functional identification of two novel genes from Pseudomonas sp. strain HZN6 involved in the catabolism of nicotine. Appl. Environ. Microbiol. 78 (2012) 2154–2160. [PMID: 22267672]
[EC 1.2.1.83 created 2012]
 
 
EC 1.2.1.84
Accepted name: alcohol-forming fatty acyl-CoA reductase
Reaction: a long-chain acyl-CoA + 2 NADPH + 2 H+ = a long-chain alcohol + 2 NADP+ + coenzyme A
Glossary: a long-chain acyl-CoA = an acyl-CoA thioester where the acyl chain contains 13 to 22 carbon atoms.
Other name(s): FAR (gene name); long-chain acyl-CoA:NADPH reductase
Systematic name: NADPH:long-chain acyl-CoA reductase
Comments: The enzyme has been characterized from the plant Simmondsia chinensis (jojoba). The alcohol is formed by a four-electron reduction of fatty acyl-CoA. Although the reaction proceeds through an aldehyde intermediate, a free aldehyde is not released. The recombinant enzyme was shown to accept saturated and mono-unsaturated fatty acyl-CoAs of 16 to 22 carbons.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Metz, J.G., Pollard, M.R., Anderson, L., Hayes, T.R. and Lassner, M.W. Purification of a jojoba embryo fatty acyl-coenzyme A reductase and expression of its cDNA in high erucic acid rapeseed. Plant Physiol. 122 (2000) 635–644. [PMID: 10712526]
[EC 1.2.1.84 created 2012]
 
 
EC 1.2.1.85
Accepted name: 2-hydroxymuconate-6-semialdehyde dehydrogenase
Reaction: 2-hydroxymuconate-6-semialdehyde + NAD+ + H2O = (2Z,4E)-2-hydroxyhexa-2,4-dienedioate + NADH + 2 H+
For diagram of catechol catabolism (meta ring cleavage), click here
Glossary: 2-hydroxymuconate-6-semialdehyde = (2Z,4E)-2-hydroxy-6-oxohexa-2,4-dienoate
Other name(s): xylG (gene name); praB (gene name)
Systematic name: 2-hydroxymuconate-6-semialdehyde:NAD+ oxidoreductase
Comments: This substrate for this enzyme is formed by meta ring cleavage of catechol (EC 1.13.11.2, catechol 2,3-dioxygenase), and is an intermediate in the bacterial degradation of several aromatic compounds. Has lower activity with benzaldehyde [1]. Activity with NAD+ is more than 10-fold higher than with NADP+ [3]. cf. EC 1.2.1.32, aminomuconate-semialdehyde dehydrogenase.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Inoue, J., Shaw, J.P., Rekik, M. and Harayama, S. Overlapping substrate specificities of benzaldehyde dehydrogenase (the xylC gene product) and 2-hydroxymuconic semialdehyde dehydrogenase (the xylG gene product) encoded by TOL plasmid pWW0 of Pseudomonas putida. J. Bacteriol. 177 (1995) 1196–1201. [PMID: 7868591]
2.  Orii, C., Takenaka, S., Murakami, S. and Aoki, K. Metabolism of 4-amino-3-hydroxybenzoic acid by Bordetella sp. strain 10d: A different modified meta-cleavage pathway for 2-aminophenols. Biosci. Biotechnol. Biochem. 70 (2006) 2653–2661. [PMID: 17090920]
3.  Kasai, D., Fujinami, T., Abe, T., Mase, K., Katayama, Y., Fukuda, M. and Masai, E. Uncovering the protocatechuate 2,3-cleavage pathway genes. J. Bacteriol. 191 (2009) 6758–6768. [PMID: 19717587]
[EC 1.2.1.85 created 2012]
 
 
EC 1.2.1.86
Accepted name: geranial dehydrogenase
Reaction: geranial + H2O + NAD+ = geranate + NADH + H+
For diagram of acyclic monoterpenoid biosynthesis, click here
Other name(s): GaDH; geoB (gene name)
Systematic name: geranial:NAD+ oxidoreductase
Comments: Does not act on neral.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, UM-BBD
References:
1.  Wolken, W.A. and van der Werf, M.J. Geraniol biotransformation-pathway in spores of Penicillium digitatum. Appl. Microbiol. Biotechnol. 57 (2001) 731–737. [PMID: 11778886]
2.  Lüddeke, F., Wülfing, A., Timke, M., Germer, F., Weber, J., Dikfidan, A., Rahnfeld, T., Linder, D., Meyerdierks, A. and Harder, J. Geraniol and geranial dehydrogenases induced in anaerobic monoterpene degradation by Castellaniella defragrans. Appl. Environ. Microbiol. 78 (2012) 2128–2136. [PMID: 22286981]
[EC 1.2.1.86 created 2012]
 
 
*EC 1.2.3.1
Accepted name: aldehyde oxidase
Reaction: an aldehyde + H2O + O2 = a carboxylate + H2O2
Other name(s): quinoline oxidase; retinal oxidase
Systematic name: aldehyde:oxygen oxidoreductase
Comments: Contains molybdenum, [2Fe-2S] centres and FAD. The enzyme from liver exhibits a broad substrate specificity, and is involved in the metabolism of xenobiotics, including the oxidation of N-heterocycles and aldehydes and the reduction of N-oxides, nitrosamines, hydroxamic acids, azo dyes, nitropolycyclic aromatic hydrocarbons, and sulfoxides [4,6]. The enzyme is also responsible for the oxidation of retinal, an activity that was initially attributed to a distinct enzyme (EC 1.2.3.11, retinal oxidase) [5,7].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, PDB, UM-BBD, CAS registry number: 9029-07-6
References:
1.  Gordon, A.H., Green, D.E. and Subrahmanyan, V. Liver aldehyde oxidase. Biochem. J. 34 (1940) 764–774. [PMID: 16747217]
2.  Knox, W.E. The quinine-oxidizing enzyme and liver aldehyde oxidase. J. Biol. Chem. 163 (1946) 699–711. [PMID: 20985642]
3.  Mahler, H.R., Mackler, B., Green, D.E. and Bock, R.M. Studies on metalloflavoproteins. III. Aldehyde oxidase: a molybdoflavoprotein. J. Biol. Chem. 210 (1954) 465–480. [PMID: 13201608]
4.  Krenitsky, T.A., Neil, S.M., Elion, G.B. and Hitchings, G.H. A comparison of the specificities of xanthine oxidase and aldehyde oxidase. Arch. Biochem. Biophys. 150 (1972) 585–599. [PMID: 5044040]
5.  Tomita, S., Tsujita, M. and Ichikawa, Y. Retinal oxidase is identical to aldehyde oxidase. FEBS Lett. 336 (1993) 272–274. [PMID: 8262244]
6.  Yoshihara, S. and Tatsumi, K. Purification and characterization of hepatic aldehyde oxidase in male and female mice. Arch. Biochem. Biophys. 338 (1997) 29–34. [PMID: 9015384]
7.  Huang, D.-Y., Furukawa, A. and Ichikawa, Y. Molecular cloning of retinal oxidase/aldehyde oxidase cDNAs from rabbit and mouse livers and functional expression of recombinant mouse retinal oxidase cDNA in Escherichia coli. Arch. Biochem. Biophys. 364 (1999) 264–272. [PMID: 10190983]
8.  Uchida, H., Kondo, D., Yamashita, A., Nagaosa, Y., Sakurai, T., Fujii, Y., Fujishiro, K., Aisaka, K. and Uwajima, T. Purification and characterization of an aldehyde oxidase from Pseudomonas sp. KY 4690. FEMS Microbiol. Lett. 229 (2003) 31–36. [PMID: 14659539]
[EC 1.2.3.1 created 1961, modified 2002, modified 2004, modified 2012]
 
 
EC 1.2.3.11
Deleted entry: retinal oxidase. Now included with EC 1.2.3.1, aldehyde oxidase
[EC 1.2.3.11 created 1990, modified 2002, deleted 2011]
 
 
EC 1.3.1.4
Transferred entry: EC 1.3.1.4, cortisone α-reductase, transferred to EC 1.3.1.22, 3-oxo-5α-steroid 4-dehydrogenase (NADP+)
[EC 1.3.1.4 created 1965, deleted 2012]
 
 
*EC 1.3.1.22
Accepted name: 3-oxo-5α-steroid 4-dehydrogenase (NADP+)
Reaction: a 3-oxo-5α-steroid + NADP+ = a 3-oxo-Δ4-steroid + NADPH + H+
Other name(s): cholestenone 5α-reductase; testosterone Δ4-5α-reductase; steroid 5α-reductase; 3-oxosteroid Δ4-dehydrogenase; 5α-reductase; steroid 5α-hydrogenase; 3-oxosteroid 5α-reductase; testosterone Δ4-hydrogenase; 4-ene-3-oxosteroid 5α-reductase; reduced nicotinamide adenine dinucleotide phosphate:Δ4-3-ketosteroid 5α-oxidoreductase; 4-ene-5α-reductase; Δ4-3-ketosteroid 5α-oxidoreductase; cholest-4-en-3-one 5α-reductase; testosterone 5α-reductase; 3-oxo-5α-steroid 4-dehydrogenase
Systematic name: 3-oxo-5α-steroid:NADP+ Δ4-oxidoreductase
Comments: The enzyme catalyses the conversion of assorted 3-oxo-Δ4 steroids into their corresponding 5α form. Substrates for the mammalian enzyme include testosterone, progesterone, and corticosterone. Substrates for the plant enzyme are brassinosteroids such as campest-4-en-3-one and (22α)-hydroxy-campest-4-en-3-one. cf. EC 1.3.99.5, 3-oxo-5α-steroid 4-dehydrogenase (acceptor).
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, CAS registry number: 37255-34-8
References:
1.  Levy, H.R. and Talalay, P. Bacterial oxidation of steroids. II. Studies on the enzymatic mechanisms of ring A dehydrogenation. J. Biol. Chem. 234 (1959) 2014–2021. [PMID: 13673006]
2.  Shefer, S., Hauser, S. and Mosbach, E.H. Studies on the biosynthesis of 5α-cholestan-3β-ol. I. Cholestenone 5α-reductase of rat liver. J. Biol. Chem. 241 (1966) 946–952. [PMID: 5907469]
3.  Cheng, Y.-J. and Karavolas, H.J. Properties and subcellular distribution of Δ4-steroid (progesterone) 5α-reductase in rat anterior pituitary. Steroids 26 (1975) 57–71. [PMID: 1166484]
4.  Sargent, N.S. and Habib, F.K. Partial purification of human prostatic 5α-reductase (3-oxo-5α-steroid:NADP+ 4-ene-oxido-reductase; EC 1.3.1.22) in a stable and active form. J. Steroid Biochem. Mol. Biol. 38 (1991) 73–77. [PMID: 1705142]
5.  Quemener, E., Amet, Y., di Stefano, S., Fournier, G., Floch, H.H. and Abalain, J.H. Purification of testosterone 5α-reductase from human prostate by a four-step chromatographic procedure. Steroids 59 (1994) 712–718. [PMID: 7900170]
6.  Poletti, A., Celotti, F., Rumio, C., Rabuffetti, M. and Martini, L. Identification of type 1 5α-reductase in myelin membranes of male and female rat brain. Mol. Cell. Endocrinol. 129 (1997) 181–190. [PMID: 9202401]
7.  Li, J., Biswas, M.G., Chao, A., Russell, D.W. and Chory, J. Conservation of function between mammalian and plant steroid 5α-reductases. Proc. Natl. Acad. Sci. USA 94 (1997) 3554–3559. [PMID: 9108014]
8.  Rosati, F., Bardazzi, I., De Blasi, P., Simi, L., Scarpi, D., Guarna, A., Serio, M., Racchi, M.L. and Danza, G. 5α-Reductase activity in Lycopersicon esculentum: cloning and functional characterization of LeDET2 and evidence of the presence of two isoenzymes. J. Steroid Biochem. Mol. Biol. 96 (2005) 287–299. [PMID: 15993049]
[EC 1.3.1.22 created 1972, modified 2012]
 
 
EC 1.3.1.30
Transferred entry: EC 1.3.1.30, progesterone 5α-reductase, transferred to EC 1.3.1.22, 3-oxo-5α-steroid 4-dehydrogenase (NADP+).
[EC 1.3.1.30 created 1978, deleted 2012]
 
 
EC 1.3.1.93
Accepted name: very-long-chain enoyl-CoA reductase
Reaction: a very-long-chain acyl-CoA + NADP+ = a very-long-chain trans-2,3-dehydroacyl-CoA + NADPH + H+
Glossary: a very-long-chain acyl-CoA = an acyl-CoA thioester where the acyl chain contains 23 or more carbon atoms.
Other name(s): TSC13 (gene name); CER10 (gene name)
Systematic name: very-long-chain acyl-CoA:NADP+ oxidoreductase
Comments: This is the fourth component of the elongase, a microsomal protein complex responsible for extending palmitoyl-CoA and stearoyl-CoA (and modified forms thereof) to very-long-chain acyl CoAs. cf. EC 2.3.1.199, very-long-chain 3-oxoacyl-CoA synthase, EC 1.1.1.330, very-long-chain 3-oxoacyl-CoA reductase, and EC 4.2.1.134, very-long-chain (3R)-3-hydroxyacyl-[acyl-carrier protein] dehydratase.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Kohlwein, S.D., Eder, S., Oh, C.S., Martin, C.E., Gable, K., Bacikova, D. and Dunn, T. Tsc13p is required for fatty acid elongation and localizes to a novel structure at the nuclear-vacuolar interface in Saccharomyces cerevisiae. Mol. Cell Biol. 21 (2001) 109–125. [PMID: 11113186]
2.  Gable, K., Garton, S., Napier, J.A. and Dunn, T.M. Functional characterization of the Arabidopsis thaliana orthologue of Tsc13p, the enoyl reductase of the yeast microsomal fatty acid elongating system. J. Exp. Bot. 55 (2004) 543–545. [PMID: 14673020]
3.  Kvam, E., Gable, K., Dunn, T.M. and Goldfarb, D.S. Targeting of Tsc13p to nucleus-vacuole junctions: a role for very-long-chain fatty acids in the biogenesis of microautophagic vesicles. Mol. Biol. Cell 16 (2005) 3987–3998. [PMID: 15958487]
4.  Zheng, H., Rowland, O. and Kunst, L. Disruptions of the Arabidopsis Enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell 17 (2005) 1467–1481. [PMID: 15829606]
[EC 1.3.1.93 created 2012]
 
 
EC 1.3.1.94
Accepted name: polyprenol reductase
Reaction: ditrans,polycis-dolichol + NADP+ = ditrans,polycis-polyprenol + NADPH + H+
Other name(s): SRD5A3 (gene name); DFG10 (gene name)
Systematic name: ditrans,polycis-dolichol:NADP+ 2,3-oxidoreductase
Comments: The reaction occurs in the reverse direction with reduction of the terminal double bond next to the alcohol group. Isolated from human fetal brain tissue but present in all eukaryotes. In mammalian cells dolichols are predominantly 18-21 isoprene units in length.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Sagami, H., Kurisaki, A. and Ogura, K. Formation of dolichol from dehydrodolichol is catalyzed by NADPH-dependent reductase localized in microsomes of rat liver. J. Biol. Chem. 268 (1993) 10109–10113. [PMID: 8486680]
2.  Cantagrel, V., Lefeber, D.J., Ng, B.G., Guan, Z., Silhavy, J.L., Bielas, S.L., Lehle, L., Hombauer, H., Adamowicz, M., Swiezewska, E., De Brouwer, A.P., Blumel, P., Sykut-Cegielska, J., Houliston, S., Swistun, D., Ali, B.R., Dobyns, W.B., Babovic-Vuksanovic, D., van Bokhoven, H., Wevers, R.A., Raetz, C.R., Freeze, H.H., Morava, E., Al-Gazali, L. and Gleeson, J.G. SRD5A3 is required for converting polyprenol to dolichol and is mutated in a congenital glycosylation disorder. Cell 142 (2010) 203–217. [PMID: 20637498]
[EC 1.3.1.94 created 2012]
 
 
EC 1.3.1.95
Accepted name: acrylyl-CoA reductase (NADH)
Reaction: propanoyl-CoA + NAD+ = acryloyl-CoA + NADH + H+
For diagram of 3-(dimethylsulfonio)propanoate metabolism, click here
Glossary: propanoyl-CoA = propionyl-CoA
Systematic name: propanoyl-CoA:NAD+ oxidoreductase
Comments: Contains FAD. The reaction is catalysed in the opposite direction to that shown. The enzyme from the bacterium Clostridium propionicum is a complex that includes an electron-transfer flavoprotein (ETF). The ETF is reduced by NADH and transfers the electrons to the active site. Catalyses a step in a pathway for L-alanine fermentation to propanoate [1]. cf. EC 1.3.1.84, acrylyl-CoA reductase (NADPH).
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Hetzel, M., Brock, M., Selmer, T., Pierik, A.J., Golding, B.T. and Buckel, W. Acryloyl-CoA reductase from Clostridium propionicum. An enzyme complex of propionyl-CoA dehydrogenase and electron-transferring flavoprotein. Eur. J. Biochem. 270 (2003) 902–910. [PMID: 12603323]
2.  Kandasamy, V., Vaidyanathan, H., Djurdjevic, I., Jayamani, E., Ramachandran, K.B., Buckel, W., Jayaraman, G. and Ramalingam, S. Engineering Escherichia coli with acrylate pathway genes for propionic acid synthesis and its impact on mixed-acid fermentation. Appl. Microbiol. Biotechnol. 97 (2013) 1191–1200. [PMID: 22810300]
[EC 1.3.1.95 created 2012]
 
 
EC 1.3.1.96
Accepted name: Botryococcus squalene synthase
Reaction: squalene + diphosphate + NADP+ = presqualene diphosphate + NADPH + H+
For diagram of botryococcus braunii BOT22 squalene and botrycoccene biosynthesis, click here
Other name(s): SSL-2 (gene name)
Systematic name: squalene:NADP+ oxidoreductase
Comments: Isolated from the green alga Botryococcus braunii BOT22. Acts in the reverse direction. cf. EC 2.5.1.21, squalene synthase, where squalene is formed directly from farnesyl diphosphate.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Niehaus, T.D., Okada, S., Devarenne, T.P., Watt, D.S., Sviripa, V. and Chappell, J. Identification of unique mechanisms for triterpene biosynthesis in Botryococcus braunii. Proc. Natl. Acad. Sci. USA 108 (2011) 12260–12265. [PMID: 21746901]
[EC 1.3.1.96 created 2012]
 
 
EC 1.3.1.97
Accepted name: botryococcene synthase
Reaction: C30 botryococcene + NADP+ + diphosphate = presqualene diphosphate + NADPH + H+
For diagram of botryococcus braunii BOT22 squalene and botrycoccene biosynthesis, click here
Glossary: C30 botryococcene = (10S,13R)-10-ethenyl-2,6,10,13,17,21-hexamethyldocosa-2,5,11,16,20-pentaene
Other name(s): SSL-3 (gene name)
Systematic name: C30 botryococcene:NADP+ oxidoreductase
Comments: Isolated from the green alga Botryococcus braunii BOT22. Acts in the reverse direction. Involved in the production of botryococcenes, which are triterpenoid hydrocarbons of isoprenoid origin produced in large amount by this alga.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Niehaus, T.D., Okada, S., Devarenne, T.P., Watt, D.S., Sviripa, V. and Chappell, J. Identification of unique mechanisms for triterpene biosynthesis in Botryococcus braunii. Proc. Natl. Acad. Sci. USA 108 (2011) 12260–12265. [PMID: 21746901]
[EC 1.3.1.97 created 2012]
 
 
EC 1.3.7.10
Transferred entry: pentalenolactone synthase. Now EC 1.14.19.8, pentalenolactone synthase
[EC 1.3.7.10 created 2012, deleted 2013]
 
 
*EC 1.3.99.5
Accepted name: 3-oxo-5α-steroid 4-dehydrogenase (acceptor)
Reaction: a 3-oxo-5α-steroid + acceptor = a 3-oxo-Δ4-steroid + reduced acceptor
Other name(s): steroid 5α-reductase; 3-oxosteroid Δ4-dehydrogenase; 3-oxo-5α-steroid Δ4-dehydrogenase; steroid Δ4-5α-reductase; Δ4-3-keto steroid 5α-reductase; Δ4-3-oxo steroid reductase; Δ4-3-ketosteroid5α-oxidoreductase; Δ4-3-oxosteroid-5α-reductase; 3-keto-Δ4-steroid-5α-reductase; 5α-reductase; testosterone 5α-reductase; 4-ene-3-ketosteroid-5α-oxidoreductase; Δ4-5α-dehydrogenase; 3-oxo-5α-steroid:(acceptor) Δ4-oxidoreductase; tesI (gene name)
Systematic name: 3-oxo-5α-steroid:acceptor Δ4-oxidoreductase
Comments: A flavoprotein. This bacterial enzyme, characterized from Comamonas testosteroni, is involved in androsterone degradation. cf. EC 1.3.1.22, 3-oxo-5α-steroid 4-dehydrogenase (NADP+).
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, CAS registry number: 9036-43-5
References:
1.  Levy, H.R. and Talalay, P. Bacterial oxidation of steroids. II. Studies on the enzymatic mechanisms of ring A dehydrogenation. J. Biol. Chem. 234 (1959) 2014–2021. [PMID: 13673006]
2.  Florin, C., Kohler, T., Grandguillot, M. and Plesiat, P. Comamonas testosteroni 3-ketosteroid-Δ4(5α)-dehydrogenase: gene and protein characterization. J. Bacteriol. 178 (1996) 3322–3330. [PMID: 8655514]
3.  Horinouchi, M., Hayashi, T., Yamamoto, T. and Kudo, T. A new bacterial steroid degradation gene cluster in Comamonas testosteroni TA441 which consists of aromatic-compound degradation genes for seco-steroids and 3-ketosteroid dehydrogenase genes. Appl. Environ. Microbiol. 69 (2003) 4421–4430. [PMID: 12902225]
[EC 1.3.99.5 created 1965, modified 2012]
 
 
EC 1.4.1.24
Accepted name: 3-dehydroquinate synthase II
Reaction: 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate + H2O + NAD+ = 3-dehydroquinate + NH3 + NADH + H+
For diagram of 3-dehydroquinate biosynthesis in archaea, click here
Glossary: 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate = 2-amino-2,3,7-trideoxy-D-lyxo-hept-6-ulosonate
Other name(s): DHQ synthase II; MJ1249 (gene name); aroB′ (gene name)
Systematic name: 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate:NAD+ oxidoreductase (deaminating)
Comments: The enzyme, which was isolated from the archaeon Methanocaldococcus jannaschii, plays a key role in an alternative pathway for the biosynthesis of 3-dehydroquinate (DHQ), an intermediate of the canonical pathway for the biosynthesis of aromatic amino acids. The enzyme catalyses a two-step reaction - an oxidative deamination, followed by cyclization.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  White, R.H. L-Aspartate semialdehyde and a 6-deoxy-5-ketohexose 1-phosphate are the precursors to the aromatic amino acids in Methanocaldococcus jannaschii. Biochemistry 43 (2004) 7618–7627. [PMID: 15182204]
[EC 1.4.1.24 created 2012]
 
 
*EC 1.4.3.15
Accepted name: D-glutamate(D-aspartate) oxidase
Reaction: (1) D-glutamate + H2O + O2 = 2-oxoglutarate + NH3 + H2O2
(2) D-aspartate + H2O + O2 = oxaloacetate + NH3 + H2O2
Other name(s): D-glutamic-aspartic oxidase; D-monoaminodicarboxylic acid oxidase
Systematic name: D-glutamate(D-aspartate):oxygen oxidoreductase (deaminating)
Comments: A flavoprotein (FAD). D-Glutamate and D-aspartate are oxidized at the same rate. Other D-monoaminodicarboxylates, and other D- and L-amino acids, are not oxidized. cf. EC 1.4.3.7, D-glutamate oxidase and EC 1.4.3.1, D-aspartate oxidase.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, CAS registry number: 9029-20-3
References:
1.  Mizushima, S. Purified D-glutamic-aspartic oxidase of Aspergillus ustus. J. Gen. Appl. Microbiol. 3 (1957) 233–239.
[EC 1.4.3.15 created 1983, modified 2012]
 
 
EC 1.4.3.24
Accepted name: pseudooxynicotine oxidase
Reaction: 4-(methylamino)-1-(pyridin-3-yl)butan-1-one + H2O + O2 = 4-oxo-4-(pyridin-3-yl)butanal + methylamine + H2O2
Glossary: 4-(methylamino)-1-(pyridin-3-yl)butan-1-one = pseudooxynicotine
4-oxo-4-(pyridin-3-yl)butanal = 3-succinoylsemialdehyde-pyridine
Systematic name: 4-(methylamino)-1-(pyridin-3-yl)butan-1-one:oxygen oxidoreductase (methylamine releasing)
Comments: Contains one non-covalently bound FAD molecule per dimer. This enzyme, characterized from the soil bacterium Pseudomonas sp. HZN6, is involved the nicotine degradation.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Qiu, J., Ma, Y., Wen, Y., Chen, L., Wu, L. and Liu, W. Functional identification of two novel genes from Pseudomonas sp. strain HZN6 involved in the catabolism of nicotine. Appl. Environ. Microbiol. 78 (2012) 2154–2160. [PMID: 22267672]
[EC 1.4.3.24 created 2012]
 
 
EC 1.5.1.43
Accepted name: carboxynorspermidine synthase
Reaction: (1) carboxynorspermidine + H2O + NADP+ = L-aspartate 4-semialdehyde + propane-1,3-diamine + NADPH + H+
(2) carboxyspermidine + H2O + NADP+ = L-aspartate 4-semialdehyde + putrescine + NADPH + H+
Other name(s): carboxynorspermidine dehydrogenase; carboxyspermidine dehydrogenase; CASDH; CANSDH; VC1624 (gene name)
Systematic name: carboxynorspermidine:NADP+ oxidoreductase
Comments: The reaction takes place in the opposite direction. Part of a bacterial polyamine biosynthesis pathway. L-aspartate 4-semialdehyde and propane-1,3-diamine/putrescine form a Schiff base that is reduced to form carboxynorspermidine/carboxyspermidine, respectively [1]. The enzyme from the bacterium Vibrio cholerae is essential for biofilm formation [2]. The enzyme from Campylobacter jejuni only produces carboxyspermidine in vivo even though it also can produce carboxynorspermidine in vitro [3].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Nakao, H., Shinoda, S. and Yamamoto, S. Purification and some properties of carboxynorspermidine synthase participating in a novel biosynthetic pathway for norspermidine in Vibrio alginolyticus. J. Gen. Microbiol. 137 (1991) 1737–1742. [PMID: 1955861]
2.  Lee, J., Sperandio, V., Frantz, D.E., Longgood, J., Camilli, A., Phillips, M.A. and Michael, A.J. An alternative polyamine biosynthetic pathway is widespread in bacteria and essential for biofilm formation in Vibrio cholerae. J. Biol. Chem. 284 (2009) 9899–9907. [PMID: 19196710]
3.  Hanfrey, C.C., Pearson, B.M., Hazeldine, S., Lee, J., Gaskin, D.J., Woster, P.M., Phillips, M.A. and Michael, A.J. Alternative spermidine biosynthetic route is critical for growth of Campylobacter jejuni and is the dominant polyamine pathway in human gut microbiota. J. Biol. Chem. 286 (2011) 43301–43312. [PMID: 22025614]
[EC 1.5.1.43 created 2012]
 
 
EC 1.5.1.44
Accepted name: festuclavine dehydrogenase
Reaction: festuclavine + NAD+ = 6,8-dimethyl-6,7-didehydroergoline + NADH + H+
For diagram of fumigaclavin alkaloid biosynthesis, click here
Glossary: festuclavine = 6,8β-dimethylergoline
Other name(s): FgaFS; festuclavine synthase
Systematic name: festuclavine:NAD+ oxidoreductase
Comments: The enzyme participates in the biosynthesis of fumigaclavine C, an ergot alkaloid produced by some fungi of the Trichocomaceae family. The reaction proceeds in vivo in the opposite direction to the one shown here.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Wallwey, C., Matuschek, M., Xie, X.L. and Li, S.M. Ergot alkaloid biosynthesis in Aspergillus fumigatus: Conversion of chanoclavine-I aldehyde to festuclavine by the festuclavine synthase FgaFS in the presence of the old yellow enzyme FgaOx3. Org. Biomol. Chem. 8 (2010) 3500–3508. [PMID: 20526482]
[EC 1.5.1.44 created 2012]
 
 
EC 1.5.1.45
Accepted name: FAD reductase [NAD(P)H]
Reaction: FADH2 + NAD(P)+ = FAD + NAD(P)H + H+
For diagram of FAD biosynthesis, click here
Other name(s): GTNG_3158 (gene name)
Systematic name: FADH2:NAD(P)+ oxidoreductase
Comments: This enzyme, isolated from the bacterium Geobacillus thermodenitrificans, participates in the pathway of tryptophan degradation. The enzyme is part of a system that also includes a bifunctional riboflavin kinase/FMN adenylyltransferase and EC 1.14.14.8, anthranilate 3-monooxygenase (FAD). It can reduce either FAD or flavin mononucleotide (FMN) but prefers FAD. The enzyme has a slight preference for NADPH as acceptor. cf. EC 1.5.1.37, FAD reductase (NADH).
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Liu, X., Dong, Y., Li, X., Ren, Y., Li, Y., Wang, W., Wang, L. and Feng, L. Characterization of the anthranilate degradation pathway in Geobacillus thermodenitrificans NG80-2. Microbiology 156 (2010) 589–595. [PMID: 19942660]
[EC 1.5.1.45 created 2012]
 
 
EC 1.5.3.19
Accepted name: 4-methylaminobutanoate oxidase (formaldehyde-forming)
Reaction: 4-methylaminobutanoate + O2 + H2O = 4-aminobutanoate + formaldehyde + H2O2
For diagram of nicotine catabolism by arthrobacter, click here
Other name(s): mabO (gene name)
Systematic name: 4-methylaminobutanoate:oxygen oxidoreductase (formaldehyde-forming)
Comments: A flavoprotein (FAD). In the enzyme from the soil bacterium Arthrobacter nicotinovorans the cofactor is covalently bound. Participates in the nicotine degradation pathway of this organism.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, UM-BBD
References:
1.  Chiribau, C.B., Sandu, C., Fraaije, M., Schiltz, E. and Brandsch, R. A novel γ-N-methylaminobutyrate demethylating oxidase involved in catabolism of the tobacco alkaloid nicotine by Arthrobacter nicotinovorans pAO1. Eur. J. Biochem. 271 (2004) 4677–4684. [PMID: 15606755]
[EC 1.5.3.19 created 2012]
 
 
EC 1.5.3.20
Accepted name: N-alkylglycine oxidase
Reaction: N-alkylglycine + H2O + O2 = alkylamine + glyoxalate + H2O2
Other name(s): N-carboxymethylalkylamine:oxygen oxidoreductase (decarboxymethylating)
Systematic name: N-alkylglycine:oxygen oxidoreductase (alkylamine forming)
Comments: Isolated from the mold Cladosporium sp. G-10. Acts on N6-(carboxymethyl)lysine, 6-[(carboxymethy)amino]hexanoic acid, sarcosine and N-ethylglycine. It has negligible action on glycine (cf. EC 1.4.3.19 glycine oxidase).
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Gomi, K. and Horiuchi, T. Purification and characterization of a new enzyme, N-alkylglycine oxidase from Cladosporium sp. G-10. Biochim. Biophys. Acta 1429 (1999) 439–445. [PMID: 9989229]
[EC 1.5.3.20 created 2012]
 
 
EC 1.5.3.21
Accepted name: 4-methylaminobutanoate oxidase (methylamine-forming)
Reaction: 4-methylaminobutanoate + O2 + H2O = succinate semialdehyde + methylamine + H2O2
For diagram of nicotine catabolism by arthrobacter, click here
Other name(s): mao (gene name, ambiguous)
Systematic name: 4-methylaminobutanoate methylamidohydrolase
Comments: The enzyme participates in the nicotine degradation pathway of the soil bacterium Arthrobacter nicotinovorans. Has a very weak monoamine oxidase (EC 1.4.3.4) activity with 4-aminobutanoate [1].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, UM-BBD
References:
1.  Chiribau, C.B., Sandu, C., Fraaije, M., Schiltz, E. and Brandsch, R. A novel γ-N-methylaminobutyrate demethylating oxidase involved in catabolism of the tobacco alkaloid nicotine by Arthrobacter nicotinovorans pAO1. Eur. J. Biochem. 271 (2004) 4677–4684. [PMID: 15606755]
2.  Chiribau, C.B., Mihasan, M., Ganas, P., Igloi, G.L., Artenie, V. and Brandsch, R. Final steps in the catabolism of nicotine. FEBS J. 273 (2006) 1528–1536. [PMID: 16689938]
[EC 1.5.3.21 created 2012]
 
 
EC 1.5.99.14
Accepted name: 6-hydroxypseudooxynicotine dehydrogenase
Reaction: 1-(6-hydroxypyridin-3-yl)-4-(methylamino)butan-1-one + acceptor + H2O = 1-(2,6-dihydroxypyridin-3-yl)-4-(methylamino)butan-1-one + reduced acceptor
For diagram of nicotine catabolism by arthrobacter, click here
Glossary: 1-(6-hydroxypyridin-3-yl)-4-(methylamino)butan-1-one = 6-hydroxypseudooxynicotine
1-(2,6-dihydroxypyridin-3-yl)-4-(methylamino)butan-1-one = 2,6-dihydroxypseudooxynicotine
Systematic name: 1-(6-hydroxypyridin-3-yl)-4-(methylamino)butan-1-one:acceptor 6-oxidoreductase (hydroxylating)
Comments: Contains a cytidylyl molybdenum cofactor [3]. The enzyme, which participates in the nicotine degradation pathway, has been characterized from the soil bacterium Arthrobacter nicotinovorans [1,2].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, UM-BBD
References:
1.  Freudenberg, W., Konig, K. and Andreesen, J. R. Nicotine dehydrogenase from Arthrobacter oxidans: A molybdenum-containing hydroxylase. FEMS Microbiology Letters 52 (1988) 13–18.
2.  Grether-Beck, S., Igloi, G.L., Pust, S., Schilz, E., Decker, K. and Brandsch, R. Structural analysis and molybdenum-dependent expression of the pAO1-encoded nicotine dehydrogenase genes of Arthrobacter nicotinovorans. Mol. Microbiol. 13 (1994) 929–936. [PMID: 7815950]
3.  Sachelaru, P., Schiltz, E. and Brandsch, R. A functional mobA gene for molybdopterin cytosine dinucleotide cofactor biosynthesis is required for activity and holoenzyme assembly of the heterotrimeric nicotine dehydrogenases of Arthrobacter nicotinovorans. Appl. Environ. Microbiol. 72 (2006) 5126–5131. [PMID: 16820521]
[EC 1.5.99.14 created 2012]
 
 
EC 1.7.2.6
Accepted name: hydroxylamine dehydrogenase
Reaction: (1) hydroxylamine + H2O + 4 ferricytochrome c = nitrite + 4 ferrocytochrome c + 5 H+
(2) hydroxylamine + 3 ferricytochrome c = nitric oxide + 3 ferrocytochrome c + 3 H+
Other name(s): HAO (ambiguous); hydroxylamine oxidoreductase (ambiguous); hydroxylamine oxidase (misleading)
Systematic name: hydroxylamine:ferricytochrome-c oxidoreductase
Comments: The enzymes from the nitrifying bacterium Nitrosomonas europaea [1,4] and the methylotrophic bacterium Methylococcus capsulatus [5] are hemoproteins with seven c-type hemes and one specialized P-460-type heme per subunit. The enzyme converts hydroxylamine to nitrite via an enzyme-bound nitroxyl intermediate [3]. While nitrite is the main product, the enzyme from Nitrosomonas europaea can produce nitric oxide as well [2].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, PDB, CAS registry number: 9075-43-8
References:
1.  Rees, M. Studies of the hydroxylamine metabolism of Nitrosomonas europaea. I. Purification of hydroxylamine oxidase. Biochemistry 7 (1968) 353–366. [PMID: 5758552]
2.  Hooper, A.B. and Terry, K.R. Hydroxylamine oxidoreductase of Nitrosomonas. Production of nitric oxide from hydroxylamine. Biochim. Biophys. Acta 571 (1979) 12–20. [PMID: 497235]
3.  Hooper, A.B. and Balny, C. Reaction of oxygen with hydroxylamine oxidoreductase of Nitrosomonas: fast kinetics. FEBS Lett. 144 (1982) 299–303. [PMID: 7117545]
4.  Lipscomb, J.D. and Hooper, A.B. Resolution of multiple heme centers of hydroxylamine oxidoreductase from Nitrosomonas. 1. Electron paramagnetic resonance spectroscopy. Biochemistry 21 (1982) 3965–3972. [PMID: 6289867]
5.  Poret-Peterson, A.T., Graham, J.E., Gulledge, J. and Klotz, M.G. Transcription of nitrification genes by the methane-oxidizing bacterium, Methylococcus capsulatus strain Bath. ISME J. 2 (2008) 1213–1220. [PMID: 18650926]
[EC 1.7.2.6 created 1972 as EC 1.7.3.4, part transferred 2012 to EC 1.7.2.6]
 
 
*EC 1.11.1.8
Accepted name: iodide peroxidase
Reaction: (1) 2 iodide + H2O2 + 2 H+ = diiodine + 2 H2O
(2) [thyroglobulin]-L-tyrosine + iodide + H2O2 = [thyroglobulin]-3-iodo-L-tyrosine + 2 H2O
(3) [thyroglobulin]-3-iodo-L-tyrosine + iodide + H2O2 = [thyroglobulin]-3,5-diiodo-L-tyrosine + 2 H2O
(4) 2 [thyroglobulin]-3,5-diiodo-L-tyrosine + H2O2 = [thyroglobulin]-L-thyroxine + [thyroglobulin]-aminoacrylate + 2 H2O
(5) [thyroglobulin]-3-iodo-L-tyrosine + [thyroglobulin]-3,5-diiodo-L-tyrosine + H2O2 = [thyroglobulin]-3,5,3′-triiodo-L-thyronine + [thyroglobulin]-aminoacrylate + 2 H2O
Glossary: 3,5,3′-triiodo-L-thyronine = triiodo-L-thyronine
Other name(s): thyroid peroxidase; iodotyrosine deiodase; iodinase; iodoperoxidase (heme type); iodide peroxidase-tyrosine iodinase; iodotyrosine deiodinase; monoiodotyrosine deiodinase; thyroperoxidase; tyrosine iodinase; TPO
Systematic name: iodide:hydrogen-peroxide oxidoreductase
Comments: Thyroid peroxidase catalyses the biosynthesis of the thyroid hormones L-thyroxine and triiodo-L-thyronine. It catalyses both the iodination of tyrosine residues in thyroglobulin (forming mono- and di-iodinated forms) and their coupling to form either L-thyroxine or triiodo-L-thyronine.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, CAS registry number: 9031-28-1
References:
1.  Cunningham, B.A. and Kirkwood, S. Enzyme systems concerned with the synthesis of monoiodotyrosine. III. Ion requirements of the soluble system. J. Biol. Chem. 236 (1961) 485–489. [PMID: 13718859]
2.  Hosoya, T., Kondo, Y. and Ui, N. Peroxidase activity in thyroid gland and partial purification of the enzyme. J. Biochem. (Tokyo) 52 (1962) 180–189. [PMID: 13964156]
3.  Coval, M.L. and Taurog, A. Purification and iodinating activity of hog thyroid peroxidase. J. Biol. Chem. 242 (1967) 5510–5523. [PMID: 12325367]
4.  Gavaret, J.M., Cahnmann, H.J. and Nunez, J. Thyroid hormone synthesis in thyroglobulin. The mechanism of the coupling reaction. J. Biol. Chem. 256 (1981) 9167–9173. [PMID: 7021557]
5.  Ohtaki, S., Nakagawa, H., Nakamura, M. and Yamazaki, I. One- and two-electron oxidations of tyrosine, monoiodotyrosine, and diiodotyrosine catalyzed by hog thyroid peroxidase. J. Biol. Chem. 257 (1982) 13398–13403. [PMID: 7142155]
6.  Magnusson, R.P., Taurog, A. and Dorris, M.L. Mechanism of iodide-dependent catalatic activity of thyroid peroxidase and lactoperoxidase. J. Biol. Chem. 259 (1984) 197–205. [PMID: 6706930]
7.  Virion, A., Courtin, F., Deme, D., Michot, J.L., Kaniewski, J. and Pommier, J. Spectral characteristics and catalytic properties of thyroid peroxidase-H2O2 compounds in the iodination and coupling reactions. Arch. Biochem. Biophys. 242 (1985) 41–47. [PMID: 2996435]
8.  Rawitch, A.B., Pollock, G., Yang, S.X. and Taurog, A. Thyroid peroxidase glycosylation: the location and nature of the N-linked oligosaccharide units in porcine thyroid peroxidase. Arch. Biochem. Biophys. 297 (1992) 321–327. [PMID: 1497352]
9.  Sun, W. and Dunford, H.B. Kinetics and mechanism of the peroxidase-catalyzed iodination of tyrosine. Biochemistry 32 (1993) 1324–1331. [PMID: 8448141]
10.  Taurog, A., Dorris, M.L. and Doerge, D.R. Mechanism of simultaneous iodination and coupling catalyzed by thyroid peroxidase. Arch. Biochem. Biophys. 330 (1996) 24–32. [PMID: 8651700]
11.  Ruf, J. and Carayon, P. Structural and functional aspects of thyroid peroxidase. Arch. Biochem. Biophys. 445 (2006) 269–277. [PMID: 16098474]
[EC 1.11.1.8 created 1961, modified 2012]
 
 
*EC 1.13.11.12
Accepted name: linoleate 13S-lipoxygenase
Reaction: (1) linoleate + O2 = (9Z,11E,13S)-13-hydroperoxyoctadeca-9,11-dienoate
(2) α-linolenate + O2 = (9Z,11E,13S,15Z)-13-hydroperoxyoctadeca-9,11,15-trienoate
Glossary: linoleate = (9Z,12Z)-octadeca-9,12-dienoate
α-linolenate = (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
Other name(s): 13-lipoxidase; carotene oxidase; 13-lipoperoxidase; fat oxidase; 13-lipoxydase; lionoleate:O2 13-oxidoreductase
Systematic name: linoleate:oxygen 13-oxidoreductase
Comments: Contains nonheme iron. A common plant lipoxygenase that oxidizes linoleate and α-linolenate, the two most common polyunsaturated fatty acids in plants, by inserting molecular oxygen at the C-13 position with (S)-configuration. This enzyme produces precursors for several important compounds, including the plant hormone jasmonic acid. EC 1.13.11.58, linoleate 9S-lipoxygenase, catalyses a similar reaction at the second available position of these fatty acids.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, PDB, CAS registry number: 9029-60-1
References:
1.  Christopher, J., Pistorius, E. and Axelrod, B. Isolation of an enzyme of soybean lipoxidase. Biochim. Biophys. Acta 198 (1970) 12–19. [PMID: 5461103]
2.  Theorell, H., Holman, R.T. and Åkesson, Å. Crystalline lipoxidase. Acta Chem. Scand. 1 (1947) 571–576. [PMID: 18907700]
3.  Zimmerman, D.C. Specificity of flaxseed lipoxidase. Lipids 5 (1970) 392–397. [PMID: 5447012]
4.  Royo, J., Vancanneyt, G., Perez, A.G., Sanz, C., Stormann, K., Rosahl, S. and Sanchez-Serrano, J.J. Characterization of three potato lipoxygenases with distinct enzymatic activities and different organ-specific and wound-regulated expression patterns. J. Biol. Chem. 271 (1996) 21012–21019. [PMID: 8702864]
5.  Bachmann, A., Hause, B., Maucher, H., Garbe, E., Voros, K., Weichert, H., Wasternack, C. and Feussner, I. Jasmonate-induced lipid peroxidation in barley leaves initiated by distinct 13-LOX forms of chloroplasts. Biol. Chem. 383 (2002) 1645–1657. [PMID: 12452441]
[EC 1.13.11.12 created 1961 as EC 1.99.2.1, transferred 1965 to EC 1.13.1.13, transferred 1972 to EC 1.13.11.12, modified 2011, modified 2012]
 
 
*EC 1.13.11.16
Accepted name: 3-carboxyethylcatechol 2,3-dioxygenase
Reaction: (1) 3-(2,3-dihydroxyphenyl)propanoate + O2 = (2Z,4E)-2-hydroxy-6-oxonona-2,4-diene-1,9-dioate
(2) (2E)-3-(2,3-dihydroxyphenyl)prop-2-enoate + O2 = (2Z,4E,7E)-2-hydroxy-6-oxonona-2,4,7-triene-1,9-dioate
For diagram of 3-phenylpropanoate catabolism, click here and for diagram of cinnamate catabolism, click here
Glossary: (2E)-3-(2,3-dihydroxyphenyl)prop-2-enoate = trans-2,3-dihydroxycinnamate
Other name(s): 2,3-dihydroxy-β-phenylpropionic dioxygenase; 2,3-dihydroxy-β-phenylpropionate oxygenase; 3-(2,3-dihydroxyphenyl)propanoate:oxygen 1,2-oxidoreductase; 3-(2,3-dihydroxyphenyl)propanoate:oxygen 1,2-oxidoreductase (decyclizing)
Systematic name: 3-(2,3-dihydroxyphenyl)propanoate:oxygen 1,2-oxidoreductase (ring-opening)
Comments: An iron protein. This enzyme catalyses a step in the pathway of phenylpropanoid compounds degradation.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, UM-BBD, CAS registry number: 105503-63-7
References:
1.  Dagley, S., Chapman, P.J. and Gibson, D.T. The metabolism of β-phenylpropionic acid by an Achromobacter. Biochem. J. 97 (1965) 643–650. [PMID: 5881653]
2.  Lam, W. W. Y and Bugg, T. D. H. Chemistry of extradiol aromatic ring cleavage: isolation of a stable dienol ring fission intermediate and stereochemistry of its enzymatic hydrolytic clevage. J. Chem. Soc., Chem. Commun. 10 (1994) 1163–1164.
3.  Díaz, E., Ferrández, A. and García, J.L. Characterization of the hca cluster encoding the dioxygenolytic pathway for initial catabolism of 3-phenylpropionic acid in Escherichia coli K-12. J. Bacteriol. 180 (1998) 2915–2923. [PMID: 9603882]
[EC 1.13.11.16 created 1972, modified 2011, modified 2012]
 
 
*EC 1.13.11.35
Accepted name: pyrogallol 1,2-oxygenase
Reaction: 1,2,3-trihydroxybenzene + O2 = (2Z,4E)-2-hydroxyhexa-2,4-dienedioate
Glossary: (2Z,4E)-2-hydroxyhexa-2,4-dienedioate = (2Z,4E)-2-hydroxymuconate
1,2,3-trihydroxybenzene = pyrogallol
Other name(s): pyrogallol 1,2-dioxygenase; 1,2,3-trihydroxybenzene:oxygen 1,2-oxidoreductase (decyclizing)
Systematic name: 1,2,3-trihydroxybenzene:oxygen 1,2-oxidoreductase (ring-opening)
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, CAS registry number: 78310-68-6
References:
1.  Groseclose, E.E. and Ribbons, D.W. Metabolism of resorcinylic compounds by bacteria: new pathway for resorcinol catabolism in Azotobacter vinelandii. J. Bacteriol. 146 (1981) 460–466. [PMID: 7217008]
[EC 1.13.11.35 created 1984, modified 2012]
 
 
EC 1.13.11.64
Accepted name: 5-nitrosalicylate dioxygenase
Reaction: 5-nitrosalicylate + O2 = 2-oxo-3-(5-oxofuran-2-ylidene)propanoate + nitrite (overall reaction)
(1a) 5-nitrosalicylate + O2 = 4-nitro-6-oxohepta-2,4-dienedioate
(1b) 4-nitro-6-oxohepta-2,4-dienedioate = 2-oxo-3-(5-oxofuran-2-ylidene)propanoate + nitrite (spontaneous)
Other name(s): naaB (gene name); 5-nitrosalicylate:oxygen 1,2-oxidoreductase (decyclizing)
Systematic name: 5-nitrosalicylate:oxygen 1,2-oxidoreductase (ring-opening)
Comments: The enzyme, characterized from the soil bacterium Bradyrhizobium sp. JS329, is involved in the pathway of 5-nitroanthranilate degradation. It is unusual in being able to catalyse the ring fission without the requirement for prior removal of the nitro group. The product undergoes spontaneous lactonization, with concurrent elimination of the nitro group.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, UM-BBD
References:
1.  Qu, Y. and Spain, J.C. Biodegradation of 5-nitroanthranilic acid by Bradyrhizobium sp. strain JS329. Appl. Environ. Microbiol. 76 (2010) 1417–1422. [PMID: 20081004]
2.  Qu, Y. and Spain, J.C. Molecular and biochemical characterization of the 5-nitroanthranilic acid degradation pathway in Bradyrhizobium sp. strain JS329. J. Bacteriol. 193 (2011) 3057–3063. [PMID: 21498645]
[EC 1.13.11.64 created 2012]
 
 
EC 1.13.11.65
Accepted name: carotenoid isomerooxygenase
Reaction: zeaxanthin + O2 = (3R)-11-cis-3-hydroxyretinal + (3R)-all-trans-3-hydroxyretinal
For diagram of zeaxanthin biosynthesis, click here
Other name(s): ninaB (gene name)
Systematic name: zeaxanthin:oxygen 15,15′-oxidoreductase (bond-cleaving, cis-isomerizing)
Comments: The enzyme, characterized from the moth Galleria mellonella and the fruit fly Drosophila melanogaster, is involved in the synthesis of retinal from dietary caroteoids in insects. The enzyme accepts different all-trans carotenoids, including β-carotene, α-carotene and lutein, and catalyses the symmetrical cleavage of the carotenoid and the simultaneous isomerization of only one of the products to a cis configuration. When the substrate is hydroxylated only in one side (as in cryptoxanthin), the enzyme preferentially isomerizes the hydroxylated part of the molecule.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Oberhauser, V., Voolstra, O., Bangert, A., von Lintig, J. and Vogt, K. NinaB combines carotenoid oxygenase and retinoid isomerase activity in a single polypeptide. Proc. Natl. Acad. Sci. USA 105 (2008) 19000–19005. [PMID: 19020100]
[EC 1.13.11.65 created 2012 as EC 1.14.13.164, transferred 2012 to EC 1.13.11.65]
 
 
EC 1.13.11.66
Accepted name: hydroquinone 1,2-dioxygenase
Reaction: benzene-1,4-diol + O2 = (2Z,4E)-4-hydroxy-6-oxohexa-2,4-dienoate
For diagram of 4-nitrophenol metabolism, click here
Glossary: benzene-1,4-diol = hydroquinone
(2Z,4E)-4-hydroxy-6-oxohexa-2,4-dienoate = 4-hydroxymuconic semialdehyde
Other name(s): hydroquinone dioxygenase; benzene-1,4-diol:oxygen 1,2-oxidoreductase (decyclizing)
Systematic name: benzene-1,4-diol:oxygen 1,2-oxidoreductase (ring-opening)
Comments: The enzyme is an extradiol-type dioxygenase, and is a member of the nonheme-iron(II)-dependent dioxygenase family. It catalyses the ring cleavage of a wide range of hydroquinone substrates to produce the corresponding 4-hydroxymuconic semialdehydes.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Miyauchi, K., Adachi, Y., Nagata, Y. and Takagi, M. Cloning and sequencing of a novel meta-cleavage dioxygenase gene whose product is involved in degradation of γ-hexachlorocyclohexane in Sphingomonas paucimobilis. J. Bacteriol. 181 (1999) 6712–6719. [PMID: 10542173]
2.  Moonen, M.J., Synowsky, S.A., van den Berg, W.A., Westphal, A.H., Heck, A.J., van den Heuvel, R.H., Fraaije, M.W. and van Berkel, W.J. Hydroquinone dioxygenase from pseudomonas fluorescens ACB: a novel member of the family of nonheme-iron(II)-dependent dioxygenases. J. Bacteriol. 190 (2008) 5199–5209. [PMID: 18502867]
3.  Shen, W., Liu, W., Zhang, J., Tao, J., Deng, H., Cao, H. and Cui, Z. Cloning and characterization of a gene cluster involved in the catabolism of p-nitrophenol from Pseudomonas putida DLL-E4. Bioresour. Technol. 101 (2010) 7516–7522. [PMID: 20466541]
[EC 1.13.11.66 created 2012]
 
 
EC 1.13.11.67
Accepted name: 8′-apo-β-carotenoid 14′,13′-cleaving dioxygenase
Reaction: 8′-apo-β-carotenol + O2 = 14′-apo-β-carotenal + an uncharacterized product
For diagram of 8′-apo-β-carotenal metabolites, click here
Other name(s): 8′-apo-β-carotenol:O2 oxidoreductase (14′,13′-cleaving)
Systematic name: 8′-apo-β-carotenol:oxygen oxidoreductase (14′,13′-cleaving)
Comments: A thiol-dependent enzyme isolated from rat and rabbit. Unlike EC 1.13.11.63, β-carotene-15,15′-dioxygenase, it is not active towards β-carotene. The secondary product has not been characterized, but may be (3E,5E)-7-hydroxy-6-methylhepta-3,5-dien-2-one.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, CAS registry number: 198028-39-6
References:
1.  Dmitrovskii, A.A., Gessler, N.N., Gomboeva, S.B., Ershov, Yu.V. and Bykhovsky, V.Ya. Enzymatic oxidation of β-apo-8′-carotenol to β-apo-14′-carotenal by an enzyme different from β-carotene-15,15′-dioxygenase. Biochemistry (Mosc) 62 (1997) 787–792. [PMID: 9331970]
[EC 1.13.11.67 created 2000 as EC 1.13.12.12, transferred 2012 to EC 1.13.11.67]
 
 
EC 1.13.11.68
Accepted name: 9-cis-β-carotene 9′,10′-cleaving dioxygenase
Reaction: 9-cis-β-carotene + O2 = 9-cis-10′-apo-β-carotenal + β-ionone
For diagram of strigol biosynthesis, click here
Glossary: β-ionone = (3E)-4-(2,6,6-trimethylcyclohex-1-en-1-yl)but-3-en-2-one
Other name(s): CCD7 (gene name); MAX3 (gene name); NCED7 (gene name)
Systematic name: 9-cis-β-carotene:oxygen oxidoreductase (9′,10′-cleaving)
Comments: Requires Fe2+. The enzyme participates in a pathway leading to biosynthesis of strigolactones, plant hormones involved in promotion of symbiotic associations known as arbuscular mycorrhiza.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Booker, J., Auldridge, M., Wills, S., McCarty, D., Klee, H. and Leyser, O. MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr. Biol. 14 (2004) 1232–1238. [PMID: 15268852]
2.  Alder, A., Jamil, M., Marzorati, M., Bruno, M., Vermathen, M., Bigler, P., Ghisla, S., Bouwmeester, H., Beyer, P. and Al-Babili, S. The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 335 (2012) 1348–1351. [PMID: 22422982]
[EC 1.13.11.68 created 2012]
 
 
EC 1.13.11.69
Accepted name: carlactone synthase
Reaction: 9-cis-10′-apo-β-carotenal + 2 O2 = carlactone + (2E,4E,6E)-7-hydroxy-4-methylhepta-2,4,6-trienal
For diagram of strigol biosynthesis, click here
Glossary: carlactone = 3-methyl-5-{[(1Z,3E)-2-methyl-4-(2,6,6-trimethylcyclohex-1-en-1-yl)buta-1,3-dien-1-yl]oxy}-5H-furan-2-one
Other name(s): CCD8 (gene name); MAX4 (gene name); NCED8 (gene name)
Systematic name: 9-cis-10′-apo-β-carotenal:oxygen oxidoreductase (14,15-cleaving, carlactone-forming)
Comments: Requires Fe2+. The enzyme participates in a pathway leading to biosynthesis of strigolactones, plant hormones involved in promotion of symbiotic associations known as arbuscular mycorrhiza. Also catalyses EC 1.13.11.70, all-trans-10′-apo-β-carotenal 13,14-cleaving dioxygenase, but 10-fold slower.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Sorefan, K., Booker, J., Haurogne, K., Goussot, M., Bainbridge, K., Foo, E., Chatfield, S., Ward, S., Beveridge, C., Rameau, C. and Leyser, O. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev. 17 (2003) 1469–1474. [PMID: 12815068]
2.  Schwartz, S.H., Qin, X. and Loewen, M.C. The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. J. Biol. Chem. 279 (2004) 46940–46945. [PMID: 15342640]
3.  Alder, A., Jamil, M., Marzorati, M., Bruno, M., Vermathen, M., Bigler, P., Ghisla, S., Bouwmeester, H., Beyer, P. and Al-Babili, S. The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 335 (2012) 1348–1351. [PMID: 22422982]
[EC 1.13.11.69 created 2012]
 
 
EC 1.13.11.70
Accepted name: all-trans-10′-apo-β-carotenal 13,14-cleaving dioxygenase
Reaction: all-trans-10′-apo-β-carotenal + O2 = 13-apo-β-carotenone + (2E,4E,6E)-4-methylocta-2,4,6-trienedial
For diagram of 10′-apo-β-carotenal biosynthesis, click here
Other name(s): CCD8 (gene name); MAX4 (gene name); NCED8 (gene name); all-trans-10′-apo-β-carotenal:O2 oxidoreductase (13,14-cleaving)
Systematic name: all-trans-10′-apo-β-carotenal:oxygen oxidoreductase (13,14-cleaving)
Comments: Requires Fe2+. The enzyme from the plant Arabidopsis thaliana also catalyses EC 1.13.11.69, carlactone synthase, 10-fold faster.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Schwartz, S.H., Qin, X. and Loewen, M.C. The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. J. Biol. Chem. 279 (2004) 46940–46945. [PMID: 15342640]
[EC 1.13.11.70 created 2012]
 
 
EC 1.13.11.71
Accepted name: carotenoid-9′,10′-cleaving dioxygenase
Reaction: all-trans-β-carotene + O2 = all-trans-10′-apo-β-carotenal + β-ionone
For diagram of 10′-apo-β-carotenal biosynthesis, click here
Other name(s): BCO2 (gene name); β-carotene 9′,10′-monooxygenase (misleading); all-trans-β-carotene:O2 oxidoreductase (9′,10′-cleaving)
Systematic name: all-trans-β-carotene:oxygen oxidoreductase (9′,10′-cleaving)
Comments: Requires Fe2+. The enzyme catalyses the asymmetric oxidative cleavage of carotenoids. The mammalian enzyme can also cleave all-trans-lycopene.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Kiefer, C., Hessel, S., Lampert, J.M., Vogt, K., Lederer, M.O., Breithaupt, D.E. and von Lintig, J. Identification and characterization of a mammalian enzyme catalyzing the asymmetric oxidative cleavage of provitamin A. J. Biol. Chem. 276 (2001) 14110–14116. [PMID: 11278918]
2.  Lindqvist, A., He, Y.G. and Andersson, S. Cell type-specific expression of β-carotene 9′,10′-monooxygenase in human tissues. J. Histochem. Cytochem. 53 (2005) 1403–1412. [PMID: 15983114]
[EC 1.13.11.71 created 2012]
 
 
EC 1.13.11.72
Accepted name: 2-hydroxyethylphosphonate dioxygenase
Reaction: 2-hydroxyethylphosphonate + O2 = hydroxymethylphosphonate + formate
For diagram of phosphonate metabolism, click here
Other name(s): HEPD; phpD (gene name); 2-hydroxyethylphosphonate:O2 1,2-oxidoreductase (hydroxymethylphosphonate forming)
Systematic name: 2-hydroxyethylphosphonate:oxygen 1,2-oxidoreductase (hydroxymethylphosphonate forming)
Comments: Requires non-heme-Fe(II). Isolated from some bacteria including Streptomyces hygroscopicus and Streptomyces viridochromogenes. The pro-R hydrogen at C-2 of the ethyl group is retained by the formate ion. Any stereochemistry at C-1 of the ethyl group is lost. One atom from dioxygen is present in each product. Involved in phosphinothricin biosynthesis.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Cicchillo, R.M., Zhang, H., Blodgett, J.A., Whitteck, J.T., Li, G., Nair, S.K., van der Donk, W.A. and Metcalf, W.W. An unusual carbon-carbon bond cleavage reaction during phosphinothricin biosynthesis. Nature 459 (2009) 871–874. [PMID: 19516340]
2.  Whitteck, J.T., Malova, P., Peck, S.C., Cicchillo, R.M., Hammerschmidt, F. and van der Donk, W.A. On the stereochemistry of 2-hydroxyethylphosphonate dioxygenase. J. Am. Chem. Soc. 133 (2011) 4236–4239. [PMID: 21381767]
3.  Peck, S.C., Cooke, H.A., Cicchillo, R.M., Malova, P., Hammerschmidt, F., Nair, S.K. and van der Donk, W.A. Mechanism and substrate recognition of 2-hydroxyethylphosphonate dioxygenase. Biochemistry 50 (2011) 6598–6605. [PMID: 21711001]
[EC 1.13.11.72 created 2012]
 
 
EC 1.13.11.73
Accepted name: methylphosphonate synthase
Reaction: 2-hydroxyethylphosphonate + O2 = methylphosphonate + HCO3-
For diagram of phosphonate metabolism, click here
Other name(s): mpnS (gene name); 2-hydroxyethylphosphonate:O2 1,2-oxidoreductase (methylphosphonate forming)
Systematic name: 2-hydroxyethylphosphonate:oxygen 1,2-oxidoreductase (methylphosphonate forming)
Comments: Isolated from the marine archaeon Nitrosopumilus maritimus.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Metcalf, W.W., Griffin, B.M., Cicchillo, R.M., Gao, J., Janga, S.C., Cooke, H.A., Circello, B.T., Evans, B.S., Martens-Habbena, W., Stahl, D.A. and van der Donk, W.A. Synthesis of methylphosphonic acid by marine microbes: a source for methane in the aerobic ocean. Science 337 (2012) 1104–1107. [PMID: 22936780]
[EC 1.13.11.73 created 2012]
 
 
EC 1.13.12.12
Transferred entry: apo-β-carotenoid-14′,13′-dioxygenase. The enzyme was misclassified and has been transferred to EC 1.13.11.67, 8-apo-β-carotenoid 14′,13′-cleaving dioxygenase
[EC 1.13.12.12 created 2000, modified 2001, deleted 2012]
 
 
EC 1.14.11.35
Accepted name: 1-deoxypentalenic acid 11β-hydroxylase
Reaction: 1-deoxypentalenate + 2-oxoglutarate + O2 = 1-deoxy-11β-hydroxypentalenate + succinate + CO2
For diagram of pentalenolactone biosynthesis, click here
Glossary: 1-deoxypentalenate = (1R,3aR,5aS,8aR)-1,7,7-trimethyl-1,2,3,3a,5a,6,7,8-octahydrocyclopenta[c]pentalene-4-carboxylate
1-deoxy-11β-hydroxypentalenate = (1S,2R,3aR,5aS,8aR)-2-hydroxy-1,7,7-trimethyl-1,2,3,3a,5a,6,7,8-octahydrocyclopenta[c]pentalene-4-carboxylate
Other name(s): ptlH (gene name); sav2991 (gene name); pntH (gene name)
Systematic name: 1-deoxypentalenic acid,2-oxoglutarate:oxygen oxidoreductase
Comments: The enzyme requires Fe(II) and ascorbate. Isolated from the bacterium Streptomyces avermitilis. Part of the pathway for pentalenolactone biosynthesis.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  You, Z., Omura, S., Ikeda, H. and Cane, D.E. Pentalenolactone biosynthesis. Molecular cloning and assignment of biochemical function to PtlH, a non-heme iron dioxygenase of Streptomyces avermitilis. J. Am. Chem. Soc. 128 (2006) 6566–6567. [PMID: 16704250]
2.  You, Z., Omura, S., Ikeda, H., Cane, D.E. and Jogl, G. Crystal structure of the non-heme iron dioxygenase PtlH in pentalenolactone biosynthesis. J. Biol. Chem. 282 (2007) 36552–36560. [PMID: 17942405]
[EC 1.14.11.35 created 2012]
 
 
EC 1.14.11.36
Accepted name: pentalenolactone F synthase
Reaction: pentalenolactone D + 2 2-oxoglutarate + 2 O2 = pentalenolactone F + 2 succinate + 2 CO2 + H2O (overall reaction)
(1a) pentalenolactone D + 2-oxoglutarate + O2 = pentalenolactone E + succinate + CO2 + H2O
(1b) pentalenolactone E + 2-oxoglutarate + O2 = pentalenolactone F + succinate + CO2
For diagram of pentalenolactone biosynthesis, click here
Glossary: pentalenolactone D = (1S,4aR,6aS,9aR)-1,8,8-trimethyl-2-oxo-1,2,4,4a,6a,7,8,9-octahydropentaleno[1,6a-c]pyran-5-carboxylate
pentalenolactone E = (4aR,6aS,9aR)-8,8-dimethyl-1-methylene-2-oxo-1,2,4,4a,6a,7,8,9-octahydropentaleno[1,6a-c]pyran-5-carboxylate
pentalenolactone F = (1′R,4′aR,6′aS,9′aR)-8′,8′-dimethyl-2′-oxo-4′,4′a,6′a,8′,9′-hexahydrospiro[oxirane-2,1′-pentaleno[1,6a-c]pyran]-5′-carboxylic acid
Other name(s): penD (gene name); pntD (gene name); ptlD (gene name)
Systematic name: pentalenolactone-D,2-oxoglutarate:oxygen oxidoreductase
Comments: Requires Fe(II) and ascorbate. Isolated from the bacteria Streptomyces exfoliatus, Streptomyces arenae and Streptomyces avermitilis. Part of the pentalenolactone biosynthesis pathway.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Seo, M.J., Zhu, D., Endo, S., Ikeda, H. and Cane, D.E. Genome mining in Streptomyces. Elucidation of the role of Baeyer-Villiger monooxygenases and non-heme iron-dependent dehydrogenase/oxygenases in the final steps of the biosynthesis of pentalenolactone and neopentalenolactone. Biochemistry 50 (2011) 1739–1754. [PMID: 21250661]
[EC 1.14.11.36 created 2012]
 
 
*EC 1.14.12.13
Accepted name: 2-halobenzoate 1,2-dioxygenase
Reaction: a 2-halobenzoate + NADH + H+ + O2 = catechol + a halide anion + NAD+ + CO2
For diagram of benzoate metabolism, click here, and for mechanism, click here
Other name(s): 2-chlorobenzoate 1,2-dioxygenase
Systematic name: 2-halobenzoate,NADH:oxygen oxidoreductase (1,2-hydroxylating, dehalogenating, decarboxylating)
Comments: A multicomponent enzyme system composed of a dioxygenase component and an electron transfer component. The latter contains FAD. The enzyme, characterized from the bacterium Burkholderia cepacia 2CBS, has a broad substrate specificity. Substrates include 2-fluorobenzoate, 2-chlorobenzoate, 2-bromobenzoate, and 2-iodobenzoate, which are processed in this order of preference.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, UM-BBD, CAS registry number: 125268-83-9
References:
1.  Fetzner, S., Mueller, R. and Lingens, F. Degradation of 2-chlorobenzoate by Pseudomonas cepacia 2CBS. Biol. Chem. Hoppe-Seyler 370 (1989) 1173–1182. [PMID: 2610934]
2.  Fetzner, S., Muller, R. and Lingens, F. Purification and some properties of 2-halobenzoate 1,2-dioxygenase, a two-component enzyme system from Pseudomonas cepacia 2CBS. J. Bacteriol. 174 (1992) 279–290. [PMID: 1370284]
3.  Haak, B., Fetzner, S. and Lingens, F. Cloning, nucleotide sequence, and expression of the plasmid-encoded genes for the two-component 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS. J. Bacteriol. 177 (1995) 667–675. [PMID: 7530709]
[EC 1.14.12.13 created 1992, modified 2012]
 
 
*EC 1.14.13.15
Transferred entry: cholestanetriol 26-monooxygenase. Now EC 1.14.15.15, cholestanetriol 26-monooxygenase.
[EC 1.14.13.15 created 1976, modified 2005, modified 2012, deleted 2016]
 
 
*EC 1.14.13.39
Accepted name: nitric-oxide synthase (NADPH)
Reaction: 2 L-arginine + 3 NADPH + 3 H+ + 4 O2 = 2 L-citrulline + 2 nitric oxide + 3 NADP+ + 4 H2O (overall reaction)
(1a) 2 L-arginine + 2 NADPH + 2 H+ + 2 O2 = 2 Nω-hydroxy-L-arginine + 2 NADP+ + 2 H2O
(1b) 2 Nω-hydroxy-L-arginine + NADPH + H+ + 2 O2 = 2 L-citrulline + 2 nitric oxide + NADP+ + 2 H2O
Glossary: nitric oxide = NO = nitrogen(II) oxide
Other name(s): NOS (gene name); nitric oxide synthetase (ambiguous); endothelium-derived relaxation factor-forming enzyme; endothelium-derived relaxing factor synthase; NO synthase (ambiguous); NADPH-diaphorase (ambiguous)
Systematic name: L-arginine,NADPH:oxygen oxidoreductase (nitric-oxide-forming)
Comments: The enzyme consists of linked oxygenase and reductase domains. The eukaryotic enzyme binds FAD, FMN, heme (iron protoporphyrin IX) and tetrahydrobiopterin, and its two domains are linked via a regulatory calmodulin-binding domain. Upon calcium-induced calmodulin binding, the reductase and oxygenase domains form a complex, allowing electrons to flow from NADPH via FAD and FMN to the active center. The reductase domain of the enzyme from the bacterium Sorangium cellulosum utilizes a [2Fe-2S] cluster to transfer the electrons from NADPH to the active center. cf. EC 1.14.14.47, nitric-oxide synthase (flavodoxin).
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, PDB, CAS registry number: 125978-95-2
References:
1.  Bredt, D.S. and Snyder, S.H. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. USA 87 (1990) 682–685. [PMID: 1689048]
2.  Stuehr, D.J., Kwon, N.S., Nathan, C.F., Griffith, O.W., Feldman, P.L. and Wiseman, J. Nω-hydroxy-L-arginine is an intermediate in the biosynthesis of nitric oxide from L-arginine. J. Biol. Chem. 266 (1991) 6259–6263. [PMID: 1706713]
3.  Stuehr, D., Pou, S. and Rosen, G.M. Oxygen reduction by nitric-oxide synthases. J. Biol. Chem. 276 (2001) 14533–14536. [PMID: 11279231]
4.  Agapie, T., Suseno, S., Woodward, J.J., Stoll, S., Britt, R.D. and Marletta, M.A. NO formation by a catalytically self-sufficient bacterial nitric oxide synthase from Sorangium cellulosum. Proc. Natl. Acad. Sci. USA 106 (2009) 16221–16226. [PMID: 19805284]
5.  Foresi, N., Correa-Aragunde, N., Parisi, G., Calo, G., Salerno, G. and Lamattina, L. Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant Cell 22 (2010) 3816–3830. [PMID: 21119059]
[EC 1.14.13.39 created 1992, modified 2012, modified 2017]
 
 
*EC 1.14.13.59
Accepted name: L-lysine N6-monooxygenase (NADPH)
Reaction: L-lysine + NADPH + H+ + O2 = N6-hydroxy-L-lysine + NADP+ + H2O
For diagram of aerobactin biosynthesis, click here
Other name(s): lysine N6-hydroxylase; L-lysine 6-monooxygenase (NADPH) (ambiguous)
Systematic name: L-lysine,NADPH:oxygen oxidoreductase (6-hydroxylating)
Comments: A flavoprotein (FAD). The enzyme from strain EN 222 of Escherichia coli is highly specific for L-lysine; L-ornithine and L-homolysine are, for example, not substrates.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, CAS registry number: 64295-82-5
References:
1.  Plattner, H.J., Pfefferle, P., Romaguera, A., Waschutza, S. and Diekmann, H. Isolation and some properties of lysine N6-hydroxylase from Escherichia coli strain EN222. Biol. Met. 2 (1989) 1–5. [PMID: 2518519]
2.  Macheroux, P., Plattner, H.J., Romaguera, A. and Diekmann, H. FAD and substrate analogs as probes for lysine N6-hydroxylase from Escherichia coli EN 222. Eur. J. Biochem. 213 (1993) 995–1002. [PMID: 8504838]
3.  Thariath, A.M., Fatum, K.L., Valvano, M.A. and Viswanatha, T. Physico-chemical characterization of a recombinant cytoplasmic form of lysine: N6-hydroxylase. Biochim. Biophys. Acta 1203 (1993) 27–35. [PMID: 8218389]
4.  de Lorenzo, V., Bindereif, A., Paw, B.H. and Neilands, J.B. Aerobactin biosynthesis and transport genes of plasmid ColV-K30 in Escherichia coli K-12. J. Bacteriol. 165 (1986) 570–578. [PMID: 2935523]
5.  Marrone, L., Siemann, S., Beecroft, M. and Viswanatha, T. Specificity of lysine:N-6-hydroxylase: A hypothesis for a reactive substrate intermediate in the catalytic mechanism. Bioorg. Chem. 24 (1996) 401–406.
6.  Goh, C.J., Szczepan, E.W., Menhart, N. and Viswanatha, T. Studies on lysine: N6-hydroxylation by cell-free system of Aerobacter aerogenes 62-1. Biochim. Biophys. Acta 990 (1989) 240–245. [PMID: 2493814]
[EC 1.14.13.59 created 1999, modified 2001, modified 2012]
 
 
EC 1.14.13.163
Accepted name: 6-hydroxy-3-succinoylpyridine 3-monooxygenase
Reaction: 4-(6-hydroxypyridin-3-yl)-4-oxobutanoate + 2 NADH + 2 H+ + O2 = 2,5-dihydroxypyridine + succinate semialdehyde + 2 NAD+ + H2O
Glossary: 4-(6-hydroxypyridin-3-yl)-4-oxobutanoate = 6-hydroxy-3-succinoyl-pyridine
Other name(s): 6-hydroxy-3-succinoylpyridine hydroxylase; hspA (gene name); hspB (gene name)
Systematic name: 4-(6-hydroxypyridin-3-yl)-4-oxobutanoate,NADH:oxygen oxidoreductase (3-hydroxylating, succinate semialdehyde releasing)
Comments: The enzyme catalyses a reaction in the nicotine degradation pathway of Pseudomonas species. One of the enzymes from the soil bacterium Pseudomonas putida S16 contains an FAD cofactor [2].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Tang, H., Wang, S., Ma, L., Meng, X., Deng, Z., Zhang, D., Ma, C. and Xu, P. A novel gene, encoding 6-hydroxy-3-succinoylpyridine hydroxylase, involved in nicotine degradation by Pseudomonas putida strain S16. Appl. Environ. Microbiol. 74 (2008) 1567–1574. [PMID: 18203859]
2.  Tang, H., Yao, Y., Zhang, D., Meng, X., Wang, L., Yu, H., Ma, L. and Xu, P. A novel NADH-dependent and FAD-containing hydroxylase is crucial for nicotine degradation by Pseudomonas putida. J. Biol. Chem. 286 (2011) 39179–39187. [PMID: 21949128]
[EC 1.14.13.163 created 2012]
 
 
EC 1.14.13.165
Transferred entry: nitric-oxide synthase [NAD(P)H]. Now classified as EC 1.14.14.47, nitric-oxide synthase (flavodoxin)
[EC 1.14.13.165 created 2012, deleted 2017]
 
 
EC 1.14.13.166
Accepted name: 4-nitrocatechol 4-monooxygenase
Reaction: 4-nitrocatechol + NAD(P)H + H+ + O2 = 2-hydroxy-1,4-benzoquinone + nitrite + NAD(P)+ + H2O
For diagram of 4-nitrophenol metabolism, click here
Systematic name: 4-nitrocatechol,NAD(P)H:oxygen 4-oxidoreductase (4-hydroxylating, nitrite-forming)
Comments: Contains FAD. The enzyme catalyses the oxidation of 4-nitrocatechol with the concomitant removal of the nitro group as nitrite. Forms a two-component system with a flavoprotein reductase [1]. The enzymes from the bacteria Lysinibacillus sphaericus JS905 and Rhodococcus sp. strain PN1 were shown to also catalyse EC 1.14.13.29, 4-nitrophenol 2-monooxygenase [1,2] while the enzyme from Pseudomonas sp. WBC-3 was shown to also catalyse EC 1.14.13.167, 4-nitrophenol 4-monooxygenase [3].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, UM-BBD
References:
1.  Kadiyala, V. and Spain, J.C. A two-component monooxygenase catalyzes both the hydroxylation of p-nitrophenol and the oxidative release of nitrite from 4-nitrocatechol in Bacillus sphaericus JS905. Appl. Environ. Microbiol. 64 (1998) 2479–2484. [PMID: 9647818]
2.  Kitagawa, W., Kimura, N. and Kamagata, Y. A novel p-nitrophenol degradation gene cluster from a gram-positive bacterium, Rhodococcus opacus SAO101. J. Bacteriol. 186 (2004) 4894–4902. [PMID: 15262926]
3.  Zhang, J.J., Liu, H., Xiao, Y., Zhang, X.E. and Zhou, N.Y. Identification and characterization of catabolic para-nitrophenol 4-monooxygenase and para-benzoquinone reductase from Pseudomonas sp. strain WBC-3. J. Bacteriol. 191 (2009) 2703–2710. [PMID: 19218392]
[EC 1.14.13.166 created 2012]
 
 
EC 1.14.13.167
Accepted name: 4-nitrophenol 4-monooxygenase
Reaction: 4-nitrophenol + NADPH + H+ + O2 = 1,4-benzoquinone + nitrite + NADP+ + H2O
For diagram of 4-nitrophenol metabolism, click here
Other name(s): pnpA (gene name); pdcA (gene name)
Systematic name: 4-nitrophenol,NAD(P)H:oxygen 4-oxidoreductase (4-hydroxylating, nitrite-forming)
Comments: Contains FAD. The enzyme catalyses the first step in a degradation pathway for 4-nitrophenol, the oxidation of 4-nitrophenol at position 4 with the concomitant removal of the nitro group as nitrite. The enzyme from the bacterium Pseudomonas sp. strain WBC-3 also catalyses EC 1.14.13.166, 4-nitrocatechol 4-monooxygenase.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Zhang, J.J., Liu, H., Xiao, Y., Zhang, X.E. and Zhou, N.Y. Identification and characterization of catabolic para-nitrophenol 4-monooxygenase and para-benzoquinone reductase from Pseudomonas sp. strain WBC-3. J. Bacteriol. 191 (2009) 2703–2710. [PMID: 19218392]
[EC 1.14.13.167 created 2012]
 
 
EC 1.14.13.168
Accepted name: indole-3-pyruvate monooxygenase
Reaction: (indol-3-yl)pyruvate + NADPH + H+ + O2 = (indol-3-yl)acetate + NADP+ + H2O + CO2
For diagram of indoleacetic acid biosynthesis, click here
Glossary: (indol-3-yl)pyruvate = 3-(1H-indol-3-yl)-2-oxopropanoate, (indol-3-yl)acetate = 2-(1H-indol-3-yl)acetate = indole-3-acetate
Other name(s): YUC2 (gene name); spi1 (gene name)
Systematic name: indole-3-pyruvate,NADPH:oxygen oxidoreductase (1-hydroxylating, decarboxylating)
Comments: This plant enzyme, along with EC 2.6.1.99 L-tryptophan—pyruvate aminotransferase, is responsible for the biosynthesis of the plant hormone indole-3-acetate from L-tryptophan.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Mashiguchi, K., Tanaka, K., Sakai, T., Sugawara, S., Kawaide, H., Natsume, M., Hanada, A., Yaeno, T., Shirasu, K., Yao, H., McSteen, P., Zhao, Y., Hayashi, K., Kamiya, Y. and Kasahara, H. The main auxin biosynthesis pathway in Arabidopsis. Proc. Natl. Acad. Sci. USA 108 (2011) 18512–18517. [PMID: 22025724]
2.  Zhao, Y. Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol. Plant 5 (2012) 334–338. [PMID: 22155950]
[EC 1.14.13.168 created 2012]
 
 
EC 1.14.13.169
Transferred entry: sphinganine C4-monooxygenase. Now EC 1.14.18.5, sphingolipid C4-monooxygenase
[EC 1.14.13.169 created 2012, deleted 2015]
 
 
EC 1.14.13.170
Accepted name: pentalenolactone D synthase
Reaction: 1-deoxy-11-oxopentalenate + NADPH + H+ + O2 = pentalenolactone D + NADP+ + H2O
For diagram of pentalenolactone biosynthesis, click here
Glossary: 1-deoxy-11-oxopentalenate = (1S,3aR,5aS)-1,7,7-trimethyl-2-oxo-1,2,3,3a,5a,6,7,8-octahydrocyclopenta[c]pentalene-4-carboxylate
pentalenolactone D = (1S,4aR,6aS,9aR)-1,8,8-trimethyl-2-oxo-1,2,4,4a,6a,7,8,9-octahydropentaleno[1,6a-c]pyran-5-carboxylate
Other name(s): penE (gene name); pntE (gene name)
Systematic name: 1-deoxy-11-oxopentalenate,NADH:oxygen oxidoreductase (pentalenolactone-D forming)
Comments: A FAD-dependent oxygenase. Isolated from the bacteria Streptomyces exfoliatus and Streptomyces arenae. The ketone undergoes a biological Baeyer-Villiger reaction. Part of the pathway of pentalenolactone biosynthesis.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Seo, M.J., Zhu, D., Endo, S., Ikeda, H. and Cane, D.E. Genome mining in Streptomyces. Elucidation of the role of Baeyer-Villiger monooxygenases and non-heme iron-dependent dehydrogenase/oxygenases in the final steps of the biosynthesis of pentalenolactone and neopentalenolactone. Biochemistry 50 (2011) 1739–1754. [PMID: 21250661]
[EC 1.14.13.170 created 2012]
 
 
EC 1.14.13.171
Accepted name: neopentalenolactone D synthase
Reaction: 1-deoxy-11-oxopentalenate + NADPH + H+ + O2 = neopentalenolactone D + NADP+ + H2O
For diagram of pentalenolactone biosynthesis, click here
Glossary: 1-deoxy-11-oxopentalenate = (1S,3aR,5aS)-1,7,7-trimethyl-2-oxo-1,2,3,3a,5a,6,7,8-octahydrocyclopenta[c]pentalene-4-carboxylate
neopentalenolactone D = (1S,4aR,6aS)-1,7,7-trimethyl-3-oxo-4,4a,6a,7,8,9-hexahydro-3H-pentaleno[6a,1-c]pyran-5-carboxylate
Other name(s): ptlE (gene name)
Systematic name: 1-deoxy-11-oxopentalenate,NADH:oxygen oxidoreductase (neopentalenolactone-D forming)
Comments: A FAD-dependent oxygenase. Isolated from the bacterium Streptomyces avermitilis. The ketone undergoes a biological Baeyer-Villiger reaction.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Seo, M.J., Zhu, D., Endo, S., Ikeda, H. and Cane, D.E. Genome mining in Streptomyces. Elucidation of the role of Baeyer-Villiger monooxygenases and non-heme iron-dependent dehydrogenase/oxygenases in the final steps of the biosynthesis of pentalenolactone and neopentalenolactone. Biochemistry 50 (2011) 1739–1754. [PMID: 21250661]
[EC 1.14.13.171 created 2012]
 
 
EC 1.14.14.13
Accepted name: 4-(γ-L-glutamylamino)butanoyl-[BtrI acyl-carrier protein] monooxygenase
Reaction: 4-(γ-L-glutamylamino)butanoyl-[BtrI acyl-carrier protein] + FMNH2 + O2 = 4-(γ-L-glutamylamino)-(2S)-2-hydroxybutanoyl-[BtrI acyl-carrier protein] + FMN + H2O
Other name(s): btrO (gene name)
Systematic name: 4-(γ-L-glutamylamino)butanoyl-[BtrI acyl-carrier protein],FMNH2:oxygen oxidoreductase (2-hydroxylating)
Comments: Catalyses a step in the biosynthesis of the side chain of the aminoglycoside antibiotics of the butirosin family. FMNH2 is used as a free cofactor. Forms a complex with a dedicated NAD(P)H:FMN oxidoreductase. The enzyme is not able to hydroxylate free substrates, activation by the acyl-carrier protein is mandatory. Octanoyl-S-[BtrI acyl-carrier protein] is also accepted.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Li, Y., Llewellyn, N.M., Giri, R., Huang, F. and Spencer, J.B. Biosynthesis of the unique amino acid side chain of butirosin: possible protective-group chemistry in an acyl carrier protein-mediated pathway. Chem. Biol. 12 (2005) 665–675. [PMID: 15975512]
[EC 1.14.14.13 created 2012]
 
 
EC 1.14.15.2
Transferred entry: camphor 1,2-monooxygenase. Now EC 1.14.13.162, 2,5-diketocamphane 1,2-monooxygenase.
[EC 1.14.15.2 created 1972, deleted 2012]
 
 
EC 1.14.15.11
Accepted name: pentalenic acid synthase
Reaction: 1-deoxypentalenate + reduced ferredoxin + O2 = pentalenate + oxidized ferredoxin + H2O
For diagram of pentalenolactone biosynthesis, click here
Glossary: 1-deoxypentalenate = (1R,3aR,5aS,8aR)-1,7,7-trimethyl-1,2,3,3a,5a,6,7,8-octahydrocyclopenta[c]pentalene-4-carboxylate
pentalenate = (1R,3aR,5aS,6R,8aS)-6-hydroxy-1,7,7-trimethyl-1,2,3,3a,5a,6,7,8-octahydrocyclopenta[c]pentalene-4-carboxylate
Other name(s): CYP105D7; sav7469 (gene name); 1-deoxypentalenate,reduced ferredoxin:O2 oxidoreductase
Systematic name: 1-deoxypentalenate,reduced ferredoxin:oxygen oxidoreductase
Comments: A heme-thiolate enzyme (P-450). Isolated from the bacterium Streptomyces avermitilis. The product, pentalenate, is a co-metabolite from pentalenolactone biosynthesis.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Takamatsu, S., Xu, L.H., Fushinobu, S., Shoun, H., Komatsu, M., Cane, D.E. and Ikeda, H. Pentalenic acid is a shunt metabolite in the biosynthesis of the pentalenolactone family of metabolites: hydroxylation of 1-deoxypentalenic acid mediated by CYP105D7 (SAV_7469) of Streptomyces avermitilis. J. Antibiot. (Tokyo) 64 (2011) 65–71. [PMID: 21081950]
[EC 1.14.15.11 created 2012]
 
 
*EC 1.14.18.1
Accepted name: tyrosinase
Reaction: (1) L-tyrosine + O2 = dopaquinone + H2O (overall reaction)
(1a) L-tyrosine + ½ O2 = L-dopa
(1b) L-dopa + ½ O2 = dopaquinone + H2O
(2) 2 L-dopa + O2 = 2 dopaquinone + 2 H2O
For diagram of melanin biosynthesis, click here
Other name(s): monophenol monooxygenase; phenolase; monophenol oxidase; cresolase; monophenolase; tyrosine-dopa oxidase; monophenol monooxidase; monophenol dihydroxyphenylalanine:oxygen oxidoreductase; N-acetyl-6-hydroxytryptophan oxidase; monophenol, dihydroxy-L-phenylalanine oxygen oxidoreductase; o-diphenol:O2 oxidoreductase; phenol oxidase
Systematic name: L-tyrosine,L-dopa:oxygen oxidoreductase
Comments: A type III copper protein found in a broad variety of bacteria, fungi, plants, insects, crustaceans, and mammals, which is involved in the synthesis of betalains and melanin. The enzyme, which is activated upon binding molecular oxygen, can catalyse both a monophenolase reaction cycle (reaction 1) or a diphenolase reaction cycle (reaction 2). During the monophenolase cycle, one of the bound oxygen atoms is transferred to a monophenol (such as L-tyrosine), generating an o-diphenol intermediate, which is subsequently oxidized to an o-quinone and released, along with a water molecule. The enzyme remains in an inactive deoxy state, and is restored to the active oxy state by the binding of a new oxygen molecule. During the diphenolase cycle the enzyme binds an external diphenol molecule (such as L-dopa) and oxidizes it to an o-quinone that is released along with a water molecule, leaving the enzyme in the intermediate met state. The enzyme then binds a second diphenol molecule and repeats the process, ending in a deoxy state [7]. The second reaction is identical to that catalysed by the related enzyme catechol oxidase (EC 1.10.3.1). However, the latter can not catalyse the hydroxylation or monooxygenation of monophenols.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, CAS registry number: 9002-10-2
References:
1.  Dawson, C.R. and Tarpley, W.B. The copper oxidases. In: Sumner, J.B. and Myrbäck, K. (Eds), The Enzymes, 1st edn, vol. 2, Academic Press, New York, 1951, pp. 454–498.
2.  Patil, S.S. and Zucker, M. Potato phenolases. Purification and properties. J. Biol. Chem. 240 (1965) 3938–3943. [PMID: 5842066]
3.  Pomerantz, S.H. Separation, purification, and properties of two tyrosinases from hamster melanoma. J. Biol. Chem. 238 (1963) 2351–2357. [PMID: 13972077]
4.  Robb, D.A. `Tyrosinase. In: Lontie, R. (Ed.), Copper Proteins and Copper Enzymes, vol. 2, CRC Press, Boca Raton, FL, 1984, pp. 207–240.
5.  Sanchez-Ferrer, A., Rodriguez-Lopez, J.N., Garcia-Canovas, F. and Garcia-Carmona, F. Tyrosinase: a comprehensive review of its mechanism. Biochim. Biophys. Acta 1247 (1995) 1–11. [PMID: 7873577]
6.  Steiner, U., Schliemann, W. and Strack, D. Assay for tyrosine hydroxylation activity of tyrosinase from betalain-forming plants and cell cultures. Anal. Biochem. 238 (1996) 72–75. [PMID: 8660589]
7.  Rolff, M., Schottenheim, J., Decker, H. and Tuczek, F. Copper-O2 reactivity of tyrosinase models towards external monophenolic substrates: molecular mechanism and comparison with the enzyme. Chem Soc Rev 40 (2011) 4077–4098. [PMID: 21416076]
[EC 1.14.18.1 created 1972, modified 1976, modified 1980 (EC 1.14.17.2 created 1972, incorporated 1984), modified 2012]
 
 
EC 1.14.99.47
Accepted name: (+)-larreatricin hydroxylase
Reaction: (+)-larreatricin + reduced acceptor + O2 = (+)-3′-hydroxylarreatricin + acceptor + H2O
Glossary: (+)-larreatricin = 4,4′-[(2R,3R,4S,5R)-3,4-dimethyltetrahydrofuran-2,5-diyl]bisphenol
Systematic name: (+)-larreatricin:oxygen 3′-hydroxylase
Comments: Isolated from the plant Larrea tridentata (creosote bush). The enzyme has a strong preference for the 3′ position of (+)-larreatricin.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Cho, M.H., Moinuddin, S.G., Helms, G.L., Hishiyama, S., Eichinger, D., Davin, L.B. and Lewis, N.G. (+)-Larreatricin hydroxylase, an enantio-specific polyphenol oxidase from the creosote bush (Larrea tridentata). Proc. Natl. Acad. Sci. USA 100 (2003) 10641–10646. [PMID: 12960376]
[EC 1.14.99.47 created 2012]
 
 
*EC 1.18.1.2
Accepted name: ferredoxin—NADP+ reductase
Reaction: 2 reduced ferredoxin + NADP+ + H+ = 2 oxidized ferredoxin + NADPH
For diagram of reaction, click here
Other name(s): ferredoxin-nicotinamide adenine dinucleotide phosphate reductase; ferredoxin-NADP+ reductase; TPNH-ferredoxin reductase; ferredoxin-NADP+ oxidoreductase; NADP+:ferredoxin oxidoreductase; ferredoxin-TPN reductase; ferredoxin-NADP+-oxidoreductase; NADPH:ferredoxin oxidoreductase; ferredoxin-nicotinamide-adenine dinucleotide phosphate (oxidized) reductase
Systematic name: ferredoxin:NADP+ oxidoreductase
Comments: A flavoprotein (FAD). In chloroplasts and cyanobacteria the enzyme acts on plant-type [2Fe-2S] ferredoxins, but in other bacteria it can also reduce bacterial [4Fe-4S] ferredoxins and flavodoxin.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, PDB, CAS registry number: 9029-33-8
References:
1.  Shin, M., Tagawa, K. and Arnon, D.I. Crystallization of ferredoxin-TPN reductase and its role in the photosynthetic apparatus of chloroplasts. Biochem. Z. 338 (1963) 84–96.
2.  Knaff, D.B. and Hirasawa, M. Ferredoxin-dependent chloroplast enzymes. Biochim. Biophys. Acta 1056 (1991) 93–125. [PMID: 1671559]
3.  Karplus, P.A., Daniels, M.J. and Herriott, J.R. Atomic structure of ferredoxin-NADP+ reductase: prototype for a structurally novel flavoenzyme family. Science 251 (1991) 60–66. [PMID: 1986412]
4.  Morales, R., Charon, M.H., Kachalova, G., Serre, L., Medina, M., Gomez-Moreno, C. and Frey, M. A redox-dependent interaction between two electron-transfer partners involved in photosynthesis. EMBO Rep. 1 (2000) 271–276. [PMID: 11256611]
[EC 1.18.1.2 created 1965 as EC 1.6.99.4, transferred 1972 as EC 1.6.7.1, transferred 1978 to EC 1.18.1.2, part transferred 2012 to 1.18.1.6, modified 2012]
 
 
EC 1.18.1.6
Accepted name: adrenodoxin-NADP+ reductase
Reaction: 2 reduced adrenodoxin + NADP+ + H+ = 2 oxidized adrenodoxin + NADPH
Other name(s): adrenodoxin reductase; nicotinamide adenine dinucleotide phosphate-adrenodoxin reductase; AdR; NADPH:adrenal ferredoxin oxidoreductase; NADPH-adrenodoxin reductase
Systematic name: reduced adrenodoxin:NADP+ oxidoreductase
Comments: A flavoprotein (FAD). The enzyme, which transfers electrons from NADPH to adrenodoxin molecules, is the first component of the mitochondrial cytochrome P-450 electron transfer systems, and is involved in the biosynthesis of all steroid hormones.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Omura, T., Sanders, E., Estabrook, R.W., Cooper, D.Y. and Rosenthal, O. Isolation from adrenal cortex of a nonheme iron protein and a flavoprotein functional as a reduced triphosphopyridine nucleotide-cytochrome P-450 reductase. Arch. Biochem. Biophys. 117 (1966) 660–673.
2.  Chu, J.W. and Kimura, T. Studies on adrenal steroid hydroxylases. Molecular and catalytic properties of adrenodoxin reductase (a flavoprotein). J. Biol. Chem. 248 (1973) 2089–2094. [PMID: 4144106]
3.  Sugiyama, T. and Yamano, T. Purification and crystallization of NADPH-adrenodoxin reductase from bovine adrenocortical mitochondria. FEBS Lett. 52 (1975) 145–148. [PMID: 235468]
4.  Hanukoglu, I. and Jefcoate, C.R. Mitochondrial cytochrome P-450scc. Mechanism of electron transport by adrenodoxin. J. Biol. Chem. 255 (1980) 3057–3061. [PMID: 6766943]
5.  Hanukoglu, I. and Hanukoglu, Z. Stoichiometry of mitochondrial cytochromes P-450, adrenodoxin and adrenodoxin reductase in adrenal cortex and corpus luteum. Implications for membrane organization and gene regulation. Eur. J. Biochem. 157 (1986) 27–31. [PMID: 3011431]
6.  Hanukoglu, I. and Gutfinger, T. cDNA sequence of adrenodoxin reductase. Identification of NADP-binding sites in oxidoreductases. Eur. J. Biochem. 180 (1989) 479–484. [PMID: 2924777]
7.  Ziegler, G.A., Vonrhein, C., Hanukoglu, I. and Schulz, G.E. The structure of adrenodoxin reductase of mitochondrial P450 systems: electron transfer for steroid biosynthesis. J. Mol. Biol. 289 (1999) 981–990. [PMID: 10369776]
[EC 1.18.1.6 created 1965 as EC 1.6.99.4, transferred 1972 as EC 1.6.7.1, transferred 1978 to EC 1.18.1.2, part transferred 2012 to 1.18.1.6, modified 2016]
 
 
*EC 1.21.3.6
Accepted name: aureusidin synthase
Reaction: (1) 2′,4,4′,6′-tetrahydroxychalcone 4′-O-β-D-glucoside + O2 = aureusidin 6-O-β-D-glucoside + H2O
(2) 2′,3,4,4′,6′-pentahydroxychalcone 4′-O-β-D-glucoside + ½ O2 = aureusidin 6-O-β-D-glucoside + H2O
(3) 2′,3,4,4′,6′-pentahydroxychalcone 4′-O-β-D-glucoside + O2 = bracteatin 6-O-β-D-glucoside + H2O
For diagram of aureusidin biosynthesis, click here
Glossary: 2′,4,4′,6′-tetrahydroxychalcone = 3-(4-hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)prop-2-en-1-one
aureusidin = 4,6-dihydroxy-2-[(3,4-dihydroxyphenyl)methylidene]benzofuran-3(2H)-one
bracteatin = 4,6-dihydroxy-2-[(3,4,5-trihydroxyphenyl)methylidene]benzofuran-3(2H)-one
Other name(s): AmAS1
Systematic name: 2′,4,4′,6′-tetrahydroxychalcone 4′-O-β-D-glucoside:oxygen oxidoreductase
Comments: A copper-containing glycoprotein that plays a key role in the yellow coloration of flowers such as Antirrhinum majus (snapdragon). The enzyme is a homologue of plant polyphenol oxidase [1] and catalyses two separate chemical transformations, i.e. 3-hydroxylation and oxidative cyclization (2′,-dehydrogenation). H2O2 activates reaction (1) but inhibits reaction (2). Originally considered to act on the phenol but now thought to act mainly on the 4′-O-β-D-glucoside in vivo [4].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, CAS registry number: 320784-48-3
References:
1.  Nakayama, T., Yonekura-Sakakibara, K., Sato, T., Kikuchi, S., Fukui, Y., Fukuchi-Mizutani, M., Ueda, T., Nakao, M., Tanaka, Y., Kusumi, T. and Nishino, T. Aureusidin synthase: A polyphenol oxidase homolog responsible for flower coloration. Science 290 (2000) 1163–1166. [PMID: 11073455]
2.  Nakayama, T., Sato, T., Fukui, Y., Yonekura-Sakakibara, K., Hayashi, H., Tanaka, Y., Kusumi, T. and Nishino, T. Specificity analysis and mechanism of aurone synthesis catalyzed by aureusidin synthase, a polyphenol oxidase homolog responsible for flower coloration. FEBS Lett. 499 (2001) 107–111. [PMID: 11418122]
3.  Sato, T., Nakayama, T., Kikuchi, S., Fukui, Y., Yonekura-Sakakibara, K., Ueda, T., Nishino, T., Tanaka, Y. and Kusumi, T. Enzymatic formation of aurones in the extracts of yellow snapdragon flowers. Plant Sci. 160 (2001) 229–236. [PMID: 11164594]
4.  Ono, E., Fukuchi-Mizutani, M., Nakamura, N., Fukui, Y., Yonekura-Sakakibara, K., Yamaguchi, M., Nakayama, T., Tanaka, T., Kusumi, T. and Tanaka, Y. Yellow flowers generated by expression of the aurone biosynthetic pathway. Proc. Natl. Acad. Sci. USA 103 (2006) 11075–11080. [PMID: 16832053]
[EC 1.21.3.6 created 2003, modified 2012]
 
 
EC 1.21.3.7
Accepted name: tetrahydrocannabinolic acid synthase
Reaction: cannabigerolate + O2 = Δ9-tetrahydrocannabinolate + H2O2
For diagram of cannabinoid biosynthesis, click here
Glossary: Δ9-tetrahydrocannabinolate = Δ9-THCA = (6aR,10aR)-1-hydroxy-6,6,9-trimethyl-3-pentyl-6a,7,8,10a-tetrahydro-6H-benzo[c]chromene-2-carboxylate
cannabigerolate = CBGA = 3-[(2E)-3,7-dimethylocta-2,6-dien-1-yl]-2,4-dihydroxy-6-pentylbenzoate
cannabinerolate = 3-[(2Z)-3,7-dimethylocta-2,6-dien-1-yl]-2,4-dihydroxy-6-pentylbenzoate
Other name(s): THCA synthase; Δ1-tetrahydrocannabinolic acid synthase
Systematic name: cannabigerolate:oxygen oxidoreductase (cyclizing, Δ9-tetrahydrocannabinolate-forming)
Comments: A flavoprotein (FAD). The cofactor is covalently bound. Part of the cannabinoids biosynthetic pathway in the plant Cannabis sativa. The enzyme can also convert cannabinerolate (the (Z)-isomer of cannabigerolate) to Δ9-THCA with lower efficiency. Whereas the product was originally called Δ1-tetrahydrocannabinolate, the recommended name according to systematic peripheral numbering is Δ9-tetrahydrocannabinolate.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Taura, F., Morimoto, S. Shoyama, Y. and Mechoulam, R. First direct evidence for the mechanism of Δ1-tetrahydrocannabinolic acid biosynthesis. J. Am. Chem. Soc. 117 (1995) 9766–9767.
2.  Sirikantaramas, S., Morimoto, S., Shoyama, Y., Ishikawa, Y., Wada, Y., Shoyama, Y. and Taura, F. The gene controlling marijuana psychoactivity: molecular cloning and heterologous expression of Δ1-tetrahydrocannabinolic acid synthase from Cannabis sativa L. J. Biol. Chem. 279 (2004) 39767–39774. [PMID: 15190053]
3.  Shoyama, Y., Takeuchi, A., Taura, F., Tamada, T., Adachi, M., Kuroki, R., Shoyama, Y. and Morimoto, S. Crystallization of Δ1-tetrahydrocannabinolic acid (THCA) synthase from Cannabis sativa. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 61 (2005) 799–801. [PMID: 16511162]
4.  Shoyama, Y., Tamada, T., Kurihara, K., Takeuchi, A., Taura, F., Arai, S., Blaber, M., Shoyama, Y., Morimoto, S. and Kuroki, R. Structure and function of 1-tetrahydrocannabinolic acid (THCA) synthase, the enzyme controlling the psychoactivity of Cannabis sativa. J. Mol. Biol. 423 (2012) 96–105. [PMID: 22766313]
[EC 1.21.3.7 created 2012]
 
 
EC 1.21.3.8
Accepted name: cannabidiolic acid synthase
Reaction: cannabigerolate + O2 = cannabidiolate + H2O2
For diagram of cannabinoid biosynthesis, click here
Glossary: cannabigerolate = CBGA = 3-[(2E)-3,7-dimethylocta-2,6-dien-1-yl]-2,4-dihydroxy-6-pentylbenzoate
cannabidiolate = 2,4-dihydroxy-3-[(1R,6R)-3-methyl-6-(prop-1-en-2-yl)cyclohex-2-en-1-yl]-6-pentylbenzoate
Other name(s): CBDA synthase
Systematic name: cannabigerolate:oxygen oxidoreductase (cyclizing, cannabidiolate-forming)
Comments: Binds FAD covalently. Part of the cannabinoids biosynthetic pathway of the plant Cannabis sativa. The enzyme can also convert cannabinerolate to cannabidiolate with lower efficiency.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Taura, F., Morimoto, S. and Shoyama, Y. Purification and characterization of cannabidiolic-acid synthase from Cannabis sativa L.. Biochemical analysis of a novel enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid. J. Biol. Chem. 271 (1996) 17411–17416. [PMID: 8663284]
2.  Taura, F., Sirikantaramas, S., Shoyama, Y., Yoshikai, K., Shoyama, Y. and Morimoto, S. Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa. FEBS Lett. 581 (2007) 2929–2934. [PMID: 17544411]
[EC 1.21.3.8 created 2012]
 
 
*EC 2.1.1.61
Accepted name: tRNA (5-methylaminomethyl-2-thiouridylate)-methyltransferase
Reaction: S-adenosyl-L-methionine + tRNA containing 5-aminomethyl-2-thiouridine = S-adenosyl-L-homocysteine + tRNA containing 5-methylaminomethyl-2-thiouridylate
Other name(s): transfer ribonucleate 5-methylaminomethyl-2-thiouridylate 5-methyltransferase; tRNA 5-methylaminomethyl-2-thiouridylate 5′-methyltransferase
Systematic name: S-adenosyl-L-methionine:tRNA (5-methylaminomethyl-2-thio-uridylate)-methyltransferase
Comments: This enzyme is specific for the terminal methyl group of 5-methylaminomethyl-2-thiouridylate.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, PDB, CAS registry number: 39391-17-8
References:
1.  Taya, Y. and Nishimura, S. Biosynthesis of 5-methylaminomethyl-2-thiouridylate. I. Isolation of a new tRNA-methylase specific for 5-methylaminomethyl-2-thiouridylate. Biochem. Biophys. Res. Commun. 51 (1973) 1062–1068. [PMID: 4703553]
2.  Taya, Y. and Nishimura, S. In: Salvatore, F., Borek, E., Zappia, V., Williams-Ashman, H.G. and Schlenk, F. (Eds), The Biochemistry of Adenosylmethionine, Columbia University Press, New York, 1977, p. 251.
[EC 2.1.1.61 created 1982, modified 2012]
 
 
*EC 2.1.1.127
Accepted name: [ribulose-bisphosphate carboxylase]-lysine N-methyltransferase
Reaction: 3 S-adenosyl-L-methionine + [ribulose-1,5-bisphosphate carboxylase]-L-lysine = 3 S-adenosyl-L-homocysteine + [ribulose-1,5-bisphosphate carboxylase]-N6,N6,N6-trimethyl-L-lysine
Other name(s): rubisco methyltransferase; ribulose-bisphosphate-carboxylase/oxygenase N-methyltransferase; ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit εN-methyltransferase; S-adenosyl-L-methionine:[3-phospho-D-glycerate-carboxy-lyase (dimerizing)]-lysine 6-N-methyltransferase; RuBisCO methyltransferase; RuBisCO LSMT
Systematic name: S-adenosyl-L-methionine:[3-phospho-D-glycerate-carboxy-lyase (dimerizing)]-lysine N6-methyltransferase
Comments: The enzyme catalyses three successive methylations of Lys-14 in the large subunits of hexadecameric higher plant ribulose-bisphosphate-carboxylase (EC 4.1.1.39). Only the three methylated form is observed [3]. The enzyme from pea (Pisum sativum) also three-methylates a specific lysine in the chloroplastic isoforms of fructose-bisphosphate aldolase (EC 4.1.2.13) [5].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, PDB, CAS registry number: 139171-98-5
References:
1.  Wang, P., Royer, M., Houtz, R.L. Affinity purification of ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit εN-methyltransferase. Protein Expr. Purif. 6 (1995) 528–536. [PMID: 8527940]
2.  Ying, Z., Janney, N., Houtz, R.L. Organization and characterization of the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit N-methyltransferase gene in tobacco. Plant Mol. Biol. 32 (1996) 663–672. [PMID: 8980518]
3.  Dirk, L.M., Flynn, E.M., Dietzel, K., Couture, J.F., Trievel, R.C. and Houtz, R.L. Kinetic manifestation of processivity during multiple methylations catalyzed by SET domain protein methyltransferases. Biochemistry 46 (2007) 3905–3915. [PMID: 17338551]
4.  Magnani, R., Nayak, N.R., Mazarei, M., Dirk, L.M. and Houtz, R.L. Polypeptide substrate specificity of PsLSMT. A set domain protein methyltransferase. J. Biol. Chem. 282 (2007) 27857–27864. [PMID: 17635932]
5.  Mininno, M., Brugiere, S., Pautre, V., Gilgen, A., Ma, S., Ferro, M., Tardif, M., Alban, C. and Ravanel, S. Characterization of chloroplastic fructose 1,6-bisphosphate aldolases as lysine-methylated proteins in plants. J. Biol. Chem. 287 (2012) 21034–21044. [PMID: 22547063]
[EC 2.1.1.127 created 1999, modified 2012]
 
 
EC 2.1.1.258
Accepted name: 5-methyltetrahydrofolate:corrinoid/iron-sulfur protein Co-methyltransferase
Reaction: a [methyl-Co(III) corrinoid Fe-S protein] + tetrahydrofolate = a [Co(I) corrinoid Fe-S protein] + 5-methyltetrahydrofolate
Other name(s): acsE (gene name)
Systematic name: 5-methyltetrahydrofolate:corrinoid/iron-sulfur protein methyltransferase
Comments: Catalyses the transfer of a methyl group from the N5 group of methyltetrahydrofolate to the 5-methoxybenzimidazolylcobamide cofactor of a corrinoid/Fe-S protein. Involved, together with EC 1.2.7.4, carbon-monoxide dehydrogenase (ferredoxin) and EC 2.3.1.169, CO-methylating acetyl-CoA synthase, in the reductive acetyl coenzyme A (Wood-Ljungdahl) pathway of autotrophic carbon fixation in various bacteria and archaea.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Roberts, D.L., Zhao, S., Doukov, T. and Ragsdale, S.W. The reductive acetyl coenzyme A pathway: sequence and heterologous expression of active methyltetrahydrofolate:corrinoid/iron-sulfur protein methyltransferase from Clostridium thermoaceticum. J. Bacteriol. 176 (1994) 6127–6130. [PMID: 7928975]
2.  Doukov, T., Seravalli, J., Stezowski, J.J. and Ragsdale, S.W. Crystal structure of a methyltetrahydrofolate- and corrinoid-dependent methyltransferase. Structure 8 (2000) 817–830. [PMID: 10997901]
3.  Doukov, T.I., Hemmi, H., Drennan, C.L. and Ragsdale, S.W. Structural and kinetic evidence for an extended hydrogen-bonding network in catalysis of methyl group transfer. Role of an active site asparagine residue in activation of methyl transfer by methyltransferases. J. Biol. Chem. 282 (2007) 6609–6618. [PMID: 17172470]
[EC 2.1.1.258 created 2012]
 
 
EC 2.1.1.259
Accepted name: [fructose-bisphosphate aldolase]-lysine N-methyltransferase
Reaction: 3 S-adenosyl-L-methionine + [fructose-bisphosphate aldolase]-L-lysine = 3 S-adenosyl-L-homocysteine + [fructose-bisphosphate aldolase]-N6,N6,N6-trimethyl-L-lysine
Other name(s): rubisco methyltransferase; ribulose-bisphosphate-carboxylase/oxygenase N-methyltransferase; ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit εN-methyltransferase; S-adenosyl-L-methionine:[3-phospho-D-glycerate-carboxy-lyase (dimerizing)]-lysine 6-N-methyltransferase
Systematic name: S-adenosyl-L-methionine:[fructose-bisphosphate aldolase]-lysine N6-methyltransferase
Comments: The enzyme methylates a conserved lysine in the C-terminal part of higher plant fructose-bisphosphate aldolase (EC 4.1.2.13). The enzyme from pea (Pisum sativum) also methylates Lys-14 in the large subunits of hexadecameric higher plant ribulose-bisphosphate-carboxylase (EC 4.1.1.39) [2], but that from Arabidopsis thaliana does not.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, PDB
References:
1.  Magnani, R., Nayak, N.R., Mazarei, M., Dirk, L.M. and Houtz, R.L. Polypeptide substrate specificity of PsLSMT. A set domain protein methyltransferase. J. Biol. Chem. 282 (2007) 27857–27864. [PMID: 17635932]
2.  Mininno, M., Brugiere, S., Pautre, V., Gilgen, A., Ma, S., Ferro, M., Tardif, M., Alban, C. and Ravanel, S. Characterization of chloroplastic fructose 1,6-bisphosphate aldolases as lysine-methylated proteins in plants. J. Biol. Chem. 287 (2012) 21034–21044. [PMID: 22547063]
[EC 2.1.1.259 created 2012]
 
 
EC 2.1.1.260
Accepted name: rRNA small subunit pseudouridine methyltransferase Nep1
Reaction: S-adenosyl-L-methionine + pseudouridine1191 in yeast 18S rRNA = S-adenosyl-L-homocysteine + N1-methylpseudouridine1191 in yeast 18S rRNA
Other name(s): Nep1; nucleolar essential protein 1
Systematic name: S-adenosyl-L-methionine:18S rRNA (pseudouridine1191-N1)-methyltransferase
Comments: This enzyme, which occurs in both prokaryotes and eukaryotes, recognizes specific pseudouridine residues (Ψ) in small subunits of ribosomal RNA based on the local RNA structure. It recognizes Ψ914 in 16S rRNA from the archaeon Methanocaldococcus jannaschii, Ψ1191 in yeast 18S rRNA, and Ψ1248 in human 18S rRNA.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Taylor, A.B., Meyer, B., Leal, B.Z., Kötter, P., Schirf, V., Demeler, B., Hart, P.J., Entian, K.-D. and Wöhnert, J. The crystal structure of Nep1 reveals an extended SPOUT-class methyltransferase fold and a pre-organized SAM-binding site. Nucleic Acids Res. 36 (2008) 1542–1554. [PMID: 18208838]
2.  Wurm, J.P., Meyer, B., Bahr, U., Held, M., Frolow, O., Kötter, P., Engels, J.W., Heckel, A., Karas, M., Entian, K.-D. and Wöhnert, J. The ribosome assembly factor Nep1 responsible for Bowen-Conradi syndrome is a pseudouridine-N1-specific methyltransferase. Nucleic Acids Res. 38 (2010) 2387–2398. [PMID: 20047967]
3.  Meyer, B., Wurm, J.P., Kötter, P., Leisegang, M.S., Schilling, V., Buchhaupt, M., Held, M., Bahr, U., Karas, M., Heckel, A., Bohnsack, M.T., Wöhnert, J. and Entian, K.-D. The Bowen-Conradi syndrome protein Nep1 (Emg1) has a dual role in eukaryotic ribosome biogenesis, as an essential assembly factor and in the methylation of Ψ1191 in yeast 18S rRNA. Nucleic Acids Res. 39 (2011) 1526–1537. [PMID: 20972225]
[EC 2.1.1.260 created 2012]
 
 
EC 2.1.1.261
Accepted name: 4-dimethylallyltryptophan N-methyltransferase
Reaction: S-adenosyl-L-methionine + 4-dimethylallyl-L-tryptophan = S-adenosyl-L-homocysteine + 4-dimethylallyl-L-abrine
For diagram of ergot alkaloid biosynthesis, click here
Glossary: 4-dimethylallyl-L-tryptophan = 4-(3-methylbut-2-enyl)-L-tryptophan;
4-dimethylallyl-L-abrine = 4-(3-methylbut-2-enyl)-L-abrine
Other name(s): fgaMT (gene name); easF (gene name)
Systematic name: S-adenosyl-L-methionine:4-(3-methylbut-2-enyl)-L-tryptophan N-methyltransferase
Comments: The enzyme catalyses a step in the pathway leading to biosynthesis of ergot alkaloids in certain fungi.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Rigbers, O. and Li, S.M. Ergot alkaloid biosynthesis in Aspergillus fumigatus. Overproduction and biochemical characterization of a 4-dimethylallyltryptophan N-methyltransferase. J. Biol. Chem. 283 (2008) 26859–26868. [PMID: 18678866]
[EC 2.1.1.261 created 2012]
 
 
EC 2.1.1.262
Accepted name: squalene methyltransferase
Reaction: 2 S-adenosyl-L-methionine + squalene = 2 S-adenosyl-L-homocysteine + 3,22-dimethyl-1,2,23,24-tetradehydro-2,3,22,23-tetrahydrosqualene (overall reaction)
(1a) S-adenosyl-L-methionine + squalene = S-adenosyl-L-homocysteine + 3-methyl-1,2-didehydro-2,3-dihydrosqualene
(1b) S-adenosyl-L-methionine + 3-methyl-1,2-didehydro-2,3-dihydrosqualene = S-adenosyl-L-homocysteine + 3,22-dimethyl-1,2,23,24-tetradehydro-2,3,22,23-tetrahydrosqualene
For diagram of botryococcus braunii BOT22 squalene and botrycoccene biosynthesis, click here
Other name(s): TMT-1; TMT-2
Systematic name: S-adenosyl-L-methionine:squalene C-methyltransferase
Comments: Two isoforms differing in their specificity were isolated from the green alga Botryococcus braunii BOT22. TMT-1 gave more of the dimethylated form whereas TMT2 gave more of the monomethylated form.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Niehaus, T.D., Kinison, S., Okada, S., Yeo, Y.S., Bell, S.A., Cui, P., Devarenne, T.P. and Chappell, J. Functional identification of triterpene methyltransferases from Botryococcus braunii race B. J. Biol. Chem. 287 (2012) 8163–8173. [PMID: 22241476]
[EC 2.1.1.262 created 2012]
 
 
EC 2.1.1.263
Accepted name: botryococcene C-methyltransferase
Reaction: 2 S-adenosyl-L-methionine + C30 botryococcene = 2 S-adenosyl-L-homocysteine + 3,20-dimethyl-1,2,21,22-tetradehydro-2,3,20,21-tetrahydrobotryococcene (overall reaction)
(1a) S-adenosyl-L-methionine + C30 botryococcene = S-adenosyl-L-homocysteine + 3-methyl-1,2-didehydro-2,3-dihydrobotryococcene
(1b) S-adenosyl-L-methionine + 3-methyl-1,2-didehydro-2,3-dihydrobotryococcene = S-adenosyl-L-homocysteine + 3,20-dimethyl-1,2,21,22-tetradehydro-2,3,20,21-tetrahydrobotryococcene
(2a) S-adenosyl-L-methionine + C30 botryococcene = S-adenosyl-L-homocysteine + 20-methyl-21,22-didehydro-20,21-dihydrobotryococcene
(2b) S-adenosyl-L-methionine + 20-methyl-21,22-didehydro-20,21-dihydrobotryococcene = S-adenosyl-L-homocysteine + 3,20-dimethyl-1,2,21,22-tetradehydro-2,3,20,21-tetrahydrobotryococcene
For diagram of botryococcus braunii BOT22 squalene and botrycoccene biosynthesis, click here
Glossary: C30 botryococcene = (10S,13R)-10-ethenyl-2,6,10,13,17,21-hexamethyldocosa-2,5,11,16,20-pentaene
3-methyl-1,2-didehydro-2,3-dihydrobotryococcene = showacene
20-methyl-21,22-didehydro-20,21-dihydrobotryococcene = isoshowacene
Other name(s): TMT-3
Systematic name: S-adenosyl-L-methionine:botryococcene C-methyltransferase
Comments: Isolated from the green alga Botryococcus braunii BOT22. Shows a very weak activity with squalene.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Niehaus, T.D., Kinison, S., Okada, S., Yeo, Y.S., Bell, S.A., Cui, P., Devarenne, T.P. and Chappell, J. Functional identification of triterpene methyltransferases from Botryococcus braunii race B. J. Biol. Chem. 287 (2012) 8163–8173. [PMID: 22241476]
[EC 2.1.1.263 created 2012]
 
 
EC 2.1.1.264
Accepted name: 23S rRNA (guanine2069-N7)-methyltransferase
Reaction: S-adenosyl-L-methionine + guanine2069 in 23S rRNA = S-adenosyl-L-homocysteine + N7-methylguanine2069 in 23S rRNA
Other name(s): rlmK (gene name); 23S rRNA m7G2069 methyltransferase
Systematic name: S-adenosyl-L-methionine:23S rRNA (guanine2069-N7)-methyltransferase
Comments: The enzyme specifically methylates guanine2069 at position N7 in 23S rRNA. In γ-proteobacteria the enzyme also catalyses EC 2.1.1.173, 23S rRNA (guanine2445-N2)-methyltransferase, while in β-proteobacteria the activities are carried out by separate proteins [1]. The enzyme from the γ-proteobacterium Escherichia coli has RNA unwinding activity as well [1].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Kimura, S., Ikeuchi, Y., Kitahara, K., Sakaguchi, Y., Suzuki, T. and Suzuki, T. Base methylations in the double-stranded RNA by a fused methyltransferase bearing unwinding activity. Nucleic Acids Res. 40 (2012) 4071–4085. [PMID: 22210896]
[EC 2.1.1.264 created 2012]
 
 
EC 2.1.1.265
Accepted name: tellurite methyltransferase
Reaction: S-adenosyl-L-methionine + tellurite = S-adenosyl-L-homocysteine + methanetelluronate
Other name(s): TehB
Systematic name: S-adenosyl-L-methionine:tellurite methyltransferase
Comments: The enzyme is involved in the detoxification of tellurite. It can also methylate selenite and selenium dioxide.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Liu, M., Turner, R.J., Winstone, T.L., Saetre, A., Dyllick-Brenzinger, M., Jickling, G., Tari, L.W., Weiner, J.H. and Taylor, D.E. Escherichia coli TehB requires S-adenosylmethionine as a cofactor to mediate tellurite resistance. J. Bacteriol. 182 (2000) 6509–6513. [PMID: 11053398]
2.  Choudhury, H.G., Cameron, A.D., Iwata, S. and Beis, K. Structure and mechanism of the chalcogen-detoxifying protein TehB from Escherichia coli. Biochem. J. 435 (2011) 85–91. [PMID: 21244361]
[EC 2.1.1.265 created 2012]
 
 
*EC 2.3.1.177
Accepted name: 3,5-dihydroxybiphenyl synthase
Reaction: 3 malonyl-CoA + benzoyl-CoA = 4 CoA + 3,5-dihydroxybiphenyl + 4 CO2
For diagram of polyketides biosynthesis, click here
Other name(s): BIS1; biphenyl synthase (ambiguous)
Systematic name: malonyl-CoA:benzoyl-CoA malonyltransferase
Comments: A polyketide synthase that is involved in the production of the phytoalexin aucuparin. 2-Hydroxybenzoyl-CoA can also act as substrate but it leads to the derailment product 4-hydroxycoumarin (cf. EC 2.3.1.208, 4-hydroxycoumarin synthase) [2]. This enzyme uses the same starter substrate as EC 2.3.1.151, benzophenone synthase.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, CAS registry number: 1217551-24-0
References:
1.  Liu, B., Beuerle, T., Klundt, T. and Beerhues, L. Biphenyl synthase from yeast-extract-treated cell cultures of Sorbus aucuparia. Planta 218 (2004) 492–496. [PMID: 14595561]
2.  Liu, B., Raeth, T., Beuerle, T. and Beerhues, L. Biphenyl synthase, a novel type III polyketide synthase. Planta 225 (2007) 1495–1503. [PMID: 17109150]
[EC 2.3.1.177 created 2006, modified 2012]
 
 
EC 2.3.1.199
Accepted name: very-long-chain 3-oxoacyl-CoA synthase
Reaction: a very-long-chain acyl-CoA + malonyl-CoA = a very-long-chain 3-oxoacyl-CoA + CO2 + coenzyme A
Glossary: a very-long-chain acyl-CoA = an acyl-CoA thioester where the acyl chain contains 23 or more carbon atoms.
Other name(s): very-long-chain 3-ketoacyl-CoA synthase; very-long-chain β-ketoacyl-CoA synthase; condensing enzyme (ambiguous); CUT1 (gene name); CER6 (gene name); FAE1 (gene name); KCS (gene name); ELO (gene name)
Systematic name: malonyl-CoA:very-long-chain acyl-CoA malonyltransferase (decarboxylating and thioester-hydrolysing)
Comments: This is the first component of the elongase, a microsomal protein complex responsible for extending palmitoyl-CoA and stearoyl-CoA (and modified forms thereof) to very-long-chain acyl CoAs. Multiple forms exist with differing preferences for the substrate, and thus the specific form expressed determines the local composition of very-long-chain fatty acids [6,7]. For example, the FAE1 form from the plant Arabidopsis thaliana accepts only 16 and 18 carbon substrates, with oleoyl-CoA (18:1) being the preferred substrate [5], while CER6 from the same plant prefers substrates with chain length of C22 to C32 [4,8]. cf. EC 1.1.1.330, very-long-chain 3-oxoacyl-CoA reductase, EC 4.2.1.134, very-long-chain (3R)-3-hydroxyacyl-[acyl-carrier protein] dehydratase, and EC 1.3.1.93, very-long-chain enoyl-CoA reductase
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Toke, D.A. and Martin, C.E. Isolation and characterization of a gene affecting fatty acid elongation in Saccharomyces cerevisiae. J. Biol. Chem. 271 (1996) 18413–18422. [PMID: 8702485]
2.  Oh, C.S., Toke, D.A., Mandala, S. and Martin, C.E. ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. J. Biol. Chem. 272 (1997) 17376–17384. [PMID: 9211877]
3.  Dittrich, F., Zajonc, D., Huhne, K., Hoja, U., Ekici, A., Greiner, E., Klein, H., Hofmann, J., Bessoule, J.J., Sperling, P. and Schweizer, E. Fatty acid elongation in yeast--biochemical characteristics of the enzyme system and isolation of elongation-defective mutants. Eur. J. Biochem. 252 (1998) 477–485. [PMID: 9546663]
4.  Millar, A.A., Clemens, S., Zachgo, S., Giblin, E.M., Taylor, D.C. and Kunst, L. CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell 11 (1999) 825–838. [PMID: 10330468]
5.  Ghanevati, M. and Jaworski, J.G. Engineering and mechanistic studies of the Arabidopsis FAE1 β-ketoacyl-CoA synthase, FAE1 KCS. Eur. J. Biochem. 269 (2002) 3531–3539. [PMID: 12135493]
6.  Blacklock, B.J. and Jaworski, J.G. Substrate specificity of Arabidopsis 3-ketoacyl-CoA synthases. Biochem. Biophys. Res. Commun. 346 (2006) 583–590. [PMID: 16765910]
7.  Denic, V. and Weissman, J.S. A molecular caliper mechanism for determining very long-chain fatty acid length. Cell 130 (2007) 663–677. [PMID: 17719544]
8.  Tresch, S., Heilmann, M., Christiansen, N., Looser, R. and Grossmann, K. Inhibition of saturated very-long-chain fatty acid biosynthesis by mefluidide and perfluidone, selective inhibitors of 3-ketoacyl-CoA synthases. Phytochemistry 76 (2012) 162–171. [PMID: 22284369]
[EC 2.3.1.199 created 2012]
 
 
EC 2.3.1.200
Accepted name: lipoyl amidotransferase
Reaction: [glycine cleavage system H]-N6-lipoyl-L-lysine + a [lipoyl-carrier protein] = glycine cleavage system H + a [lipoyl-carrier protein]-N6-lipoyl-L-lysine
Glossary: lipoic acid = 5-[(3R)-1,2-dithiolan-3-yl]pentanoic acid
Other name(s): LipL (gene name, ambiguous)
Systematic name: [glycine cleavage system H]-N6-lipoyl-L-lysine:[lipoyl-carrier protein]-N6-L-lysine lipoyltransferase
Comments: In the bacterium Listeria monocytogenes the enzyme takes part in a pathway for scavenging of lipoic acid. The enzyme is bound to 2-oxo-acid dehydrogenases such as the pyruvate dehydrogenase complex, where it transfers the lipoyl moiety from lipoyl-[glycine cleavage system H] to the E2 subunits of the complexes.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Christensen, Q.H., Hagar, J.A., O'Riordan, M.X. and Cronan, J.E. A complex lipoate utilization pathway in Listeria monocytogenes. J. Biol. Chem. 286 (2011) 31447–31456. [PMID: 21768091]
[EC 2.3.1.200 created 2012]
 
 
EC 2.3.1.201
Accepted name: UDP-2-acetamido-3-amino-2,3-dideoxy-glucuronate N-acetyltransferase
Reaction: acetyl-CoA + UDP-2-acetamido-3-amino-2,3-dideoxy-α-D-glucuronate = CoA + UDP-2,3-diacetamido-2,3-dideoxy-α-D-glucuronate
For diagram of UDP-2,3-diacetamido-2,3-dideoxy-D-mannuronate biosynthesis, click here
Other name(s): WbpD; WlbB
Systematic name: acetyl-CoA:UDP-2-acetamido-3-amino-2,3-dideoxy-α-D-glucuronate N-acetyltransferase
Comments: This enzyme participates in the biosynthetic pathway for UDP-α-D-ManNAc3NAcA (UDP-2,3-diacetamido-2,3-dideoxy-α-D-mannuronic acid), an important precursor of B-band lipopolysaccharide.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Westman, E.L., McNally, D.J., Charchoglyan, A., Brewer, D., Field, R.A. and Lam, J.S. Characterization of WbpB, WbpE, and WbpD and reconstitution of a pathway for the biosynthesis of UDP-2,3-diacetamido-2,3-dideoxy-D-mannuronic acid in Pseudomonas aeruginosa. J. Biol. Chem. 284 (2009) 11854–11862. [PMID: 19282284]
2.  Larkin, A. and Imperiali, B. Biosynthesis of UDP-GlcNAc(3NAc)A by WbpB, WbpE, and WbpD: enzymes in the Wbp pathway responsible for O-antigen assembly in Pseudomonas aeruginosa PAO1. Biochemistry 48 (2009) 5446–5455. [PMID: 19348502]
[EC 2.3.1.201 created 2012]
 
 
EC 2.3.1.202
Accepted name: UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine N-acetyltransferase
Reaction: acetyl-CoA + UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine = CoA + UDP-2,4-diacetamido-2,4,6-trideoxy-β-L-altropyranose
Other name(s): PseH
Systematic name: acetyl-CoA:UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine N-acetyltransferase
Comments: Isolated from Helicobacter pylori. The enzyme is involved in the biosynthesis of pseudaminic acid.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Schoenhofen, I.C., McNally, D.J., Brisson, J.R. and Logan, S.M. Elucidation of the CMP-pseudaminic acid pathway in Helicobacter pylori: synthesis from UDP-N-acetylglucosamine by a single enzymatic reaction. Glycobiology 16 (2006) 8C–14C. [PMID: 16751642]
[EC 2.3.1.202 created 2012]
 
 
EC 2.3.1.203
Accepted name: UDP-N-acetylbacillosamine N-acetyltransferase
Reaction: acetyl-CoA + UDP-N-acetylbacillosamine = CoA + UDP-N,N′-diacetylbacillosamine
For diagram of legionaminic acid biosynthesis, click here
Glossary: UDP-N-acetylbacillosamine = UDP-4-amino-4,6-dideoxy-N-acetyl-α-D-glucosamine
UDP-N,N′-diacetylbacillosamine = UDP-2,4-diacetamido-2,4,6-trideoxy-α-D-glucopyranose
Other name(s): UDP-4-amino-4,6-dideoxy-N-acetyl-α-D-glucosamine N-acetyltransferase; pglD (gene name)
Systematic name: acetyl-CoA:UDP-4-amino-4,6-dideoxy-N-acetyl-α-D-glucosamine N-acetyltransferase
Comments: The product, UDP-N,N′-diacetylbacillosamine, is an intermediate in protein glycosylation pathways in several bacterial species, including N-linked glycosylation of certain L-asparagine residues in Campylobacter species [1,2] and O-linked glycosylation of certain L-serine residues in Neisseria species [3].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Olivier, N.B., Chen, M.M., Behr, J.R. and Imperiali, B. In vitro biosynthesis of UDP-N,N′-diacetylbacillosamine by enzymes of the Campylobacter jejuni general protein glycosylation system. Biochemistry 45 (2006) 13659–13669. [PMID: 17087520]
2.  Rangarajan, E.S., Ruane, K.M., Sulea, T., Watson, D.C., Proteau, A., Leclerc, S., Cygler, M., Matte, A. and Young, N.M. Structure and active site residues of PglD, an N-acetyltransferase from the bacillosamine synthetic pathway required for N-glycan synthesis in Campylobacter jejuni. Biochemistry 47 (2008) 1827–1836. [PMID: 18198901]
3.  Hartley, M.D., Morrison, M.J., Aas, F.E., Borud, B., Koomey, M. and Imperiali, B. Biochemical characterization of the O-linked glycosylation pathway in Neisseria gonorrhoeae responsible for biosynthesis of protein glycans containing N,N′-diacetylbacillosamine. Biochemistry 50 (2011) 4936–4948. [PMID: 21542610]
[EC 2.3.1.203 created 2012, modified 2013]
 
 
EC 2.3.1.204
Accepted name: octanoyl-[GcvH]:protein N-octanoyltransferase
Reaction: [glycine cleavage system H]-N6-octanoyl-L-lysine + a [lipoyl-carrier protein] = glycine cleavage system H + a [lipoyl-carrier protein]-N6-octanoyl-L-lysine
Glossary: GcvH = glycine cleavage system H]
Other name(s): LipL; octanoyl-[GcvH]:E2 amidotransferase; ywfL (gene name)
Systematic name: [glycine cleavage system H]-N6-octanoyl-L-lysine:[lipoyl-carrier protein]-N6-L-lysine octanoyltransferase
Comments: In the bacterium Bacillus subtilis it has been shown that the enzyme catalyses the amidotransfer of the octanoyl moiety from [glycine cleavage system H]-N6-octanoyl-L-lysine (i.e. octanoyl-GcvH) to the E2 subunit (dihydrolipoamide acetyltransferase) of pyruvate dehydrogenase.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Christensen, Q.H., Martin, N., Mansilla, M.C., de Mendoza, D. and Cronan, J.E. A novel amidotransferase required for lipoic acid cofactor assembly in Bacillus subtilis. Mol. Microbiol. 80 (2011) 350–363. [PMID: 21338421]
2.  Martin, N., Christensen, Q.H., Mansilla, M.C., Cronan, J.E. and de Mendoza, D. A novel two-gene requirement for the octanoyltransfer reaction of Bacillus subtilis lipoic acid biosynthesis. Mol. Microbiol. 80 (2011) 335–349. [PMID: 21338420]
[EC 2.3.1.204 created 2012]
 
 
EC 2.3.1.205
Accepted name: fumigaclavine B O-acetyltransferase
Reaction: acetyl-CoA + fumigaclavine B = CoA + fumigaclavine A
For diagram of fumigaclavin alkaloid biosynthesis, click here
Glossary: fumigaclavine B = 6,8β-dimethylergolin-9-ol;
fumigaclavine A = 6,8β-dimethylergolin-9β-yl acetate
Other name(s): FgaAT
Systematic name: acetyl-CoA:fumigaclavine B O-acetyltransferase
Comments: The enzyme participates in the biosynthesis of fumigaclavine C, an ergot alkaloid produced by some fungi of the Trichocomaceae family.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Liu, X., Wang, L., Steffan, N., Yin, W.B. and Li, S.M. Ergot alkaloid biosynthesis in Aspergillus fumigatus: FgaAT catalyses the acetylation of fumigaclavine B. ChemBioChem. 10 (2009) 2325–2328. [PMID: 19672909]
[EC 2.3.1.205 created 2012]
 
 
EC 2.3.1.206
Accepted name: 3,5,7-trioxododecanoyl-CoA synthase
Reaction: 3 malonyl-CoA + hexanoyl-CoA = 3 CoA + 3,5,7-trioxododecanoyl-CoA + 3 CO2
For diagram of cannabinoid biosynthesis, click here
Other name(s): TKS (ambiguous); olivetol synthase (incorrect)
Systematic name: malonyl-CoA:hexanoyl-CoA malonyltransferase (3,5,7-trioxododecanoyl-CoA-forming)
Comments: A polyketide synthase catalysing the first committed step in the cannabinoids biosynthetic pathway of the plant Cannabis sativa. The enzyme was previously thought to also function as a cyclase, but the cyclization is now known to be catalysed by EC 4.4.1.26, olivetolic acid cyclase.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Taura, F., Tanaka, S., Taguchi, C., Fukamizu, T., Tanaka, H., Shoyama, Y. and Morimoto, S. Characterization of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway. FEBS Lett. 583 (2009) 2061–2066. [PMID: 19454282]
2.  Gagne, S.J., Stout, J.M., Liu, E., Boubakir, Z., Clark, S.M. and Page, J.E. Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides. Proc. Natl. Acad. Sci. USA 109 (2012) 12811–12816. [PMID: 22802619]
[EC 2.3.1.206 created 2012]
 
 
EC 2.3.1.207
Accepted name: β-ketodecanoyl-[acyl-carrier-protein] synthase
Reaction: octanoyl-CoA + a malonyl-[acyl-carrier protein] = a 3-oxodecanoyl-[acyl-carrier protein] + CoA + CO2
Glossary: [acyl-carrier protein] = [acp]
Systematic name: octanoyl-CoA:malonyl-[acyl-carrier protein] C-heptanoylltransferase (decarboxylating, CoA-forming)
Comments: This enzyme, which has been characterized from the bacterium Pseudomonas aeruginosa PAO1, catalyses the condensation of octanoyl-CoA, obtained from exogenously supplied fatty acids via β-oxidation, with malonyl-[acp], forming 3-oxodecanoyl-[acp], an intermediate of the fatty acid elongation cycle. The enzyme provides a shunt for β-oxidation degradation intermediates into de novo fatty acid biosynthesis.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Yuan, Y., Leeds, J.A. and Meredith, T.C. Pseudomonas aeruginosa directly shunts β-oxidation degradation intermediates into de novo fatty acid biosynthesis. J. Bacteriol. 194 (2012) 5185–5196. [PMID: 22753057]
[EC 2.3.1.207 created 2012]
 
 
EC 2.3.1.208
Accepted name: 4-hydroxycoumarin synthase
Reaction: malonyl-CoA + 2-hydroxybenzoyl-CoA = 2 CoA + 4-hydroxycoumarin + CO2
For diagram of polyketides biosynthesis, click here
Glossary: 2-hydroxybenzoyl-CoA = salicyloyl-CoA
Other name(s): BIS2; BIS3
Systematic name: malonyl-CoA:2-hydroxybenzoyl-CoA malonyltransferase
Comments: The enzyme, a polyketide synthase, can also accept benzoyl-CoA as substrate, which it condenses with 3 malonyl-CoA molecules to form 3,5-dihydroxybiphenyl (cf. EC 2.3.1.177, biphenyl synthase) [1].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Liu, B., Raeth, T., Beuerle, T. and Beerhues, L. A novel 4-hydroxycoumarin biosynthetic pathway. Plant Mol. Biol. 72 (2010) 17–25. [PMID: 19757094]
[EC 2.3.1.208 created 2012]
 
 
EC 2.3.1.209
Accepted name: dTDP-4-amino-4,6-dideoxy-D-glucose acyltransferase
Reaction: acetyl-CoA + dTDP-4-amino-4,6-dideoxy-α-D-glucose = CoA + dTDP-4-acetamido-4,6-dideoxy-α-D-glucose
Other name(s): VioB
Systematic name: acetyl-CoA:dTDP-4-amino-4,6-dideoxy-α-D-glucose N-acetyltransferase
Comments: The non-activated product, 4-acetamido-4,6-dideoxy-α-D-glucose, is part of the O antigens of Shigella dysenteriae type 7 and Escherichia coli O7.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Wang, Y., Xu, Y., Perepelov, A.V., Qi, Y., Knirel, Y.A., Wang, L. and Feng, L. Biochemical characterization of dTDP-D-Qui4N and dTDP-D-Qui4NAc biosynthetic pathways in Shigella dysenteriae type 7 and Escherichia coli O7. J. Bacteriol. 189 (2007) 8626–8635. [PMID: 17905981]
[EC 2.3.1.209 created 2012]
 
 
EC 2.3.1.210
Accepted name: dTDP-4-amino-4,6-dideoxy-D-galactose acyltransferase
Reaction: acetyl-CoA + dTDP-4-amino-4,6-dideoxy-α-D-galactose = CoA + dTDP-4-acetamido-4,6-dideoxy-α-D-galactose
For diagram of dTDP-Fuc3NAc and dTDP-Fuc4NAc biosynthesis, click here
Glossary: dTDP-4-amino-4,6-dideoxy-α-D-galactose = dTDP-α-D-fucosamine
Other name(s): TDP-fucosamine acetyltransferase; WecD; RffC
Systematic name: acetyl-CoA:dTDP-4-amino-4,6-dideoxy-α-D-galactose N-acetyltransferase
Comments: The product, TDP-4-acetamido-4,6-dideoxy-D-galactose, is utilized in the biosynthesis of enterobacterial common antigen (ECA).
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Hung, M.N., Rangarajan, E., Munger, C., Nadeau, G., Sulea, T. and Matte, A. Crystal structure of TDP-fucosamine acetyltransferase (WecD) from Escherichia coli, an enzyme required for enterobacterial common antigen synthesis. J. Bacteriol. 188 (2006) 5606–5617. [PMID: 16855251]
[EC 2.3.1.210 created 2012]
 
 
EC 2.3.2.19
Accepted name: ribostamycin:4-(γ-L-glutamylamino)-(S)-2-hydroxybutanoyl-[BtrI acyl-carrier protein] 4-(γ-L-glutamylamino)-(S)-2-hydroxybutanoate transferase
Reaction: 4-(γ-L-glutamylamino)-(S)-2-hydroxybutanoyl-[BtrI acyl-carrier protein] + ribostamycin = γ-L-glutamyl-butirosin B + BtrI acyl-carrier protein
Other name(s): btrH (gene name)
Systematic name: ribostamycin:4-(γ-L-glutamylamino)-(S)-2-hydroxybutanoyl-[BtrI acyl-carrier protein] 4-(γ-L-glutamylamino)-(S)-2-hydroxybutanoate transferase
Comments: The enzyme attaches the side chain of the aminoglycoside antibiotics of the butirosin family. The side chain confers resistance against several aminoglycoside-modifying enzymes.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Llewellyn, N.M., Li, Y. and Spencer, J.B. Biosynthesis of butirosin: transfer and deprotection of the unique amino acid side chain. Chem. Biol. 14 (2007) 379–386. [PMID: 17462573]
[EC 2.3.2.19 created 2012]
 
 
*EC 2.4.1.60
Accepted name: abequosyltransferase
Reaction: CDP-α-D-abequose + α-D-mannopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-β-D-galactopyranosyl-diphosphodecaprenol = CDP + α-D-abequopyranosyl-(1→3)-α-D-mannopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-β-D-galactopyranosyl-diphosphodecaprenol
Glossary: abequose = 3,6-deoxy-D-xylo-hexose = 3,6-deoxy-D-galactose = 3-deoxy-D-fucose
Other name(s): trihexose diphospholipid abequosyltransferase
Systematic name: CDP-α-D-abequose:Man(α1→4)Rha(α1→3)Gal(β-1)-diphospholipid D-abequosyltransferase
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, CAS registry number: 37277-67-1
References:
1.  Osborn, M.J. and Weiner, I.M. Biosynthesis of a bacterial lipopolysaccharide. VI. Mechanism of incorporation of abequose into the O-antigen of Salmonella typhimurium. J. Biol. Chem. 243 (1968) 2631–2639. [PMID: 4297268]
2.  Liu, D., Lindqvist, L. and Reeves, P.R. Transferases of O-antigen biosynthesis in Salmonella enterica: dideoxyhexosyltransferases of groups B and C2 and acetyltransferase of group C2. J. Bacteriol. 177 (1995) 4084–4088. [PMID: 7541787]
[EC 2.4.1.60 created 1972, modified 2012]
 
 
EC 2.4.1.119
Transferred entry: dolichyl-diphosphooligosaccharideprotein glycotransferase. As the enzyme transfers more than one hexosyl group, it has been transferred to EC 2.4.99.18, dolichyl-diphosphooligosaccharideprotein glycotransferase
[EC 2.4.1.119 created 1984, deleted 2012]
 
 
*EC 2.4.1.131
Accepted name: GDP-Man:Man3GlcNAc2-PP-dolichol α-1,2-mannosyltransferase
Reaction: 2 GDP-α-D-mannose + α-D-Man-(1→3)-[α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol = 2 GDP + α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol
For diagram of dolichyltetradecasaccharide biosynthesis, click here
Other name(s): ALG11; ALG11 mannosyltransferase; LEW3 (gene name); At2G40190 (gene name); gmd3 (gene name); galactomannan deficiency protein 3; GDP-mannose:glycolipid 1,2-α-D-mannosyltransferase; glycolipid 2-α-mannosyltransferase; GDP-mannose:glycolipid 2-α-D-mannosyltransferase; GDP-Man:Man3GlcNAc2-PP-Dol α-1,2-mannosyltransferase; GDP-α-D-mannose:D-Man-α-(1→3)-[D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol 2-α-D-mannosyltransferase
Systematic name: GDP-α-D-mannose:α-D-Man-(1→3)-[α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol 2-α-D-mannosyltransferase (configuration-retaining)
Comments: The biosynthesis of asparagine-linked glycoproteins (N-linked protein glycosylation) utilizes a dolichyl diphosphate-linked glycosyl donor, which is assembled by the series of membrane-bound glycosyltransferases that comprise the dolichol pathway. ALG11 mannosyltransferase from Saccharomyces cerevisiae carries out two sequential steps in the formation of the lipid-linked core oligosaccharide, adding two mannose residues in α(1→2) linkages to the nascent oligosaccharide.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, CAS registry number: 74506-43-7
References:
1.  O'Reilly, M.K., Zhang, G. and Imperiali, B. In vitro evidence for the dual function of Alg2 and Alg11: essential mannosyltransferases in N-linked glycoprotein biosynthesis. Biochemistry 45 (2006) 9593–9603. [PMID: 16878994]
2.  Absmanner, B., Schmeiser, V., Kampf, M. and Lehle, L. Biochemical characterization, membrane association and identification of amino acids essential for the function of Alg11 from Saccharomyces cerevisiae, an α1,2-mannosyltransferase catalysing two sequential glycosylation steps in the formation of the lipid-linked core oligosaccharide. Biochem. J. 426 (2010) 205–217. [PMID: 19929855]
3.  Schutzbach, J.S., Springfield, J.D. and Jensen, J.W. The biosynthesis of oligosaccharide-lipids. Formation of an α-1,2-mannosyl-mannose linkage. J. Biol. Chem. 255 (1980) 4170–4175. [PMID: 6154707]
[EC 2.4.1.131 created 1984, modified 2011, modified 2012]
 
 
*EC 2.4.1.202
Accepted name: 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one 2-D-glucosyltransferase
Reaction: (1) UDP-α-D-glucose + 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one = UDP + (2R)-4-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside
(2) UDP-α-D-glucose + 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one = UDP + (2R)-4-hydroxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside
For diagram of benzoxazinone biosynthesis, click here
Glossary: 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one = DIBOA
2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one = DIMBOA
(2R)-4-hydroxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside = DIBOA β-D-glucoside
(2R)-4-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside = DIMBOA β-D-glucoside
Other name(s): uridine diphosphoglucose-2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one 2-glucosyltransferase; BX8; BX9; benzoxazinoid glucosyltransferase; DIMBOA glucosyltransferase
Systematic name: UDP-α-D-glucose:2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one 2-β-D-glucosyltransferase
Comments: The enzyme is involved in the detoxification of the benzoxazinoids DIBOA (2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one) and DIMBOA (2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one) which are stored as the respective non-toxic glucosides in the vacuoles in some plants, most commonly from the family of Poaceae (grasses). Benzoxazinoids are known to exhibit antimicrobial, antifeedant, and antiinsecticidal effects and are involved in the interaction of plants with other plants, insects, or microorganisms.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, CAS registry number: 122544-56-3
References:
1.  Bailey, B.A. and Larson, R.L. Hydroxamic acid glucosyltransferases from maize seedlings. Plant Physiol. 90 (1989) 1071–1076. [PMID: 16666853]
2.  von Rad, U., Huttl, R., Lottspeich, F., Gierl, A. and Frey, M. Two glucosyltransferases are involved in detoxification of benzoxazinoids in maize. Plant J. 28 (2001) 633–642. [PMID: 11851909]
[EC 2.4.1.202 created 1992, modified 2012]
 
 
*EC 2.4.1.256
Accepted name: dolichyl-P-Glc:Glc2Man9GlcNAc2-PP-dolichol α-1,2-glucosyltransferase
Reaction: dolichyl β-D-glucosyl phosphate + D-Glc-α-(1→3)-D-Glc-α-(1→3)-D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→6)]-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol = D-Glc-α-(1→2)-D-Glc-α-(1→3)-D-Glc-α-(1→3)-D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→6)]-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol + dolichyl phosphate
For diagram of dolichyltetradecasaccharide biosynthesis, click here
Other name(s): ALG10; Dol-P-Glc:Glc2Man9GlcNAc2-PP-Dol α-1,2-glucosyltransferase
Systematic name: dolichyl β-D-glucosyl phosphate:D-Glc-α-(1→3)-D-Glc-α-(1→3)-D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→6)]-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol 2-α-D-glucosyltransferase
Comments: This eukaryotic enzyme performs the final step in the synthesis of the lipid-linked oligosaccharide, attaching D-glucose in an α-1,2-linkage to the outermost D-glucose in the long branch. The lipid-linked oligosaccharide is involved in N-linked protein glycosylation of selected asparagine residues of nascent polypeptide chains in eukaryotic cells.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Burda, P. and Aebi, M. The ALG10 locus of Saccharomyces cerevisiae encodes the α-1,2 glucosyltransferase of the endoplasmic reticulum: the terminal glucose of the lipid-linked oligosaccharide is required for efficient N-linked glycosylation. Glycobiology 8 (1998) 455–462. [PMID: 9597543]
[EC 2.4.1.256 created 2011, modified 2012]
 
 
*EC 2.4.1.257
Accepted name: GDP-Man:Man2GlcNAc2-PP-dolichol α-1,6-mannosyltransferase
Reaction: GDP-α-D-mannose + α-D-Man-(1→3)-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol = GDP + α-D-Man-(1→3)-[α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol
For diagram of dolichyltetradecasaccharide biosynthesis, click here
Other name(s): GDP-Man:Man2GlcNAc2-PP-Dol α-1,6-mannosyltransferase; Alg2 mannosyltransferase (ambiguous); ALG2 (gene name, ambiguous); GDP-Man:Man1GlcNAc2-PP-dolichol mannosyltransferase (ambiguous); GDP-D-mannose:D-Man-α-(1→3)-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol α-6-mannosyltransferase
Systematic name: GDP-α-D-mannose:α-D-Man-(1→3)-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol 6-α-D-mannosyltransferase (configuration-retaining)
Comments: The biosynthesis of asparagine-linked glycoproteins utilizes a dolichyl diphosphate-linked glycosyl donor, which is assembled by the series of membrane-bound glycosyltransferases that comprise the dolichol pathway. Alg2 mannosyltransferase from Saccharomyces cerevisiae carries out an α1,3-mannosylation (cf. EC 2.4.1.132) of β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol, followed by an α1,6-mannosylation, to form the first branched pentasaccharide intermediate of the dolichol pathway [1,2].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Kampf, M., Absmanner, B., Schwarz, M. and Lehle, L. Biochemical characterization and membrane topology of Alg2 from Saccharomyces cerevisiae as a bifunctional α1,3- and 1,6-mannosyltransferase involved in lipid-linked oligosaccharide biosynthesis. J. Biol. Chem. 284 (2009) 11900–11912. [PMID: 19282279]
2.  O'Reilly, M.K., Zhang, G. and Imperiali, B. In vitro evidence for the dual function of Alg2 and Alg11: essential mannosyltransferases in N-linked glycoprotein biosynthesis. Biochemistry 45 (2006) 9593–9603. [PMID: 16878994]
[EC 2.4.1.257 created 2011, modified 2012]
 
 
*EC 2.4.1.261
Accepted name: dolichyl-P-Man:Man8GlcNAc2-PP-dolichol α-1,2-mannosyltransferase
Reaction: dolichyl β-D-mannosyl phosphate + α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol = α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol + dolichyl phosphate
For diagram of dolichyltetradecasaccharide biosynthesis, click here
Other name(s): ALG9; ALG9 α1,2 mannosyltransferase; dolichylphosphomannose-dependent ALG9 mannosyltransferase; ALG9 mannosyltransferase; Dol-P-Man:Man8GlcNAc2-PP-Dol α-1,2-mannosyltransferase; dolichyl β-D-mannosyl phosphate:D-Man-α-(1→2)-D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→2)-D-Man-α-(1→3)-[D-Man-α-(1→6)]-D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol 2-α-D-mannosyltransferase
Systematic name: dolichyl β-D-mannosyl phosphate:α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol 2-α-D-mannosyltransferase (configuration-inverting)
Comments: The formation of N-glycosidic linkages of glycoproteins involves the ordered assembly of the common Glc3Man9GlcNAc2 core-oligosaccharide on the lipid carrier dolichyl diphosphate. Early mannosylation steps occur on the cytoplasmic side of the endoplasmic reticulum with GDP-Man as donor, the final reactions from Man5GlcNAc2-PP-Dol to Man9Glc-NAc2-PP-Dol on the lumenal side use dolichyl β-D-mannosyl phosphate. ALG9 mannosyltransferase catalyses the addition of two different α-1,2-mannose residues: the addition of α-1,2-mannose to Man6GlcNAc2-PP-Dol (EC 2.4.1.259) and the addition of α-1,2-mannose to Man8GlcNAc2-PP-Dol (EC 2.4.1.261).
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Vleugels, W., Keldermans, L., Jaeken, J., Butters, T.D., Michalski, J.C., Matthijs, G. and Foulquier, F. Quality control of glycoproteins bearing truncated glycans in an ALG9-defective (CDG-IL) patient. Glycobiology 19 (2009) 910–917. [PMID: 19451548]
2.  Frank, C.G. and Aebi, M. ALG9 mannosyltransferase is involved in two different steps of lipid-linked oligosaccharide biosynthesis. Glycobiology 15 (2005) 1156–1163. [PMID: 15987956]
[EC 2.4.1.261 created 1976 as EC 2.4.1.130, part transferred 2011 to EC 2.4.1.261, modified 2012]
 
 
EC 2.4.1.282
Accepted name: 3-O-α-D-glucosyl-L-rhamnose phosphorylase
Reaction: 3-O-α-D-glucopyranosyl-L-rhamnopyranose + phosphate = L-rhamnopyranose + β-D-glucose 1-phosphate
Other name(s): cphy1019 (gene name)
Systematic name: 3-O-α-D-glucopyranosyl-L-rhamnopyranose:phosphate β-D-glucosyltransferase
Comments: The enzyme does not phosphorylate α,α-trehalose, kojibiose, nigerose, or maltose. In the reverse phosphorolysis reaction the enzyme is specific for L-rhamnose as acceptor and β-D-glucose 1-phosphate as donor.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Nihira, T., Nakai, H. and Kitaoka, M. 3-O-α-D-glucopyranosyl-L-rhamnose phosphorylase from Clostridium phytofermentans. Carbohydr. Res. 350 (2012) 94–97. [PMID: 22277537]
[EC 2.4.1.282 created 2012]
 
 
EC 2.4.1.283
Accepted name: 2-deoxystreptamine N-acetyl-D-glucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + 2-deoxystreptamine = UDP + 2′-N-acetylparomamine
For diagram of paromamine biosynthesis, click here
Other name(s): btrM (gene name); neoD (gene name); kanF (gene name)
Systematic name: UDP-N-acetyl-α-D-glucosamine:2-deoxystreptamine N-acetyl-D-glucosaminyltransferase
Comments: Involved in the biosynthetic pathways of several clinically important aminocyclitol antibiotics, including kanamycin, butirosin, neomycin and ribostamycin. Unlike the enzyme from the bacterium Streptomyces kanamyceticus, which can also accept UDP-D-glucose [2] (cf. EC 2.4.1.284, 2-deoxystreptamine glucosyltransferase), the enzyme from Bacillus circulans can only accept UDP-N-acetyl-α-D-glucosamine [1].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Yokoyama, K., Yamamoto, Y., Kudo, F. and Eguchi, T. Involvement of two distinct N-acetylglucosaminyltransferases and a dual-function deacetylase in neomycin biosynthesis. ChemBioChem. 9 (2008) 865–869. [PMID: 18311744]
2.  Park, J.W., Park, S.R., Nepal, K.K., Han, A.R., Ban, Y.H., Yoo, Y.J., Kim, E.J., Kim, E.M., Kim, D., Sohng, J.K. and Yoon, Y.J. Discovery of parallel pathways of kanamycin biosynthesis allows antibiotic manipulation. Nat. Chem. Biol. 7 (2011) 843–852. [PMID: 21983602]
[EC 2.4.1.283 created 2012]
 
 
EC 2.4.1.284
Accepted name: 2-deoxystreptamine glucosyltransferase
Reaction: UDP-α-D-glucose + 2-deoxystreptamine = UDP + 2′-deamino-2′-hydroxyparomamine
Glossary: 2′-deamino-2′-hydroxyparomamine = 4-O-α-D-glucopyranosyl-2-deoxy-D-streptamine
Other name(s): kanF (gene name)
Systematic name: UDP-α-D-glucose:2-deoxystreptamine 6-α-D-glucosyltransferase
Comments: Involved in the biosynthesis of kanamycin B and kanamycin C. Also catalyses EC 2.4.1.283, 2-deoxystreptamine N-acetyl-D-glucosaminyltransferase, but activity is only one fifth of that with UDP-α-D-glucose.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Park, J.W., Park, S.R., Nepal, K.K., Han, A.R., Ban, Y.H., Yoo, Y.J., Kim, E.J., Kim, E.M., Kim, D., Sohng, J.K. and Yoon, Y.J. Discovery of parallel pathways of kanamycin biosynthesis allows antibiotic manipulation. Nat. Chem. Biol. 7 (2011) 843–852. [PMID: 21983602]
[EC 2.4.1.284 created 2012]
 
 
EC 2.4.1.285
Accepted name: UDP-GlcNAc:ribostamycin N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + ribostamycin = UDP + 2′′′-acetyl-6′′′-hydroxyneomycin C
Other name(s): neoK (gene name)
Systematic name: UDP-N-acetyl-α-D-glucosamine:ribostamycin N-acetylglucosaminyltransferase
Comments: Involved in biosynthesis of the aminoglycoside antibiotic neomycin. Requires a divalent metal ion, optimally Mg2+, Mn2+ or Co2+.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Yokoyama, K., Yamamoto, Y., Kudo, F. and Eguchi, T. Involvement of two distinct N-acetylglucosaminyltransferases and a dual-function deacetylase in neomycin biosynthesis. ChemBioChem. 9 (2008) 865–869. [PMID: 18311744]
[EC 2.4.1.285 created 2012]
 
 
EC 2.4.1.286
Accepted name: chalcone 4′-O-glucosyltransferase
Reaction: (1) UDP-α-D-glucose + naringenin chalcone = UDP + 2′,4,4′,6′-tetrahydroxychalcone 4′-O-β-D-glucoside
(2) UDP-α-D-glucose + 2′,3,4,4′,6′-pentahydroxychalcone = UDP + 2′,3,4,4′,6′-pentahydroxychalcone 4′-O-β-D-glucoside
For diagram of aureusidin biosynthesis, click here
Glossary: naringenin chalcone = 2′,4,4′,6′-tetrahydroxychalcone = 3-(4-hydroxyphemyl)-1-(2,4,6-trihydroxyphenyl)prop-2-en-1-one
Other name(s): 4′CGT
Systematic name: UDP-α-D-glucose:2′,4,4′,6′-tetrahydroxychalcone 4′-O-β-D-glucosyltransferase
Comments: Isolated from the plant Antirrhinum majus (snapdragon). Involved in the biosynthesis of aurones, plant flavonoids that provide yellow color to the flowers.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Ono, E., Fukuchi-Mizutani, M., Nakamura, N., Fukui, Y., Yonekura-Sakakibara, K., Yamaguchi, M., Nakayama, T., Tanaka, T., Kusumi, T. and Tanaka, Y. Yellow flowers generated by expression of the aurone biosynthetic pathway. Proc. Natl. Acad. Sci. USA 103 (2006) 11075–11080. [PMID: 16832053]
[EC 2.4.1.286 created 2012]
 
 
EC 2.4.1.287
Accepted name: rhamnopyranosyl-N-acetylglucosaminyl-diphospho-decaprenol β-1,4/1,5-galactofuranosyltransferase
Reaction: 2 UDP-α-D-galactofuranose + α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans,octacis-decaprenol = 2 UDP + β-D-galactofuranosyl-(1→5)-β-D-galactofuranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans,octacis-decaprenol (overall reaction)
(1a) UDP-α-D-galactofuranose + α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans-octacis-decaprenol = UDP + β-D-galactofuranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans-octacis-decaprenol
(1b) UDP-α-D-galactofuranose + β-D-galactofuranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans-octacis-decaprenol = UDP + β-D-galactofuranosyl-(1→5)-β-D-galactofuranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans-octacis-decaprenol
For diagram of galactofuranan biosynthesis, click here
Other name(s): arabinogalactan galactofuranosyl transferase 1; GlfT1
Systematic name: UDP-α-D-galactofuranose:α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans,octacis-decaprenol 4-β/4-β-galactofuranosyltransferase (configuration-inverting)
Comments: Isolated from the bacteria Mycobacterium tuberculosis and M. smegmatis, the enzyme has dual β-(1→4) and β-(1→5) transferase action. Involved in the formation of the cell wall in mycobacteria.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Mikusová, K., Belánová, M., Korduláková, J., Honda, K., McNeil, M.R., Mahapatra, S., Crick, D.C. and Brennan, P.J. Identification of a novel galactosyl transferase involved in biosynthesis of the mycobacterial cell wall. J. Bacteriol. 188 (2006) 6592–6598. [PMID: 16952951]
2.  Belánová, M., Dianisková, P., Brennan, P.J., Completo, G.C., Rose, N.L., Lowary, T.L. and Mikusová, K. Galactosyl transferases in mycobacterial cell wall synthesis. J. Bacteriol. 190 (2008) 1141–1145. [PMID: 18055597]
[EC 2.4.1.287 created 2012, modified 2017]
 
 
EC 2.4.1.288
Accepted name: galactofuranosylgalactofuranosylrhamnosyl-N-acetylglucosaminyl-diphospho-decaprenol β-1,5/1,6-galactofuranosyltransferase
Reaction: 28 UDP-α-D-galactofuranose + β-D-galactofuranosyl-(1→5)-β-D-galactofuranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans,octacis-decaprenol = 28 UDP + [β-D-galactofuranosyl-(1→5)-β-D-galactofuranosyl-(1→6)]14-β-D-galactofuranosyl-(1→5)-β-D-galactofuranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans,octacis-decaprenol
For diagram of arabinofuranogalactofuranan biosynthesis, click here
Other name(s): GlfT2
Systematic name: UDP-α-D-galactofuranose:β-D-galactofuranosyl-(1→5)-β-D-galactofuranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans,octacis-decaprenol 4-β/5-β-D-galactofuranosyltransferase
Comments: Isolated from Mycobacterium tuberculosis. The enzyme adds approximately twenty-eight galactofuranosyl residues with alternating 1→5 and 1→6 links forming a galactan domain with approximately thirty galactofuranosyl residues. Involved in the formation of the cell wall in mycobacteria.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Rose, N.L., Zheng, R.B., Pearcey, J., Zhou, R., Completo, G.C. and Lowary, T.L. Development of a coupled spectrophotometric assay for GlfT2, a bifunctional mycobacterial galactofuranosyltransferase. Carbohydr. Res. 343 (2008) 2130–2139. [PMID: 18423586]
2.  May, J.F., Splain, R.A., Brotschi, C. and Kiessling, L.L. A tethering mechanism for length control in a processive carbohydrate polymerization. Proc. Natl. Acad. Sci. USA 106 (2009) 11851–11856. [PMID: 19571009]
3.  Wheatley, R.W., Zheng, R.B., Richards, M.R., Lowary, T.L. and Ng, K.K. Tetrameric structure of the GlfT2 galactofuranosyltransferase reveals a scaffold for the assembly of mycobacterial Arabinogalactan. J. Biol. Chem. 287 (2012) 28132–28143. [PMID: 22707726]
[EC 2.4.1.288 created 2012]
 
 
EC 2.4.1.289
Accepted name: N-acetylglucosaminyl-diphospho-decaprenol L-rhamnosyltransferase
Reaction: dTDP-6-deoxy-β-L-mannose + N-acetyl-α-D-glucosaminyl-diphospho-trans,octacis-decaprenol = dTDP + α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans,octacis-decaprenol
For diagram of galactofuranan biosynthesis, click here
Glossary: dTDP-6-deoxy-β-L-mannose = dTDP-4-β-L-rhamnose
Other name(s): WbbL
Systematic name: dTDP-6-deoxy-β-L-mannose:N-acetyl-α-D-glucosaminyl-diphospho-trans,octacis-decaprenol 3-α-L-rhamnosyltransferase
Comments: Requires Mn2+ or Mg2+. Isolated from Mycobacterium smegmatis [1] and Mycobacterium tuberculosis [2]. The enzyme catalyses the addition of a rhamnosyl unit to N-acetyl-α-D-glucosaminyl-diphospho-trans,octacis-decaprenol, completing the synthesis of the linkage unit that attaches the arabinogalactan moiety to the peptidoglycan moiety in Mycobacterial cell wall.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Mills, J.A., Motichka, K., Jucker, M., Wu, H.P., Uhlik, B.C., Stern, R.J., Scherman, M.S., Vissa, V.D., Pan, F., Kundu, M., Ma, Y.F. and McNeil, M. Inactivation of the mycobacterial rhamnosyltransferase, which is needed for the formation of the arabinogalactan-peptidoglycan linker, leads to irreversible loss of viability. J. Biol. Chem. 279 (2004) 43540–43546. [PMID: 15294902]
2.  Grzegorzewicz, A.E., Ma, Y., Jones, V., Crick, D., Liav, A. and McNeil, M.R. Development of a microtitre plate-based assay for lipid-linked glycosyltransferase products using the mycobacterial cell wall rhamnosyltransferase WbbL. Microbiology 154 (2008) 3724–3730. [PMID: 19047740]
[EC 2.4.1.289 created 2012]
 
 
EC 2.4.1.290
Accepted name: N,N′-diacetylbacillosaminyl-diphospho-undecaprenol α-1,3-N-acetylgalactosaminyltransferase
Reaction: UDP-N-acetyl-α-D-galactosamine + N,N′-diacetyl-α-D-bacillosaminyl-diphospho-tritrans,heptacis-undecaprenol = UDP + N-acetyl-D-galactosaminyl-α-(1→3)-N,N′-diacetyl-α-D-bacillosaminyl-diphospho-tritrans,heptacis-undecaprenol
For diagram of undecaprenyldiphosphoheptasaccharide biosynthesis, click here
Glossary: N,N′-diacetyl-D-bacillosamine = 2,4-diacetamido-2,4,6-trideoxy-D-glucopyranose
Other name(s): PglA
Systematic name: UDP-N-acetyl-α-D-galactosamine:N,N′-diacetyl-α-D-bacillosaminyl-diphospho-tritrans,heptacis-undecaprenol 3-α-N-acetyl-D-galactosaminyltransferase
Comments: Isolated from Campylobacter jejuni. Part of a bacterial N-linked glycosylation pathway.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Glover, K.J., Weerapana, E. and Imperiali, B. In vitro assembly of the undecaprenylpyrophosphate-linked heptasaccharide for prokaryotic N-linked glycosylation. Proc. Natl. Acad. Sci. USA 102 (2005) 14255–14259. [PMID: 16186480]
[EC 2.4.1.290 created 2012]
 
 
EC 2.4.1.291
Accepted name: N-acetylgalactosamine-N,N′-diacetylbacillosaminyl-diphospho-undecaprenol 4-α-N-acetylgalactosaminyltransferase
Reaction: UDP-N-acetyl-α-D-galactosamine + N-acetyl-D-galactosaminyl-α-(1→3)-N,N′-diacetyl-α-D-bacillosaminyl-diphospho-tritrans,heptacis-undecaprenol = UDP + N-acetyl-D-galactosaminyl-α-(1→4)-N-acetyl-D-galactosaminyl-α-(1→3)-N,N′-diacetyl-α-D-bacillosaminyl-diphospho-tritrans,heptacis-undecaprenol
For diagram of undecaprenyldiphosphoheptasaccharide biosynthesis, click here
Glossary: N,N′-diacetyl-D-bacillosamine = 2,4-diacetamido-2,4,6-trideoxy-D-glucopyranose
Other name(s): PglJ
Systematic name: UDP-N-acetyl-α-D-galactosamine:N-acetylgalactosaminyl-α-(1→3)-N,N′-diacetyl-α-D-bacillosaminyl-diphospho-tritrans,heptacis-undecaprenol 3-α-N-acetyl-D-galactosaminyltransferase
Comments: Isolated from Campylobacter jejuni. Part of a bacterial N-linked glycosylation pathway.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Glover, K.J., Weerapana, E. and Imperiali, B. In vitro assembly of the undecaprenylpyrophosphate-linked heptasaccharide for prokaryotic N-linked glycosylation. Proc. Natl. Acad. Sci. USA 102 (2005) 14255–14259. [PMID: 16186480]
2.  Chen, M.M., Weerapana, E., Ciepichal, E., Stupak, J., Reid, C.W., Swiezewska, E. and Imperiali, B. Polyisoprenol specificity in the Campylobacter jejuni N-linked glycosylation pathway. Biochemistry 46 (2007) 14342–14348. [PMID: 18034500]
[EC 2.4.1.291 created 2012]
 
 
EC 2.4.1.292
Accepted name: GalNAc-α-(1→4)-GalNAc-α-(1→3)-diNAcBac-PP-undecaprenol α-1,4-N-acetyl-D-galactosaminyltransferase
Reaction: 3 UDP-N-acetyl-α-D-galactosamine + GalNAc-α-(1→4)-GalNAc-α-(1→3)-diNAcBac-PP-tritrans,heptacis-undecaprenol = 3 UDP + [GalNAc-α-(1→4)]4-GalNAc-α-(1→3)-diNAcBac-PP-tritrans,heptacis-undecaprenol
For diagram of undecaprenyldiphosphoheptasaccharide biosynthesis, click here
Glossary: diNAcBac = N,N′-diacetyl-D-bacillosamine = 2,4-diacetamido-2,4,6-trideoxy-D-glucopyranose
Other name(s): PglH
Systematic name: UDP-N-acetyl-α-D-galactosamine:GalNAc-α-(1→4)-GalNAc-α-(1→3)-diNAcBac-PP-tritrans,heptacis-undecaprenol 4-α-N-acetyl-D-galactosaminyltransferase
Comments: Isolated from Campylobacter jejuni. Part of a bacterial N-linked glycosylation pathway.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Glover, K.J., Weerapana, E. and Imperiali, B. In vitro assembly of the undecaprenylpyrophosphate-linked heptasaccharide for prokaryotic N-linked glycosylation. Proc. Natl. Acad. Sci. USA 102 (2005) 14255–14259. [PMID: 16186480]
2.  Troutman, J.M. and Imperiali, B. Campylobacter jejuni PglH is a single active site processive polymerase that utilizes product inhibition to limit sequential glycosyl transfer reactions. Biochemistry 48 (2009) 2807–2816. [PMID: 19159314]
3.  Borud, B., Viburiene, R., Hartley, M.D., Paulsen, B.S., Egge-Jacobsen, W., Imperiali, B. and Koomey, M. Genetic and molecular analyses reveal an evolutionary trajectory for glycan synthesis in a bacterial protein glycosylation system. Proc. Natl. Acad. Sci. USA 108 (2011) 9643–9648. [PMID: 21606362]
[EC 2.4.1.292 created 2012]
 
 
EC 2.4.1.293
Accepted name: GalNAc5-diNAcBac-PP-undecaprenol β-1,3-glucosyltransferase
Reaction: UDP-α-D-glucose + [GalNAc-α-(1→4)]4-GalNAc-α-(1→3)-diNAcBac-diphospho-tritrans,heptacis-undecaprenol = UDP + [GalNAc-α-(1→4)]2-[Glc-β-(1→3)]-[GalNAc-α-(1→4)]2-GalNAc-α-(1→3)-diNAcBac-diphospho-tritrans,heptacis-undecaprenol
For diagram of undecaprenyldiphosphoheptasaccharide biosynthesis, click here
Glossary: diNAcBac = N,N′-diacetyl-D-bacillosamine = 2,4-diacetamido-2,4,6-trideoxy-D-glucopyranose
Other name(s): PglI
Systematic name: UDP-α-D-glucose:[GalNAc-α-(1→4)]4-GalNAc-α-(1→3)-diNAcBac-diphospho-tritrans,heptacis-undecaprenol 3-β-D-glucosyltransferase
Comments: Isolated from the bacterium Campylobacter jejuni. Part of a bacterial N-linked glycosylation pathway.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Glover, K.J., Weerapana, E. and Imperiali, B. In vitro assembly of the undecaprenylpyrophosphate-linked heptasaccharide for prokaryotic N-linked glycosylation. Proc. Natl. Acad. Sci. USA 102 (2005) 14255–14259. [PMID: 16186480]
2.  Kelly, J., Jarrell, H., Millar, L., Tessier, L., Fiori, L.M., Lau, P.C., Allan, B. and Szymanski, C.M. Biosynthesis of the N-linked glycan in Campylobacter jejuni and addition onto protein through block transfer. J. Bacteriol. 188 (2006) 2427–2434. [PMID: 16547029]
[EC 2.4.1.293 created 2012]
 
 
EC 2.4.2.45
Accepted name: decaprenyl-phosphate phosphoribosyltransferase
Reaction: trans,octacis-decaprenyl phosphate + 5-phospho-α-D-ribose 1-diphosphate = trans,octacis-decaprenylphospho-β-D-ribofuranose 5-phosphate + diphosphate
For diagram of decaprenylphosphoarabinofuranose biosynthesis, click here
Other name(s): 5-phospho-α-D-ribose-1-diphosphate:decaprenyl-phosphate 5-phosphoribosyltransferase; 5-phospho-α-D-ribose 1-pyrophosphate:decaprenyl phosphate 5-phosphoribosyltransferase; DPPR synthase; Rv3806
Systematic name: trans,octacis-decaprenylphospho-β-D-ribofuranose 5-phosphate:diphosphate phospho-α-D-ribosyltransferase
Comments: Requires Mg2+. Isolated from Mycobacterium tuberculosis. Has some activity with other polyprenyl phosphates.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Huang, H., Scherman, M.S., D'Haeze, W., Vereecke, D., Holsters, M., Crick, D.C. and McNeil, M.R. Identification and active expression of the Mycobacterium tuberculosis gene encoding 5-phospho-α-D-ribose-1-diphosphate: decaprenyl-phosphate 5-phosphoribosyltransferase, the first enzyme committed to decaprenylphosphoryl-D-arabinose synthesis. J. Biol. Chem. 280 (2005) 24539–24543. [PMID: 15878857]
[EC 2.4.2.45 created 2012]
 
 
EC 2.4.2.46
Accepted name: galactan 5-O-arabinofuranosyltransferase
Reaction: Adds an α-D-arabinofuranosyl group from trans,octacis-decaprenylphospho-β-D-arabinofuranose at the 5-O-position of the eighth, tenth and twelfth galactofuranose unit of the galactofuranan chain of [β-D-galactofuranosyl-(1→5)-β-D-galactofuranosyl-(1→6)]14-β-D-galactofuranosyl-(1→5)-β-D-galactofuranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans,octacis-decaprenol
For diagram of arabinofuranogalactofuranan biosynthesis, click here
Other name(s): AftA; Rv3792
Systematic name: galactofuranan:trans,octacis-decaprenylphospho-β-D-arabinofuranose 5-O-α-D-arabinofuranosyltransferase
Comments: Isolated from Mycobacterium tuberculosis and Corynebacterium glutamicum. These arabinofuranosyl groups form the start of an arabinofuranan chain as part of the of the cell wall in mycobacteria.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Alderwick, L.J., Seidel, M., Sahm, H., Besra, G.S. and Eggeling, L. Identification of a novel arabinofuranosyltransferase (AftA) involved in cell wall arabinan biosynthesis in Mycobacterium tuberculosis. J. Biol. Chem. 281 (2006) 15653–15661. [PMID: 16595677]
[EC 2.4.2.46 created 2012]
 
 
EC 2.4.2.47
Accepted name: arabinofuranan 3-O-arabinosyltransferase
Reaction: Adds an α-D-arabinofuranosyl group from trans,octacis-decaprenylphospho-β-D-arabinofuranose at the 3-O-position of an α-(1→5)-arabinofuranan chain attached to a β-(1→5)-galactofuranan chain
For diagram of arabinofuranogalactofuranan biosynthesis, click here
Other name(s): AftC
Systematic name: α-(1→5)-arabinofuranan:trans,octacis-decaprenylphospho-β-D-arabinofuranose 3-O-α-D-arabinofuranosyltransferase
Comments: Isolated from Mycobacterium smegmatis. Involved in the formation of the cell wall in mycobacteria.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Birch, H.L., Alderwick, L.J., Bhatt, A., Rittmann, D., Krumbach, K., Singh, A., Bai, Y., Lowary, T.L., Eggeling, L. and Besra, G.S. Biosynthesis of mycobacterial arabinogalactan: identification of a novel α(1-→3) arabinofuranosyltransferase. Mol. Microbiol. 69 (2008) 1191–1206. [PMID: 18627460]
2.  Zhang, J., Angala, S.K., Pramanik, P.K., Li, K., Crick, D.C., Liav, A., Jozwiak, A., Swiezewska, E., Jackson, M. and Chatterjee, D. Reconstitution of functional mycobacterial arabinosyltransferase AftC proteoliposome and assessment of decaprenylphosphorylarabinose analogues as arabinofuranosyl donors. ACS Chem. Biol. 6 (2011) 819–828. [PMID: 21595486]
[EC 2.4.2.47 created 2012]
 
 
EC 2.4.2.48
Accepted name: tRNA-guanine15 transglycosylase
Reaction: guanine15 in tRNA + 7-cyano-7-carbaguanine = 7-cyano-7-carbaguanine15 in tRNA + guanine
Glossary: 7-cyano-7-carbaguanine = preQ0 = 7-cyano-7-deazaguanine
archaeosine = G* = 7-amidino-7-deazaguanosine
Other name(s): tRNA transglycosylase (ambiguous); transfer ribonucleate glycosyltransferase (ambiguous); tRNA guanine15 transglycosidase; TGT (ambiguous); transfer ribonucleic acid guanine15 transglycosylase
Systematic name: tRNA-guanine15:7-cyano-7-carbaguanine tRNA-D-ribosyltransferase
Comments: Archaeal tRNAs contain the modified nucleoside archaeosine at position 15. This archaeal enzyme catalyses the exchange of guanine at position 15 of tRNA with the base preQ0, which is ultimately modified to form the nucleoside archaeosine (cf. EC 2.6.1.97) [1].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, PDB
References:
1.  Bai, Y., Fox, D.T., Lacy, J.A., Van Lanen, S.G. and Iwata-Reuyl, D. Hypermodification of tRNA in thermophilic archaea. Cloning, overexpression, and characterization of tRNA-guanine transglycosylase from Methanococcus jannaschii. J. Biol. Chem. 275 (2000) 28731–28738. [PMID: 10862614]
[EC 2.4.2.48 created 2012]
 
 
EC 2.4.99.17
Accepted name: S-adenosylmethionine:tRNA ribosyltransferase-isomerase
Reaction: S-adenosyl-L-methionine + 7-aminomethyl-7-carbaguanosine34 in tRNA = L-methionine + adenine + epoxyqueuosine34 in tRNA
For diagram of queuine biosynthesis, click here
Glossary: 7-aminomethyl-7-carbaguanine = preQ1 = 7-aminomethyl-7-deazaguanine
epoxyqueosine = oQ
Other name(s): QueA enzyme; queuosine biosynthesis protein QueA
Systematic name: S-adenosyl-L-methionine:7-aminomethyl-7-deazaguanosine ribosyltransferase (ribosyl isomerizing; L-methionine, adenine releasing)
Comments: The reaction is a combined transfer and isomerization of the ribose moiety of S-adenosyl-L-methionine to the modified guanosine base in the wobble position in tRNAs specific for Tyr, His, Asp or Asn. It is part of the queuosine biosynthesis pathway.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Slany, R.K., Bosl, M., Crain, P.F. and Kersten, H. A new function of S-adenosylmethionine: the ribosyl moiety of AdoMet is the precursor of the cyclopentenediol moiety of the tRNA wobble base queuine. Biochemistry 32 (1993) 7811–7817. [PMID: 8347586]
2.  Slany, R.K., Bosl, M. and Kersten, H. Transfer and isomerization of the ribose moiety of AdoMet during the biosynthesis of queuosine tRNAs, a new unique reaction catalyzed by the QueA protein from Escherichia coli. Biochimie 76 (1994) 389–393. [PMID: 7849103]
3.  Kinzie, S.D., Thern, B. and Iwata-Reuyl, D. Mechanistic studies of the tRNA-modifying enzyme QueA: a chemical imperative for the use of AdoMet as a "ribosyl" donor. Org. Lett. 2 (2000) 1307–1310. [PMID: 10810734]
4.  Van Lanen, S.G. and Iwata-Reuyl, D. Kinetic mechanism of the tRNA-modifying enzyme S-adenosylmethionine:tRNA ribosyltransferase-isomerase (QueA). Biochemistry 42 (2003) 5312–5320. [PMID: 12731872]
5.  Mathews, I., Schwarzenbacher, R., McMullan, D., Abdubek, P., Ambing, E., Axelrod, H., Biorac, T., Canaves, J.M., Chiu, H.J., Deacon, A.M., DiDonato, M., Elsliger, M.A., Godzik, A., Grittini, C., Grzechnik, S.K., Hale, J., Hampton, E., Han, G.W., Haugen, J., Hornsby, M., Jaroszewski, L., Klock, H.E., Koesema, E., Kreusch, A., Kuhn, P., Lesley, S.A., Levin, I., Miller, M.D., Moy, K., Nigoghossian, E., Ouyang, J., Paulsen, J., Quijano, K., Reyes, R., Spraggon, G., Stevens, R.C., van den Bedem, H., Velasquez, J., Vincent, J., White, A., Wolf, G., Xu, Q., Hodgson, K.O., Wooley, J. and Wilson, I.A. Crystal structure of S-adenosylmethionine:tRNA ribosyltransferase-isomerase (QueA) from Thermotoga maritima at 2.0 Å resolution reveals a new fold. Proteins 59 (2005) 869–874. [PMID: 15822125]
6.  Grimm, C., Ficner, R., Sgraja, T., Haebel, P., Klebe, G. and Reuter, K. Crystal structure of Bacillus subtilis S-adenosylmethionine:tRNA ribosyltransferase-isomerase. Biochem. Biophys. Res. Commun. 351 (2006) 695–701. [PMID: 17083917]
[EC 2.4.99.17 created 2012]
 
 
EC 2.4.99.18
Accepted name: dolichyl-diphosphooligosaccharide—protein glycotransferase
Reaction: dolichyl diphosphooligosaccharide + [protein]-L-asparagine = dolichyl diphosphate + a glycoprotein with the oligosaccharide chain attached by N-β-D-glycosyl linkage to a protein L-asparagine
For diagram of glycoprotein biosynthesis, click here
Other name(s): dolichyldiphosphooligosaccharide-protein glycosyltransferase; asparagine N-glycosyltransferase; dolichyldiphosphooligosaccharide-protein oligosaccharyltransferase; dolichylpyrophosphodiacetylchitobiose-protein glycosyltransferase; oligomannosyltransferase; oligosaccharide transferase; dolichyldiphosphoryloligosaccharide-protein oligosaccharyltransferase; dolichyl-diphosphooligosaccharide:protein-L-asparagine oligopolysaccharidotransferase; STT3
Systematic name: dolichyl-diphosphooligosaccharide:protein-L-asparagine N-β-D-oligopolysaccharidotransferase
Comments: Occurs in eukaryotes that form a glycoprotein by the transfer of a glucosyl-mannosyl-glucosamine polysaccharide to the side-chain of an L-asparagine residue in the sequence -Asn-Xaa-Ser- or -Asn-Xaa-Thr- (Xaa not Pro) in nascent polypeptide chains. The basic oligosaccharide is the tetradecasaccharide Glc3Man9GlcNAc2 (for diagram click here). However, smaller oligosaccharides derived from it and oligosaccharides with additional monosaccharide units attached may be involved. See ref [2] for a review of N-glycoproteins in eukaryotes. Man3GlcNAc2 seems to be common for all of the oligosaccharides involved with the terminal N-acetylglucosamine linked to the protein L-asparagine. Occurs on the cytosolic face of the endoplasmic reticulum. The dolichol involved normally has 14-21 isoprenoid units with two trans double-bonds at the ω end, and the rest of the double-bonds in cis form.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, CAS registry number: 75302-32-8
References:
1.  Das, R.C. and Heath, E.C. Dolichyldiphosphoryloligosaccharide-protein oligosaccharyltransferase; solubilization, purification, and properties. Proc. Natl. Acad. Sci. USA 77 (1980) 3811–3815. [PMID: 6933437]
2.  Song, W., Henquet, M.G., Mentink, R.A., van Dijk, A.J., Cordewener, J.H., Bosch, D., America, A.H. and van der Krol, A.R. N-glycoproteomics in plants: perspectives and challenges. J Proteomics 74 (2011) 1463–1474. [PMID: 21605711]
[EC 2.4.99.18 created 1984 as EC 2.4.1.119, transferred 2012 to EC 2.4.99.18]
 
 
EC 2.4.99.19
Accepted name: undecaprenyl-diphosphooligosaccharide—protein glycotransferase
Reaction: tritrans,heptacis-undecaprenyl diphosphooligosaccharide + [protein]-L-asparagine = tritrans,heptacis-undecaprenyl diphosphate + a glycoprotein with the oligosaccharide chain attached by N-β-D-glycosyl linkage to protein L-asparagine
Other name(s): PglB
Systematic name: tritrans,heptacis-undecaprenyl-diphosphooligosaccharide:protein-L-asparagine N-β-D-oligosaccharidotransferase
Comments: A bacterial enzyme that has been isolated from Campylobacter jejuni [1] and Campylobacter lari [2]. It forms a glycoprotein by the transfer of a glucosyl-N-acetylgalactosaminyl-N,N′-diacetylbacillosamine (GalNAc2(Glc)GalNAc3diNAcBac) polysaccharide and related oligosaccharides to the side-chain of an L-asparagine residue in the sequence -Asp/Glu-Xaa-Asn-Xaa’-Ser/Thr- (Xaa and Xaa’ not Pro) in nascent polypeptide chains. Requires Mn2+ or Mg2+. Occurs on the external face of the plasma membrane. The polyprenol involved is normally tritrans,heptacis-undecaprenol but a decaprenol is used by some species.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Maita, N., Nyirenda, J., Igura, M., Kamishikiryo, J. and Kohda, D. Comparative structural biology of eubacterial and archaeal oligosaccharyltransferases. J. Biol. Chem. 285 (2010) 4941–4950. [PMID: 20007322]
2.  Lizak, C., Gerber, S., Numao, S., Aebi, M. and Locher, K.P. X-ray structure of a bacterial oligosaccharyltransferase. Nature 474 (2011) 350–355. [PMID: 21677752]
[EC 2.4.99.19 created 2012]
 
 
*EC 2.5.1.21
Accepted name: squalene synthase
Reaction: 2 (2E,6E)-farnesyl diphosphate + NAD(P)H + H+ = squalene + 2 diphosphate + NAD(P)+ (overall reaction)
(1a) 2 (2E,6E)-farnesyl diphosphate = diphosphate + presqualene diphosphate
(1b) presqualene diphosphate + NAD(P)H + H+ = squalene + diphosphate + NAD(P)+
For diagram of squalene, phytoene and 4,4′-diapophytoene biosynthesis, click here
Other name(s): farnesyltransferase; presqualene-diphosphate synthase; presqualene synthase; squalene synthetase; farnesyl-diphosphate farnesyltransferase; SQS
Systematic name: (2E,6E)-farnesyl-diphosphate:(2E,6E)-farnesyl-diphosphate farnesyltransferase
Comments: This microsomal enzyme catalyses the first committed step in the biosynthesis of sterols. The enzyme from yeast requires either Mg2+ or Mn2+ for activity. In the absence of NAD(P)H, presqualene diphosphate (PSPP) is accumulated. When NAD(P)H is present, presqualene diphosphate does not dissociate from the enzyme during the synthesis of squalene from farnesyl diphosphate (FPP) [8]. High concentrations of FPP inhibit the production of squalene but not of PSPP [8].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, PDB, CAS registry number: 9077-14-9
References:
1.  Kuswick-Rabiega, G. and Rilling, H.C. Squalene synthetase. Solubilization and partial purification of squalene synthetase, copurification of presqualene pyrophosphate and squalene synthetase activities. J. Biol. Chem. 262 (1987) 1505–1509. [PMID: 3805037]
2.  Ericsson, J., Appelkvist, E.L., Thelin, A., Chojnacki, T. and Dallner, G. Isoprenoid biosynthesis in rat liver peroxisomes. Characterization of cis-prenyltransferase and squalene synthetase. J. Biol. Chem. 267 (1992) 18708–18714. [PMID: 1527001]
3.  Tansey, T.R. and Shechter, I. Structure and regulation of mammalian squalene synthase. Biochim. Biophys. Acta 1529 (2000) 49–62. [PMID: 11111077]
4.  LoGrasso, P.V., Soltis, D.A. and Boettcher, B.R. Overexpression, purification, and kinetic characterization of a carboxyl-terminal-truncated yeast squalene synthetase. Arch. Biochem. Biophys. 307 (1993) 193–199. [PMID: 8239656]
5.  Shechter, I., Klinger, E., Rucker, M.L., Engstrom, R.G., Spirito, J.A., Islam, M.A., Boettcher, B.R. and Weinstein, D.B. Solubilization, purification, and characterization of a truncated form of rat hepatic squalene synthetase. J. Biol. Chem. 267 (1992) 8628–8635. [PMID: 1569107]
6.  Agnew, W.S. and Popják, G. Squalene synthetase. Stoichiometry and kinetics of presqualene pyrophosphate and squalene synthesis by yeast microsomes. J. Biol. Chem. 253 (1978) 4566–4573. [PMID: 26684]
7.  Pandit, J., Danley, D.E., Schulte, G.K., Mazzalupo, S., Pauly, T.A., Hayward, C.M., Hamanaka, E.S., Thompson, J.F. and Harwood, H.J., Jr. Crystal structure of human squalene synthase. A key enzyme in cholesterol biosynthesis. J. Biol. Chem. 275 (2000) 30610–30617. [PMID: 10896663]
8.  Radisky, E.S. and Poulter, C.D. Squalene synthase: steady-state, pre-steady-state, and isotope-trapping studies. Biochemistry 39 (2000) 1748–1760. [PMID: 10677224]
[EC 2.5.1.21 created 1976, modified 2005, modified 2012]
 
 
*EC 2.5.1.32
Accepted name: 15-cis-phytoene synthase
Reaction: 2 geranylgeranyl diphosphate = 15-cis-phytoene + 2 diphosphate (overall reaction)
(1a) 2 geranylgeranyl diphosphate = diphosphate + prephytoene diphosphate
(1b) prephytoene diphosphate = 15-cis-phytoene + diphosphate
For diagram of squalene, phytoene and 4,4′-diapophytoene biosynthesis, click here
Other name(s): prephytoene-diphosphate synthase (ambiguous); phytoene synthetase (ambiguous); PSase (ambiguous); geranylgeranyl-diphosphate geranylgeranyltransferase (ambiguous)
Systematic name: geranylgeranyl-diphosphate:geranylgeranyl-diphosphate geranylgeranyltransferase (15-cis-phytoene forming)
Comments: Requires Mn2+ for activity. The enzyme produces 15-cis-phytoene. cf. EC 2.5.1.99, 15-trans-phytoene synthase.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, CAS registry number: 50936-61-3
References:
1.  Gregonis, D.E. and Rilling, H.C. The stereochemistry of trans-phytoene synthesis. Some observations on lycopersene as a carotene precursor and a mechanism for the synthesis of cis- and trans-phytoene. Biochemistry 13 (1974) 1538–1542. [PMID: 4819767]
2.  Misawa, N., Truesdale, M.R., Sandmann, G., Fraser, P.D., Bird, C., Schuch, W. and Bramley, P.M. Expression of a tomato cDNA coding for phytoene synthase in Escherichia coli, phytoene formation in vivo and in vitro, and functional analysis of the various truncated gene products. J. Biochem. (Tokyo) 116 (1994) 980–985. [PMID: 7896759]
[EC 2.5.1.32 created 1984, modified 2005, modified 2012]
 
 
EC 2.5.1.99
Accepted name: all-trans-phytoene synthase
Reaction: 2 geranylgeranyl diphosphate = all-trans-phytoene + 2 diphosphate (overall reaction)
(1a) 2 geranylgeranyl diphosphate = diphosphate + prephytoene diphosphate
(1b) prephytoene diphosphate = all-trans-phytoene + diphosphate
For diagram of squalene, phytoene and 4,4′-diapophytoene biosynthesis, click here
Other name(s): prephytoene-diphosphate synthase (ambiguous); phytoene synthetase (ambiguous); PSase (ambiguous); geranylgeranyl-diphosphate geranylgeranyltransferase (ambiguous); 15-trans-phytoene synthase
Systematic name: geranylgeranyl-diphosphate:geranylgeranyl-diphosphate geranylgeranyltransferase (all-trans-phytoene forming)
Comments: Requires Mn2+ for activity. The enzyme from the bacterium Pantoea agglomerans (previously known as Erwinia herbicola) produces the all-trans isomer of phytoene. cf. EC 2.5.1.32, 15-cis-phytoene synthase.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Gregonis, D.E. and Rilling, H.C. The stereochemistry of trans-phytoene synthesis. Some observations on lycopersene as a carotene precursor and a mechanism for the synthesis of cis- and trans-phytoene. Biochemistry 13 (1974) 1538–1542. [PMID: 4819767]
2.  Iwata-Reuyl, D., Math, S.K., Desai, S.B. and Poulter, C.D. Bacterial phytoene synthase: molecular cloning, expression, and characterization of Erwinia herbicola phytoene synthase. Biochemistry 42 (2003) 3359–3365. [PMID: 12641468]
[EC 2.5.1.99 created 2012]
 
 
EC 2.5.1.100
Accepted name: fumigaclavine A dimethylallyltransferase
Reaction: fumigaclavine A + dimethylallyl diphosphate = fumigaclavine C + diphosphate
For diagram of fumigaclavin alkaloid biosynthesis, click here
Glossary: fumigaclavine A = 6,8β-dimethylergolin-9β-yl acetate;
fumigaclavine C = 2-(2-methylbut-3-en-2-yl)-6,8β-dimethylergolin-9β-yl acetate
Other name(s): FgaPT1
Systematic name: dimethylallyl-diphosphate:fumigaclavine A dimethylallyltransferase
Comments: Fumigaclavine C is an ergot alkaloid produced by some fungi of the Trichocomaceae family. Activity does not require any metal ions.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Unsöld, I.A. and Li, S.M. Reverse prenyltransferase in the biosynthesis of fumigaclavine C in Aspergillus fumigatus: gene expression, purification, and characterization of fumigaclavine C synthase FGAPT1. ChemBioChem. 7 (2006) 158–164. [PMID: 16397874]
[EC 2.5.1.100 created 2012]
 
 
EC 2.5.1.101
Accepted name: N,N′-diacetyllegionaminate synthase
Reaction: 2,4-diacetamido-2,4,6-trideoxy-α-D-mannopyranose + phosphoenolpyruvate + H2O = N,N′-diacetyllegionaminate + phosphate
For diagram of legionaminic acid biosynthesis, click here
Glossary: legionaminate = 5,7-diamino-3,5,7,9-tetradeoxy-D-glycero-D-galacto-non-2-ulosonate
Other name(s): neuB (gene name); legI (gene name)
Systematic name: phosphoenolpyruvate:2,4-diacetamido-2,4,6-trideoxy-α-D-mannopyranose 1-(2-carboxy-2-oxoethyl)transferase
Comments: Requires a divalent metal such as Mn2+. Isolated from the bacteria Legionella pneumophila and Campylobacter jejuni, where it is involved in the biosynthesis of legionaminic acid, a virulence-associated, cell surface sialic acid-like derivative.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Glaze, P.A., Watson, D.C., Young, N.M. and Tanner, M.E. Biosynthesis of CMP-N,N′-diacetyllegionaminic acid from UDP-N,N′-diacetylbacillosamine in Legionella pneumophila. Biochemistry 47 (2008) 3272–3282. [PMID: 18275154]
2.  Schoenhofen, I.C., Vinogradov, E., Whitfield, D.M., Brisson, J.R. and Logan, S.M. The CMP-legionaminic acid pathway in Campylobacter: biosynthesis involving novel GDP-linked precursors. Glycobiology 19 (2009) 715–725. [PMID: 19282391]
[EC 2.5.1.101 created 2012]
 
 
EC 2.5.1.102
Accepted name: geranyl-pyrophosphate—olivetolic acid geranyltransferase
Reaction: geranyl diphosphate + 2,4-dihydroxy-6-pentylbenzoate = diphosphate + cannabigerolate
For diagram of cannabinoid biosynthesis, click here
Glossary: 2,4-dihydroxy-6-pentylbenzoate = olivetolate
cannabigerolate = CBGA = 3-[(2E)-3,7-dimethylocta-2,6-dien-1-yl]-2,4-dihydroxy-6-pentylbenzoate
cannabinerolate = 3-[(2Z)-3,7-dimethylocta-2,6-dien-1-yl]-2,4-dihydroxy-6-pentylbenzoate
Other name(s): GOT (ambiguous)
Systematic name: geranyl-diphosphate:olivetolate geranyltransferase
Comments: Part of the cannabinoids biosynthetic pathway of the plant Cannabis sativa. The enzyme can also use neryl diphosphate as substrate, forming cannabinerolate.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Fellermeier, M. and Zenk, M.H. Prenylation of olivetolate by a hemp transferase yields cannabigerolic acid, the precursor of tetrahydrocannabinol. FEBS Lett. 427 (1998) 283–285. [PMID: 9607329]
[EC 2.5.1.102 created 2012]
 
 
EC 2.5.1.103
Accepted name: presqualene diphosphate synthase
Reaction: 2 (2E,6E)-farnesyl diphosphate = presqualene diphosphate + diphosphate
For diagram of botryococcus braunii BOT22 squalene and botrycoccene biosynthesis, click here
Other name(s): SSL-1 (gene name); hpnD (gene name)
Systematic name: (2E,6E)-farnesyl-diphosphate:(2E,6E)-farnesyl-diphosphate farnesyltransferase (presqualene diphosphate-forming)
Comments: Isolated from the green alga Botryococcus braunii BOT22. Unlike EC 2.5.1.21, squalene synthase, where squalene is formed in one step from farnesyl diphosphate, in this alga the intermediate presqualene diphosphate is generated and released by this enzyme. This compound is then converted into either squalene (by EC 1.3.1.96, Botryococcus squalene synthase) or botryococcene (EC 1.3.1.97, botryococcene synthase).
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Niehaus, T.D., Okada, S., Devarenne, T.P., Watt, D.S., Sviripa, V. and Chappell, J. Identification of unique mechanisms for triterpene biosynthesis in Botryococcus braunii. Proc. Natl. Acad. Sci. USA 108 (2011) 12260–12265. [PMID: 21746901]
2.  Pan, J.J., Solbiati, J.O., Ramamoorthy, G., Hillerich, B.S., Seidel, R.D., Cronan, J.E., Almo, S.C. and Poulter, C.D. Biosynthesis of squalene from farnesyl diphosphate in bacteria: three steps catalyzed by three enzymes. ACS Cent. Sci. 1 (2015) 77–82. [PMID: 26258173]
[EC 2.5.1.103 created 2012]
 
 
*EC 2.6.1.19
Accepted name: 4-aminobutyrate—2-oxoglutarate transaminase
Reaction: 4-aminobutanoate + 2-oxoglutarate = succinate semialdehyde + L-glutamate
For diagram of arginine catabolism, click here
Glossary: 4-aminobutanoate = γ-aminobutyrate = GABA
Other name(s): β-alanine-oxoglutarate transaminase; aminobutyrate aminotransferase (ambiguous); β-alanine aminotransferase; β-alanine-oxoglutarate aminotransferase; γ-aminobutyrate aminotransaminase (ambiguous); γ-aminobutyrate transaminase (ambiguous); γ-aminobutyrate-α-ketoglutarate aminotransferase; γ-aminobutyrate-α-ketoglutarate transaminase; γ-aminobutyrate:α-oxoglutarate aminotransferase; γ-aminobutyric acid aminotransferase (ambiguous); γ-aminobutyric acid transaminase (ambiguous); γ-aminobutyric acid-α-ketoglutarate transaminase; γ-aminobutyric acid-α-ketoglutaric acid aminotransferase; γ-aminobutyric acid-2-oxoglutarate transaminase; γ-aminobutyric transaminase (ambiguous); 4-aminobutyrate aminotransferase (ambiguous); 4-aminobutyrate-2-ketoglutarate aminotransferase; 4-aminobutyrate-2-oxoglutarate aminotransferase; 4-aminobutyrate-2-oxoglutarate transaminase; 4-aminobutyric acid 2-ketoglutaric acid aminotransferase; 4-aminobutyric acid aminotransferase (ambiguous); aminobutyrate transaminase (ambiguous); GABA aminotransferase (ambiguous); GABA transaminase (ambiguous); GABA transferase; GABA-α-ketoglutarate aminotransferase; GABA-α-ketoglutarate transaminase; GABA-α-ketoglutaric acid transaminase; GABA-α-oxoglutarate aminotransferase; GABA-2-oxoglutarate aminotransferase; GABA-2-oxoglutarate transaminase; GABA-oxoglutarate aminotransferase; GABA-oxoglutarate transaminase; glutamate-succinic semialdehyde transaminase; GabT
Systematic name: 4-aminobutanoate:2-oxoglutarate aminotransferase
Comments: Requires pyridoxal phosphate. Some preparations also act on β-alanine, 5-aminopentanoate and (R,S)-3-amino-2-methylpropanoate.
Links to other databases: BRENDA, EXPASY, GTD, IUBMB, KEGG, PDB, CAS registry number: 9037-67-6
References:
1.  Scott, E.M. and Jakoby, W.B. Soluble γ-aminobutyric-glutamic transaminase from Pseudomonas fluorescens. J. Biol. Chem. 234 (1959) 932–936. [PMID: 13654294]
2.  Aurich, H. Über die β-Alanin-α-Ketoglutarat-Transaminase aus Neurospora crassa. Hoppe-Seyler's Z. Physiol. Chem. 326 (1961) 25–33. [PMID: 13863304]
3.  Schausboe, A., Wu, J.-Y. and Roberts, E. Purification and characterization of the 4-aminobutyrate-2-ketoglutarate transaminase from mouse brain. Biochemistry 12 (1973) 2868–2873. [PMID: 4719123]
4.  Bartsch, K., von Johnn-Marteville, A. and Schulz, A. Molecular analysis of two genes of the Escherichia coli gab cluster: nucleotide sequence of the glutamate:succinic semialdehyde transaminase gene (gabT) and characterization of the succinic semialdehyde dehydrogenase gene (gabD). J. Bacteriol. 172 (1990) 7035–7042. [PMID: 2254272]
[EC 2.6.1.19 created 1965, modified 1982, modified 2012]
 
 
EC 2.6.1.93
Accepted name: neamine transaminase
Reaction: neamine + 2-oxoglutarate = 6′-dehydroparomamine + L-glutamate
For diagram of neamine and ribostamycin biosynthesis, click here
Other name(s): glutamate—6′-dehydroparomamine aminotransferase; btrB (gene name); neoN (gene name); kacL (gene name)
Systematic name: neamine:2-oxoglutarate aminotransferase
Comments: The reaction occurs in vivo in the opposite direction. Involved in the biosynthetic pathways of several clinically important aminocyclitol antibiotics, including kanamycin B, butirosin, neomycin and ribostamycin. Works in combination with EC 1.1.3.43, paromamine 6-oxidase, to replace the 6′-hydroxy group of paromamine with an amino group. The enzyme from the bacterium Streptomyces kanamyceticus can also catalyse EC 2.6.1.94, 2′-deamino-2′-hydroxyneamine transaminase, which leads to production of kanamycin A [3]. The enzyme from the bacterium Streptomyces fradiae can also catalyse EC 2.6.1.95, leading to production of neomycin C [2].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Huang, F., Spiteller, D., Koorbanally, N.A., Li, Y., Llewellyn, N.M. and Spencer, J.B. Elaboration of neosamine rings in the biosynthesis of neomycin and butirosin. ChemBioChem. 8 (2007) 283–288. [PMID: 17206729]
2.  Clausnitzer, D., Piepersberg, W. and Wehmeier, U.F. The oxidoreductases LivQ and NeoQ are responsible for the different 6′-modifications in the aminoglycosides lividomycin and neomycin. J. Appl. Microbiol. 111 (2011) 642–651. [PMID: 21689223]
3.  Park, J.W., Park, S.R., Nepal, K.K., Han, A.R., Ban, Y.H., Yoo, Y.J., Kim, E.J., Kim, E.M., Kim, D., Sohng, J.K. and Yoon, Y.J. Discovery of parallel pathways of kanamycin biosynthesis allows antibiotic manipulation. Nat. Chem. Biol. 7 (2011) 843–852. [PMID: 21983602]
[EC 2.6.1.93 created 2012]
 
 
EC 2.6.1.94
Accepted name: 2′-deamino-2′-hydroxyneamine transaminase
Reaction: 2′-deamino-2′-hydroxyneamine + 2-oxoglutarate = 2′-deamino-2′-hydroxy-6′-dehydroparomamine + L-glutamate
Other name(s): kacL (gene name)
Systematic name: 2′-deamino-2′-hydroxyneamine:2-oxoglutarate aminotransferase
Comments: The reaction occurs in vivo in the opposite direction. Involved in the biosynthetic pathway of kanamycin A and kanamycin D. The enzyme, characterized from the bacterium Streptomyces kanamyceticus, can also catalyse EC 2.6.1.93, neamine transaminase.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Park, J.W., Park, S.R., Nepal, K.K., Han, A.R., Ban, Y.H., Yoo, Y.J., Kim, E.J., Kim, E.M., Kim, D., Sohng, J.K. and Yoon, Y.J. Discovery of parallel pathways of kanamycin biosynthesis allows antibiotic manipulation. Nat. Chem. Biol. 7 (2011) 843–852. [PMID: 21983602]
[EC 2.6.1.94 created 2012]
 
 
EC 2.6.1.95
Accepted name: neomycin C transaminase
Reaction: neomycin C + 2-oxoglutarate = 6′′′-deamino-6′′′-oxoneomycin C + L-glutamate
Other name(s): neoN (gene name)
Systematic name: 2-oxoglutarate:neomycin C aminotransferase
Comments: The reaction occurs in vivo in the opposite direction. Involved in the biosynthetic pathway of aminoglycoside antibiotics of the neomycin family. Works in combination with EC 1.1.3.44, 6′′′-hydroxyneomycin C oxidase, to replace the 6′′′-hydroxy group of 6′′′-deamino-6′′′-hydroxyneomycin C with an amino group. The enzyme, characterized from the bacterium Streptomyces fradiae, can also catalyse EC 2.6.1.93, neamine transaminase.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Huang, F., Spiteller, D., Koorbanally, N.A., Li, Y., Llewellyn, N.M. and Spencer, J.B. Elaboration of neosamine rings in the biosynthesis of neomycin and butirosin. ChemBioChem. 8 (2007) 283–288. [PMID: 17206729]
2.  Clausnitzer, D., Piepersberg, W. and Wehmeier, U.F. The oxidoreductases LivQ and NeoQ are responsible for the different 6′-modifications in the aminoglycosides lividomycin and neomycin. J. Appl. Microbiol. 111 (2011) 642–651. [PMID: 21689223]
[EC 2.6.1.95 created 2012]
 
 
EC 2.6.1.96
Accepted name: 4-aminobutyrate—pyruvate transaminase
Reaction: (1) 4-aminobutanoate + pyruvate = succinate semialdehyde + L-alanine
(2) 4-aminobutanoate + glyoxylate = succinate semialdehyde + glycine
Other name(s): aminobutyrate aminotransferase (ambiguous); γ-aminobutyrate aminotransaminase (ambiguous); γ-aminobutyrate transaminase (ambiguous); γ-aminobutyric acid aminotransferase (ambiguous); γ-aminobutyric acid pyruvate transaminase; γ-aminobutyric acid transaminase (ambiguous); γ-aminobutyric transaminase (ambiguous); 4-aminobutyrate aminotransferase (ambiguous); 4-aminobutyric acid aminotransferase (ambiguous); aminobutyrate transaminase (ambiguous); GABA aminotransferase (ambiguous); GABA transaminase (ambiguous); GABA transferase; POP2 (gene name)
Systematic name: 4-aminobutanoate:pyruvate aminotransferase
Comments: Requires pyridoxal 5′-phosphate. The enzyme is found in plants that do not have the 2-oxoglutarate dependent enzyme (cf. EC 2.6.1.19). The reaction with pyruvate is reversible while the reaction with glyoxylate only takes place in the forward direction.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Van Cauwenberghe, O.R. and Shelp, B.J. Biochemical characterization of partially purified gaba:pyruvate transaminase from Nicotiana tabacum. Phytochemistry 52 (1999) 575–581.
2.  Palanivelu, R., Brass, L., Edlund, A.F. and Preuss, D. Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114 (2003) 47–59. [PMID: 12859897]
3.  Clark, S.M., Di Leo, R., Dhanoa, P.K., Van Cauwenberghe, O.R., Mullen, R.T. and Shelp, B.J. Biochemical characterization, mitochondrial localization, expression, and potential functions for an Arabidopsis γ-aminobutyrate transaminase that utilizes both pyruvate and glyoxylate. J. Exp. Bot. 60 (2009) 1743–1757. [PMID: 19264755]
4.  Clark, S.M., Di Leo, R., Van Cauwenberghe, O.R., Mullen, R.T. and Shelp, B.J. Subcellular localization and expression of multiple tomato γ-aminobutyrate transaminases that utilize both pyruvate and glyoxylate. J. Exp. Bot. 60 (2009) 3255–3267. [PMID: 19470656]
[EC 2.6.1.96 created 2012]
 
 
EC 2.6.1.97
Accepted name: archaeosine synthase
Reaction: L-glutamine + 7-cyano-7-carbaguanine15 in tRNA + H2O = L-glutamate + archaeine15 in tRNA
Glossary: 7-cyano-7-carbaguanine = preQ0 = 7-cyano-7-deazaguanine
archaeine = 7-deaza-7-carbamidoylguanine = base G*
archaeosine = G* = 7-amidino-7-deazaguanosine
Other name(s): ArcS; TgtA2; MJ1022 (gene name); glutamine:preQ0-tRNA amidinotransferase (incorrect)
Systematic name: L-glutamine:7-cyano-7-carbaguanine aminotransferase
Comments: In Euryarchaeota the reaction is catalysed by ArcS [1,2]. In Crenarchaeota, which do not have an ArcS homologue, the reaction is catalysed either by a homologue of EC 6.3.4.20, 7-cyano-7-deazaguanine synthase that includes a glutaminase domain (cf. EC 3.5.1.2), or by a homologue of EC 1.7.1.13, preQ1 synthase [2]. The enzyme from the Euryarchaeon Methanocaldococcus jannaschii can also use arginine and ammonium as amino donors.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Phillips, G., Chikwana, V.M., Maxwell, A., El-Yacoubi, B., Swairjo, M.A., Iwata-Reuyl, D. and de Crecy-Lagard, V. Discovery and characterization of an amidinotransferase involved in the modification of archaeal tRNA. J. Biol. Chem. 285 (2010) 12706–12713. [PMID: 20129918]
2.  Phillips, G., Swairjo, M.A., Gaston, K.W., Bailly, M., Limbach, P.A., Iwata-Reuyl, D. and de Crecy-Lagard, V. Diversity of archaeosine synthesis in crenarchaeota. ACS Chem. Biol. 7 (2012) 300–305. [PMID: 22032275]
[EC 2.6.1.97 created 2012]
 
 
EC 2.6.1.98
Accepted name: UDP-2-acetamido-2-deoxy-ribo-hexuluronate aminotransferase
Reaction: UDP-2-acetamido-3-amino-2,3-dideoxy-α-D-glucuronate + 2-oxoglutarate = UDP-2-acetamido-2-deoxy-α-D-ribo-hex-3-uluronate + L-glutamate
For diagram of UDP-2,3-diacetamido-2,3-dideoxy-D-mannuronate biosynthesis, click here
Other name(s): WbpE; WlbC
Systematic name: UDP-2-acetamido-3-amino-2,3-dideoxy-α-D-glucuronate:2-oxoglutarate aminotransferase
Comments: A pyridoxal 5′-phosphate protein. This enzyme participates in the biosynthetic pathway for UDP-α-D-ManNAc3NAcA (UDP-2,3-diacetamido-2,3-dideoxy-α-D-mannuronic acid), an important precursor of B-band lipopolysaccharide. The enzymes from Pseudomonas aeruginosa serotype O5 and Thermus thermophilus form a complex with the previous enzyme in the pathway, EC 1.1.1.335 (UDP-N-acetyl-2-amino-2-deoxyglucuronate oxidase).
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Westman, E.L., McNally, D.J., Charchoglyan, A., Brewer, D., Field, R.A. and Lam, J.S. Characterization of WbpB, WbpE, and WbpD and reconstitution of a pathway for the biosynthesis of UDP-2,3-diacetamido-2,3-dideoxy-D-mannuronic acid in Pseudomonas aeruginosa. J. Biol. Chem. 284 (2009) 11854–11862. [PMID: 19282284]
2.  Larkin, A. and Imperiali, B. Biosynthesis of UDP-GlcNAc(3NAc)A by WbpB, WbpE, and WbpD: enzymes in the Wbp pathway responsible for O-antigen assembly in Pseudomonas aeruginosa PAO1. Biochemistry 48 (2009) 5446–5455. [PMID: 19348502]
3.  Larkin, A., Olivier, N.B. and Imperiali, B. Structural analysis of WbpE from Pseudomonas aeruginosa PAO1: a nucleotide sugar aminotransferase involved in O-antigen assembly. Biochemistry 49 (2010) 7227–7237. [PMID: 20604544]
[EC 2.6.1.98 created 2012]
 
 
EC 2.6.1.99
Accepted name: L-tryptophan—pyruvate aminotransferase
Reaction: L-tryptophan + pyruvate = indole-3-pyruvate + L-alanine
For diagram of indoleacetic acid biosynthesis, click here
Other name(s): TAA1 (gene name); vt2 (gene name)
Systematic name: L-tryptophan:pyruvate aminotransferase
Comments: This plant enzyme, along with EC 1.14.13.168, indole-3-pyruvate monooxygenase, is responsible for the biosynthesis of the plant hormone indole-3-acetate from L-tryptophan.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Tao, Y., Ferrer, J.L., Ljung, K., Pojer, F., Hong, F., Long, J.A., Li, L., Moreno, J.E., Bowman, M.E., Ivans, L.J., Cheng, Y., Lim, J., Zhao, Y., Ballare, C.L., Sandberg, G., Noel, J.P. and Chory, J. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133 (2008) 164–176. [PMID: 18394996]
2.  Mashiguchi, K., Tanaka, K., Sakai, T., Sugawara, S., Kawaide, H., Natsume, M., Hanada, A., Yaeno, T., Shirasu, K., Yao, H., McSteen, P., Zhao, Y., Hayashi, K., Kamiya, Y. and Kasahara, H. The main auxin biosynthesis pathway in Arabidopsis. Proc. Natl. Acad. Sci. USA 108 (2011) 18512–18517. [PMID: 22025724]
3.  Phillips, K.A., Skirpan, A.L., Liu, X., Christensen, A., Slewinski, T.L., Hudson, C., Barazesh, S., Cohen, J.D., Malcomber, S. and McSteen, P. vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell 23 (2011) 550–566. [PMID: 21335375]
4.  Zhao, Y. Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol. Plant 5 (2012) 334–338. [PMID: 22155950]
[EC 2.6.1.99 created 2012]
 
 
*EC 2.7.1.31
Accepted name: glycerate 3-kinase
Reaction: ATP + D-glycerate = ADP + 3-phospho-D-glycerate
Other name(s): glycerate kinase (phosphorylating) (ambiguous); D-glycerate 3-kinase; D-glycerate kinase (ambiguous); glycerate-kinase (ambiguous); GK (ambiguous); D-glyceric acid kinase (ambiguous); ATP:(R)-glycerate 3-phosphotransferase
Systematic name: ATP:D-glycerate 3-phosphotransferase
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, PDB, CAS registry number: 9026-61-3
References:
1.  Doughty, C.C., Hayashi, J.A. and Guenther, H.L. Purification and properties of D-glycerate 3-kinase from Escherichia coli. J. Biol. Chem. 241 (1966) 568–572. [PMID: 5325263]
2.  Ichihara, A. and Greenberg, D.M. Studies on the purification and properties of D-glyceric acid kinase of liver. J. Biol. Chem. 225 (1957) 949–958. [PMID: 13416296]
[EC 2.7.1.31 created 1961, modified 2012]
 
 
EC 2.7.1.177
Accepted name: L-threonine kinase
Reaction: ATP + L-threonine = ADP + O-phospho-L-threonine
For diagram of corrin biosynthesis (part 6), click here
Other name(s): PduX
Systematic name: ATP:L-threonine O3-phosphotransferase
Comments: The enzyme is involved in the de novo synthesis of adenosylcobalamin. It is specific for ATP and free L-threonine. In the bacterium Salmonella enterica the activity with CTP, GTP, or UTP is 6, 11, and 3% of the activity with ATP.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Fan, C. and Bobik, T.A. The PduX enzyme of Salmonella enterica is an L-threonine kinase used for coenzyme B12 synthesis. J. Biol. Chem. 283 (2008) 11322–11329. [PMID: 18308727]
2.  Fan, C., Fromm, H.J. and Bobik, T.A. Kinetic and functional analysis of L-threonine kinase, the PduX enzyme of Salmonella enterica. J. Biol. Chem. 284 (2009) 20240–20248. [PMID: 19509296]
[EC 2.7.1.177 created 2012]
 
 
EC 2.7.4.26
Accepted name: isopentenyl phosphate kinase
Reaction: ATP + isopentenyl phosphate = ADP + isopentenyl diphosphate
For diagram of the archaeal mevalonate pathway, click here
Systematic name: ATP:isopentenyl phosphate phosphotransferase
Comments: The enzyme is involved in the mevalonate pathway in Archaea [1]. The activity has also been identified in the plant Mentha piperita (peppermint) [2]. It is strictly specific for ATP but can use other phosphate acceptors such as dimethylallyl phosphate, geranyl phosphate, or fosfomycin.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Grochowski, L.L., Xu, H. and White, R.H. Methanocaldococcus jannaschii uses a modified mevalonate pathway for biosynthesis of isopentenyl diphosphate. J. Bacteriol. 188 (2006) 3192–3198. [PMID: 16621811]
2.  Lange, B.M. and Croteau, R. Isopentenyl diphosphate biosynthesis via a mevalonate-independent pathway: isopentenyl monophosphate kinase catalyzes the terminal enzymatic step. Proc. Natl. Acad. Sci. USA 96 (1999) 13714–13719. [PMID: 10570138]
3.  Chen, M. and Poulter, C.D. Characterization of thermophilic archaeal isopentenyl phosphate kinases. Biochemistry 49 (2010) 207–217. [PMID: 19928876]
4.  Mabanglo, M.F., Schubert, H.L., Chen, M., Hill, C.P. and Poulter, C.D. X-ray structures of isopentenyl phosphate kinase. ACS Chem. Biol. 5 (2010) 517–527. [PMID: 20402538]
[EC 2.7.4.26 created 2012]
 
 
EC 2.7.4.27
Accepted name: [pyruvate, phosphate dikinase]-phosphate phosphotransferase
Reaction: [pyruvate, phosphate dikinase] phosphate + phosphate = [pyruvate, phosphate dikinase] + diphosphate
Other name(s): PPDK regulatory protein (ambiguous); pyruvate, phosphate dikinase regulatory protein (ambiguous); bifunctional dikinase regulatory protein (ambiguous); PDRP1 (gene name)
Systematic name: [pyruvate, phosphate dikinase] phosphate:phosphate phosphotransferase
Comments: The enzyme from the plants maize and Arabidopsis is bifunctional and also catalyses the phosphorylation of pyruvate, phosphate dikinase (EC 2.7.9.1), cf. EC 2.7.11.32, [pyruvate, phosphate dikinase] kinase [2-5].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Burnell, J.N. and Hatch, M.D. Regulation of C4 photosynthesis: identification of a catalytically important histidine residue and its role in the regulation of pyruvate,Pi dikinase. Arch. Biochem. Biophys. 231 (1984) 175–182. [PMID: 6326674]
2.  Burnell, J.N. and Hatch, M.D. Regulation of C4 photosynthesis: purification and properties of the protein catalyzing ADP-mediated inactivation and Pi-mediated activation of pyruvate,Pi dikinase. Arch. Biochem. Biophys. 237 (1985) 490–503. [PMID: 2983615]
3.  Chastain, C.J., Botschner, M., Harrington, G.E., Thompson, B.J., Mills, S.E., Sarath, G. and Chollet, R. Further analysis of maize C4 pyruvate,orthophosphate dikinase phosphorylation by its bifunctional regulatory protein using selective substitutions of the regulatory Thr-456 and catalytic His-458 residues. Arch. Biochem. Biophys. 375 (2000) 165–170. [PMID: 10683263]
4.  Burnell, J.N. and Chastain, C.J. Cloning and expression of maize-leaf pyruvate, Pi dikinase regulatory protein gene. Biochem. Biophys. Res. Commun. 345 (2006) 675–680. [PMID: 16696949]
5.  Chastain, C.J., Xu, W., Parsley, K., Sarath, G., Hibberd, J.M. and Chollet, R. The pyruvate, orthophosphate dikinase regulatory proteins of Arabidopsis possess a novel, unprecedented Ser/Thr protein kinase primary structure. Plant J. 53 (2008) 854–863. [PMID: 17996018]
[EC 2.7.4.27 created 2012]
 
 
EC 2.7.4.28
Accepted name: [pyruvate, water dikinase]-phosphate phosphotransferase
Reaction: [pyruvate, water dikinase] phosphate + phosphate = [pyruvate, water dikinase] + diphosphate
Other name(s): PSRP (ambiguous)
Systematic name: [pyruvate, water dikinase] phosphate:phosphate phosphotransferase
Comments: The enzyme from the bacterium Escherichia coli is bifunctional and catalyses both the phosphorylation and dephosphorylation of EC 2.7.9.2, pyruvate, water dikinase. cf. EC 2.7.11.33, [pyruvate, water dikinase] kinase [1].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Burnell, J.N. Cloning and characterization of Escherichia coli DUF299: a bifunctional ADP-dependent kinase—Pi-dependent pyrophosphorylase from bacteria. BMC Biochem. 11:1 (2010). [PMID: 20044937]
[EC 2.7.4.28 created 2012]
 
 
*EC 2.7.7.23
Accepted name: UDP-N-acetylglucosamine diphosphorylase
Reaction: UTP + N-acetyl-α-D-glucosamine 1-phosphate = diphosphate + UDP-N-acetyl-α-D-glucosamine
For diagram of UDP-N-acetylglucosamine biosynthesis, click here
Other name(s): UDP-N-acetylglucosamine pyrophosphorylase; uridine diphosphoacetylglucosamine pyrophosphorylase; UTP:2-acetamido-2-deoxy-α-D-glucose-1-phosphate uridylyltransferase; UDP-GlcNAc pyrophosphorylase; GlmU uridylyltransferase; Acetylglucosamine 1-phosphate uridylyltransferase; UDP-acetylglucosamine pyrophosphorylase; uridine diphosphate-N-acetylglucosamine pyrophosphorylase; uridine diphosphoacetylglucosamine phosphorylase; acetylglucosamine 1-phosphate uridylyltransferase
Systematic name: UTP:N-acetyl-α-D-glucosamine-1-phosphate uridylyltransferase
Comments: Part of the pathway for acetamido sugar biosynthesis in bacteria and archaea. The enzyme from several bacteria (e.g., Escherichia coli, Bacillus subtilis and Haemophilus influenzae) has been shown to be bifunctional and also to possess the activity of EC 2.3.1.157, glucosamine-1-phosphate N-acetyltransferase [3,4,6]. The enzyme from plants and animals is also active toward N-acetyl-α-D-galactosamine 1-phosphate (cf. EC 2.7.7.83, UDP-N-acetylgalactosamine diphosphorylase) [5,7], while the bacterial enzyme shows low activity toward that substrate [4].
Links to other databases: BRENDA, EXPASY, GTD, IUBMB, KEGG, PDB, CAS registry number: 9023-06-7
References:
1.  Pattabiramin, T.N. and Bachhawat, B.K. Purification of uridine diphosphoacetylglucosamine pyrophosphorylase from sheep brain. Biochim. Biophys. Acta 50 (1961) 129–134. [PMID: 13733356]
2.  Strominger, J.L. and Smith, M.S. Uridine diphosphoacetylglucosamine pyrophosphorylase. J. Biol. Chem. 234 (1959) 1822–1827. [PMID: 13672971]
3.  Mengin-Lecreulx, D. and van Heijenoort, J. Copurification of glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase activities of Escherichia coli: characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent steps in the pathway for UDP-N-acetylglucosamine synthesis. J. Bacteriol. 176 (1994) 5788–5795. [PMID: 8083170]
4.  Gehring, A.M., Lees, W.J., Mindiola, D.J., Walsh, C.T. and Brown, E.D. Acetyltransfer precedes uridylyltransfer in the formation of UDP-N-acetylglucosamine in separable active sites of the bifunctional GlmU protein of Escherichia coli. Biochemistry 35 (1996) 579–585. [PMID: 8555230]
5.  Wang-Gillam, A., Pastuszak, I. and Elbein, A.D. A 17-amino acid insert changes UDP-N-acetylhexosamine pyrophosphorylase specificity from UDP-GalNAc to UDP-GlcNAc. J. Biol. Chem. 273 (1998) 27055–27057. [PMID: 9765219]
6.  Olsen, L.R. and Roderick, S.L. Structure of the Escherichia coli GlmU pyrophosphorylase and acetyltransferase active sites. Biochemistry 40 (2001) 1913–1921. [PMID: 11329257]
7.  Peneff, C., Ferrari, P., Charrier, V., Taburet, Y., Monnier, C., Zamboni, V., Winter, J., Harnois, M., Fassy, F. and Bourne, Y. Crystal structures of two human pyrophosphorylase isoforms in complexes with UDPGlc(Gal)NAc: role of the alternatively spliced insert in the enzyme oligomeric assembly and active site architecture. EMBO J. 20 (2001) 6191–6202. [PMID: 11707391]
[EC 2.7.7.23 created 1965, modified 2012]
 
 
EC 2.7.7.82
Accepted name: CMP-N,N′-diacetyllegionaminic acid synthase
Reaction: CTP + N,N′-diacetyllegionaminate = CMP-N,N′-diacetyllegionaminate + diphosphate
For diagram of legionaminic acid biosynthesis, click here
Glossary: legionaminate = 5,7-diamino-3,5,7,9-tetradeoxy-D-glycero-D-galacto-non-2-ulosonate
Other name(s): CMP-N,N′-diacetyllegionaminic acid synthetase; neuA (gene name); legF (gene name)
Systematic name: CTP:N,N′-diacetyllegionaminate cytidylyltransferase
Comments: Isolated from the bacteria Legionella pneumophila and Campylobacter jejuni. Involved in biosynthesis of legionaminic acid, a sialic acid-like derivative that is incorporated into virulence-associated cell surface glycoconjugates which may include lipopolysaccharide (LPS), capsular polysaccharide, pili and flagella.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Glaze, P.A., Watson, D.C., Young, N.M. and Tanner, M.E. Biosynthesis of CMP-N,N′-diacetyllegionaminic acid from UDP-N,N′-diacetylbacillosamine in Legionella pneumophila. Biochemistry 47 (2008) 3272–3282. [PMID: 18275154]
2.  Schoenhofen, I.C., Vinogradov, E., Whitfield, D.M., Brisson, J.R. and Logan, S.M. The CMP-legionaminic acid pathway in Campylobacter: biosynthesis involving novel GDP-linked precursors. Glycobiology 19 (2009) 715–725. [PMID: 19282391]
[EC 2.7.7.82 created 2012]
 
 
EC 2.7.7.83
Accepted name: UDP-N-acetylgalactosamine diphosphorylase
Reaction: UTP + N-acetyl-α-D-galactosamine 1-phosphate = diphosphate + UDP-N-acetyl-α-D-galactosamine
Systematic name: UTP:N-acetyl-α-D-galactosamine-1-phosphate uridylyltransferase
Comments: The enzyme from plants and animals also has activity toward N-acetyl-α-D-glucosamine 1-phosphate (cf. EC 2.7.7.23, UDP-N-acetylglucosamine diphosphorylase) [1,2].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Wang-Gillam, A., Pastuszak, I. and Elbein, A.D. A 17-amino acid insert changes UDP-N-acetylhexosamine pyrophosphorylase specificity from UDP-GalNAc to UDP-GlcNAc. J. Biol. Chem. 273 (1998) 27055–27057. [PMID: 9765219]
2.  Peneff, C., Ferrari, P., Charrier, V., Taburet, Y., Monnier, C., Zamboni, V., Winter, J., Harnois, M., Fassy, F. and Bourne, Y. Crystal structures of two human pyrophosphorylase isoforms in complexes with UDPGlc(Gal)NAc: role of the alternatively spliced insert in the enzyme oligomeric assembly and active site architecture. EMBO J. 20 (2001) 6191–6202. [PMID: 11707391]
[EC 2.7.7.83 created 2012]
 
 
EC 2.7.8.35
Accepted name: UDP-N-acetylglucosamine—decaprenyl-phosphate N-acetylglucosaminephosphotransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + trans,octacis-decaprenyl phosphate = UMP + N-acetyl-α-D-glucosaminyl-diphospho-trans,octacis-decaprenol
For diagram of galactofuranan biosynthesis, click here
Other name(s): GlcNAc-1-phosphate transferase; UDP-GlcNAc:undecaprenyl phosphate GlcNAc-1-phosphate transferase; WecA; WecA transferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:trans,octacis-decaprenyl-phosphate N-acetylglucosaminephosphotransferase
Comments: Isolated from Mycobacterium tuberculosis and Mycobacterium smegmatis. This enzyme catalyses the synthesis of monotrans,octacis-decaprenyl-N-acetyl-α-D-glucosaminyl diphosphate (mycobacterial lipid I), an essential lipid intermediate for the biosynthesis of various bacterial cell envelope components. cf. EC 2.7.8.33, UDP-GlcNAc:undecaprenyl-phosphate GlcNAc-1-phosphate transferase.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Jin, Y., Xin, Y., Zhang, W. and Ma, Y. Mycobacterium tuberculosis Rv1302 and Mycobacterium smegmatis MSMEG_4947 have WecA function and MSMEG_4947 is required for the growth of M. smegmatis. FEMS Microbiol. Lett. 310 (2010) 54–61. [PMID: 20637039]
[EC 2.7.8.35 created 2012]
 
 
EC 2.7.8.36
Accepted name: undecaprenyl phosphate N,N′-diacetylbacillosamine 1-phosphate transferase
Reaction: UDP-N,N′-diacetylbacillosamine + tritrans,heptacis-undecaprenyl phosphate = UMP + N,N′-diacetyl-α-D-bacillosaminyl-diphospho-tritrans,heptacis-undecaprenol
For diagram of undecaprenyldiphosphoheptasaccharide biosynthesis, click here
Glossary: UDP-N,N′-diacetylbacillosamine = UDP-2,4-diacetamido-2,4,6-trideoxy-α-D-glucopyranose
Other name(s): PglC
Systematic name: UDP-N,N′-diacetylbacillosamine:tritrans,heptacis-undecaprenyl-phosphate N,N′-diacetylbacillosamine transferase
Comments: Isolated from Campylobacter jejuni. Part of a bacterial N-linked glycosylation pathway.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Glover, K.J., Weerapana, E., Chen, M.M. and Imperiali, B. Direct biochemical evidence for the utilization of UDP-bacillosamine by PglC, an essential glycosyl-1-phosphate transferase in the Campylobacter jejuni N-linked glycosylation pathway. Biochemistry 45 (2006) 5343–5350. [PMID: 16618123]
[EC 2.7.8.36 created 2012]
 
 
EC 2.7.8.37
Accepted name: α-D-ribose 1-methylphosphonate 5-triphosphate synthase
Reaction: ATP + methylphosphonate = α-D-ribose 1-methylphosphonate 5-triphosphate + adenine
For diagram of phosphonate metabolism, click here
Systematic name: ATP:methylphosphonate 5-triphosphoribosyltransferase
Comments: Isolated from the bacterium Escherichia coli.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Kamat, S.S., Williams, H.J. and Raushel, F.M. Intermediates in the transformation of phosphonates to phosphate by bacteria. Nature 480 (2011) 570–573. [PMID: 22089136]
[EC 2.7.8.37 created 2012]
 
 
EC 2.7.11.32
Accepted name: [pyruvate, phosphate dikinase] kinase
Reaction: ADP + [pyruvate, phosphate dikinase] = AMP + [pyruvate, phosphate dikinase] phosphate
Other name(s): PPDK regulatory protein (ambiguous); pyruvate; phosphate dikinase regulatory protein (ambiguous); bifunctional dikinase regulatory protein (ambiguous)
Systematic name: ADP:[pyruvate, phosphate dikinase] phosphotransferase
Comments: The enzymes from the plants Zea mays (maize) and Arabidopsis thaliana are bifunctional and catalyse both the phosphorylation and dephosphorylation of EC 2.7.9.1 (pyruvate, phosphate dikinase). cf. EC 2.7.4.27, [pyruvate, phosphate dikinase]-phosphate phosphotransferase [2-5]. The enzyme is specific for a reaction intermediate form of EC 2.7.9.1, and phosphorylates a threonine located adjacent to the catalytic histidine. The phosphorylation only takes place if the histidine is already phosphorylated [3-5].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Burnell, J.N. and Hatch, M.D. Regulation of C4 photosynthesis: identification of a catalytically important histidine residue and its role in the regulation of pyruvate,Pi dikinase. Arch. Biochem. Biophys. 231 (1984) 175–182. [PMID: 6326674]
2.  Burnell, J.N. and Hatch, M.D. Regulation of C4 photosynthesis: purification and properties of the protein catalyzing ADP-mediated inactivation and Pi-mediated activation of pyruvate,Pi dikinase. Arch. Biochem. Biophys. 237 (1985) 490–503. [PMID: 2983615]
3.  Chastain, C.J., Botschner, M., Harrington, G.E., Thompson, B.J., Mills, S.E., Sarath, G. and Chollet, R. Further analysis of maize C4 pyruvate,orthophosphate dikinase phosphorylation by its bifunctional regulatory protein using selective substitutions of the regulatory Thr-456 and catalytic His-458 residues. Arch. Biochem. Biophys. 375 (2000) 165–170. [PMID: 10683263]
4.  Burnell, J.N. and Chastain, C.J. Cloning and expression of maize-leaf pyruvate, Pi dikinase regulatory protein gene. Biochem. Biophys. Res. Commun. 345 (2006) 675–680. [PMID: 16696949]
5.  Chastain, C.J., Xu, W., Parsley, K., Sarath, G., Hibberd, J.M. and Chollet, R. The pyruvate, orthophosphate dikinase regulatory proteins of Arabidopsis possess a novel, unprecedented Ser/Thr protein kinase primary structure. Plant J. 53 (2008) 854–863. [PMID: 17996018]
[EC 2.7.11.32 created 2012]
 
 
EC 2.7.11.33
Accepted name: [pyruvate, water dikinase] kinase
Reaction: ADP + [pyruvate, water dikinase] = AMP + [pyruvate, water dikinase] phosphate
Other name(s): PSRP (ambiguous); PEPS kinase
Systematic name: ADP:[pyruvate, water dikinase] phosphotransferase
Comments: The enzyme from the bacterium Escherichia coli is bifunctional and catalyses both the phosphorylation and dephosphorylation of EC 2.7.9.2, pyruvate, water dikinase. cf. EC 2.7.4.28, ([pyruvate, water dikinase] phosphate) phosphotransferase [1]. The enzyme is specific for a reaction intermediate form of EC 2.7.9.2, where it phosphorylates an active site histidine [1]. It has no activity toward EC 2.7.9.1 pyruvate, phosphate dikinase (cf. EC 2.7.11.32, [pyruvate, phosphate dikinase] kinase).
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Burnell, J.N. Cloning and characterization of Escherichia coli DUF299: a bifunctional ADP-dependent kinase—Pi-dependent pyrophosphorylase from bacteria. BMC Biochem. 11:1 (2010). [PMID: 20044937]
[EC 2.7.11.33 created 2012]
 
 
EC 3.1.1.91
Accepted name: 2-oxo-3-(5-oxofuran-2-ylidene)propanoate lactonase
Reaction: 2-oxo-3-(5-oxofuran-2-ylidene)propanoate + H2O = maleylpyruvate
Other name(s): naaC (gene name)
Systematic name: 2-oxo-3-(5-oxofuran-2-ylidene)propanoate lactonohydrolase
Comments: This enzyme, characterized from the soil bacterium Bradyrhizobium sp. JS329, is involved in the pathway of 5-nitroanthranilate degradation.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Qu, Y. and Spain, J.C. Molecular and biochemical characterization of the 5-nitroanthranilic acid degradation pathway in Bradyrhizobium sp. strain JS329. J. Bacteriol. 193 (2011) 3057–3063. [PMID: 21498645]
[EC 3.1.1.91 created 2012]
 
 
EC 3.1.1.92
Accepted name: 4-sulfomuconolactone hydrolase
Reaction: 4-sulfomuconolactone + H2O = maleylacetate + sulfite
Glossary: 4-sulfomuconolactone = 4-carboxymethylen-4-sulfobut-2-en-olide = 2-(5-oxo-2-sulfo-2,5-dihydrofuran-2-yl)acetic acid
maleylacetate = (2Z)-4-oxohex-2-enedioate
Systematic name: 4-sulfomuconolactone sulfohydrolase
Comments: The enzyme was isolated from the bacteria Hydrogenophaga intermedia and Agrobacterium radiobacter S2. It catalyses a step in the degradation of 4-sulfocatechol.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, UM-BBD
References:
1.  Halak, S., Basta, T., Burger, S., Contzen, M., Wray, V., Pieper, D.H. and Stolz, A. 4-sulfomuconolactone hydrolases from Hydrogenophaga intermedia S1 and Agrobacterium radiobacter S2. J. Bacteriol. 189 (2007) 6998–7006. [PMID: 17660282]
[EC 3.1.1.92 created 2012]
 
 
EC 3.1.1.93
Accepted name: mycophenolic acid acyl-glucuronide esterase
Reaction: mycophenolic acid O-acyl-glucuronide + H2O = mycophenolate + D-glucuronate
Glossary: mycophenolate = (4E)-6-(4-hydroxy-6-methoxy-7-methyl-3-oxo-1,3-dihydro-2-benzofuran-5-yl)-4-methylhex-4-enoate
mycophenolic acid O-acyl-glucuronide = 1-O-[(4E)-6-(4-hydroxy-6-methoxy-7-methyl-3-oxo-1,3-dihydro-2-benzofuran-5-yl)-4-methylhex-4-enoyl]-β-D-glucopyranuronic acid
Other name(s): mycophenolic acid acyl-glucuronide deglucuronidase; AcMPAG deglucuronidase
Systematic name: mycophenolic acid O-acyl-glucuronide-ester hydrolase
Comments: This liver enzyme deglucuronidates mycophenolic acid O-acyl-glucuronide, a metabolite of the immunosuppressant drug mycophenolate that is thought to be immunotoxic.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Iwamura, A., Fukami, T., Higuchi, R., Nakajima, M. and Yokoi, T. Human α/β hydrolase domain containing 10 (ABHD10) is responsible enzyme for deglucuronidation of mycophenolic acid acyl-glucuronide in liver. J. Biol. Chem. 287 (2012) 9240–9249. [PMID: 22294686]
[EC 3.1.1.93 created 2012]
 
 
EC 3.1.3.88
Accepted name: 5′′-phosphoribostamycin phosphatase
Reaction: 5′′-phosphoribostamycin + H2O = ribostamycin + phosphate
For diagram of neamine and ribostamycin biosynthesis, click here
Other name(s): btrP (gene name); neoI (gene name)
Systematic name: 5′′-phosphoribostamycin phosphohydrolase
Comments: Involved in the biosynthetic pathways of several clinically important aminocyclitol antibiotics, including ribostamycin, neomycin and butirosin. No metal is required for activity.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Kudo, F., Fujii, T., Kinoshita, S. and Eguchi, T. Unique O-ribosylation in the biosynthesis of butirosin. Bioorg. Med. Chem. 15 (2007) 4360–4368. [PMID: 17482823]
[EC 3.1.3.88 created 2012]
 
 
*EC 3.2.1.89
Accepted name: arabinogalactan endo-β-1,4-galactanase
Reaction: The enzyme specifically hydrolyses (1→4)-β-D-galactosidic linkages in type I arabinogalactans.
Other name(s): endo-1,4-β-galactanase; galactanase (ambiguous); arabinogalactanase; ganB (gene name)
Systematic name: arabinogalactan 4-β-D-galactanohydrolase
Comments: This enzyme, isolated from the bacterium Bacillus subtilis, hydrolyses the β(1→4) bonds found in type I plant arabinogalactans, which are a component of the primary cell walls of dicots. The predominant product is a tetrasaccharide. cf. EC 3.2.1.181, galactan endo-β-1,3-galactanase.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, PDB, CAS registry number: 58182-40-4
References:
1.  Emi, S. and Yamamoto, T. Purification and properties of several galactanases of Bacillus subtilis var. amylosacchariticus. Agric. Biol. Chem. 36 (1972) 1945–1954.
2.  Labavitch, J.M., Freeman, L.E. and Albersheim, P. Structure of plant cell walls. Purification and characterization of a β-1,4-galactanase which degrades a structural component of the primary cell walls of dicots. J. Biol. Chem. 251 (1976) 5904–5910. [PMID: 823153]
3.  Shipkowski, S. and Brenchley, J.E. Bioinformatic, genetic, and biochemical evidence that some glycoside hydrolase family 42 β-galactosidases are arabinogalactan type I oligomer hydrolases. Appl. Environ. Microbiol. 72 (2006) 7730–7738. [PMID: 17056685]
[EC 3.2.1.89 created 1976, modified 2012]
 
 
EC 3.2.1.181
Accepted name: galactan endo-β-1,3-galactanase
Reaction: The enzyme specifically hydrolyses β-1,3-galactan and β-1,3-galactooligosaccharides
Other name(s): endo-β-1,3-galactanase
Systematic name: arabinogalactan 3-β-D-galactanohydrolase
Comments: The enzyme from the fungus Flammulina velutipes (winter mushroom) hydrolyses the β(1→3) bonds found in type II plant arabinogalactans, which occur in cell walls of dicots and cereals. The enzyme is an endohydrolase, and requires at least 3 contiguous β-1,3-residues. cf. EC 3.2.1.89, arabinogalactan endo-β-1,4-galactanase and EC 3.2.1.145, galactan 1,3-β-galactosidase.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Kotake, T., Hirata, N., Degi, Y., Ishiguro, M., Kitazawa, K., Takata, R., Ichinose, H., Kaneko, S., Igarashi, K., Samejima, M. and Tsumuraya, Y. Endo-β-1,3-galactanase from winter mushroom Flammulina velutipes. J. Biol. Chem. 286 (2011) 27848–27854. [PMID: 21653698]
[EC 3.2.1.181 created 2012]
 
 
EC 3.2.1.182
Accepted name: 4-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl glucoside β-D-glucosidase
Reaction: (1) (2R)-4-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside + H2O = 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one + D-glucose
(2) (2R)-4-hydroxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside + H2O = 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one + D-glucose
Glossary: DIMBOA glucoside = (2R)-4-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside
DIBOA glucoside = (2R)-4-hydroxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside
Other name(s): DIMBOAGlc hydrolase; DIMBOA glucosidase
Systematic name: (2R)-4-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside β-D-glucosidase
Comments: The enzyme from Triticum aestivum (wheat) has a higher affinity for DIMBOA glucoside than DIBOA glucoside. With Secale cereale (rye) the preference is reversed.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Sue, M., Ishihara, A. and Iwamura, H. Purification and characterization of a hydroxamic acid glucoside β-glucosidase from wheat (Triticum aestivum L.) seedlings. Planta 210 (2000) 432–438. [PMID: 10750901]
2.  Sue, M., Ishihara, A. and Iwamura, H. Purification and characterization of a β-glucosidase from rye (Secale cereale L.) seedlings. Plant Sci. 155 (2000) 67–74. [PMID: 10773341]
3.  Czjzek, M., Cicek, M., Zamboni, V., Bevan, D.R., Henrissat, B. and Esen, A. The mechanism of substrate (aglycone) specificity in β-glucosidases is revealed by crystal structures of mutant maize β-glucosidase-DIMBOA, -DIMBOAGlc, and -dhurrin complexes. Proc. Natl. Acad. Sci. USA 97 (2000) 13555–13560. [PMID: 11106394]
4.  Nikus, J., Esen, A. and Jonsson, L.M.V. Cloning of a plastidic rye (Secale cereale) β-glucosidase cDNA and its expression in Escherichia coli. Physiol. Plantarum 118 (2003) 337–348.
5.  Sue, M., Yamazaki, K., Yajima, S., Nomura, T., Matsukawa, T., Iwamura, H. and Miyamoto, T. Molecular and structural characterization of hexameric β-D-glucosidases in wheat and rye. Plant Physiol. 141 (2006) 1237–1247. [PMID: 16751439]
6.  Sue, M., Nakamura, C., Miyamoto, T. and Yajima, S. Active-site architecture of benzoxazinone-glucoside β-D-glucosidases in Triticeae. Plant Sci. 180 (2011) 268–275. [PMID: 21421370]
[EC 3.2.1.182 created 2012]
 
 
EC 3.2.1.183
Accepted name: UDP-N-acetylglucosamine 2-epimerase (hydrolysing)
Reaction: UDP-N-acetyl-α-D-glucosamine + H2O = N-acetyl-D-mannosamine + UDP
For diagram of N-acetylneuraminic acid biosynthesis, click here, and for mechanism, click here
Other name(s): UDP-N-acetylglucosamine 2-epimerase (ambiguous); GNE (gene name); siaA (gene name); neuC (gene name)
Systematic name: UDP-N-acetyl-α-D-glucosamine hydrolase (2-epimerising)
Comments: The enzyme is found in mammalian liver, as well as in some pathogenic bacteria including Neisseria meningitidis and Staphylococcus aureus. It catalyses the first step of sialic acid (N-acetylneuraminic acid) biosynthesis. The initial product formed is the α anomer, which rapidly mutarotates to a mixture of anomers [2]. The mammalian enzyme is bifunctional and also catalyses EC 2.7.1.60, N-acetylmannosamine kinase. cf. EC 5.1.3.14, UDP-N-acetylglucosamine 2-epimerase (non-hydrolysing).
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Stasche, R., Hinderlich, S., Weise, C., Effertz, K., Lucka, L., Moormann, P. and Reutter, W. A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver. Molecular cloning and functional expression of UDP-N-acetyl-glucosamine 2-epimerase/N-acetylmannosamine kinase. J. Biol. Chem. 272 (1997) 24319–24324. [PMID: 9305888]
2.  Chou, W.K., Hinderlich, S., Reutter, W. and Tanner, M.E. Sialic acid biosynthesis: stereochemistry and mechanism of the reaction catalyzed by the mammalian UDP-N-acetylglucosamine 2-epimerase. J. Am. Chem. Soc. 125 (2003) 2455–2461. [PMID: 12603133]
3.  Blume, A., Ghaderi, D., Liebich, V., Hinderlich, S., Donner, P., Reutter, W. and Lucka, L. UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase, functionally expressed in and purified from Escherichia coli, yeast, and insect cells. Protein Expr. Purif. 35 (2004) 387–396. [PMID: 15135418]
4.  Murkin, A.S., Chou, W.K., Wakarchuk, W.W. and Tanner, M.E. Identification and mechanism of a bacterial hydrolyzing UDP-N-acetylglucosamine 2-epimerase. Biochemistry 43 (2004) 14290–14298. [PMID: 15518580]
[EC 3.2.1.183 created 2012]
 
 
EC 3.2.1.184
Accepted name: UDP-N,N′-diacetylbacillosamine 2-epimerase (hydrolysing)
Reaction: UDP-N,N′-diacetylbacillosamine + H2O = UDP + 2,4-diacetamido-2,4,6-trideoxy-D-mannopyranose
For diagram of legionaminic acid biosynthesis, click here, and for mechanism, click here
Glossary: UDP-N,N′-diacetylbacillosamine = UDP-2,4-diacetamido-2,4,6-trideoxy-α-D-glucopyranose
Other name(s): UDP-Bac2Ac4Ac 2-epimerase; NeuC
Systematic name: UDP-N,N′-diacetylbacillosamine hydrolase (2-epimerising)
Comments: Requires Mg2+. Involved in biosynthesis of legionaminic acid, a nonulosonate derivative that is incorporated by some bacteria into assorted virulence-associated cell surface glycoconjugates. The initial product formed by the enzyme from Legionella pneumophila, which incorporates legionaminic acid into the O-antigen moiety of its lipopolysaccharide, is 2,4-diacetamido-2,4,6-trideoxy-α-D-mannopyranose, which rapidly mutarotates to a mixture of anomers [1]. The enzyme from Campylobacter jejuni, which incorporates legionaminic acid into flagellin, prefers GDP-N,N′-diacetylbacillosamine [2].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Glaze, P.A., Watson, D.C., Young, N.M. and Tanner, M.E. Biosynthesis of CMP-N,N′-diacetyllegionaminic acid from UDP-N,N′-diacetylbacillosamine in Legionella pneumophila. Biochemistry 47 (2008) 3272–3282. [PMID: 18275154]
2.  Schoenhofen, I.C., Vinogradov, E., Whitfield, D.M., Brisson, J.R. and Logan, S.M. The CMP-legionaminic acid pathway in Campylobacter: biosynthesis involving novel GDP-linked precursors. Glycobiology 19 (2009) 715–725. [PMID: 19282391]
[EC 3.2.1.184 created 2012]
 
 
EC 3.5.1.111
Accepted name: 2-oxoglutaramate amidase
Reaction: 2-oxoglutaramate + H2O = 2-oxoglutarate + NH3
Glossary: 2-oxoglutaramate = 2-ketoglutaramate = 5-amino-2,5-dioxopentanoate
Other name(s): ω-amidase (ambiguous)
Systematic name: 5-amino-2,5-dioxopentanoate amidohydrolase
Comments: The enzyme, which is highly specific for its substrate, participates in the nicotine degradation pathway of several Gram-positive bacteria.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Cobzaru, C., Ganas, P., Mihasan, M., Schleberger, P. and Brandsch, R. Homologous gene clusters of nicotine catabolism, including a new ω-amidase for α-ketoglutaramate, in species of three genera of Gram-positive bacteria. Res. Microbiol. 162 (2011) 285–291. [PMID: 21288482]
[EC 3.5.1.111 created 2012]
 
 
EC 3.5.1.112
Accepted name: 2′-N-acetylparomamine deacetylase
Reaction: 2′-N-acetylparomamine + H2O = paromamine + acetate
For diagram of paromamine biosynthesis, click here
Glossary: paromamine = (1R)-O4-(2-amino-2-deoxy-α-D-glucopyranosyl)-2-deoxy-streptamine
Other name(s): btrD (gene name); neoL (gene name); kanN (gene name)
Systematic name: 2′-N-acetylparomamine hydrolase (acetate-forming)
Comments: Involved in the biosynthetic pathways of several clinically important aminocyclitol antibiotics, including kanamycin, butirosin, neomycin and ribostamycin. The enzyme from the bacterium Streptomyces fradiae can also accept 2′′′-acetyl-6′′′-hydroxyneomycin C as substrate, cf. EC 3.5.1.113, 2′′′-acetyl-6′′′-hydroxyneomycin C deacetylase [2].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Truman, A.W., Huang, F., Llewellyn, N.M. and Spencer, J.B. Characterization of the enzyme BtrD from Bacillus circulans and revision of its functional assignment in the biosynthesis of butirosin. Angew. Chem. Int. Ed. Engl. 46 (2007) 1462–1464. [PMID: 17226887]
2.  Yokoyama, K., Yamamoto, Y., Kudo, F. and Eguchi, T. Involvement of two distinct N-acetylglucosaminyltransferases and a dual-function deacetylase in neomycin biosynthesis. ChemBioChem. 9 (2008) 865–869. [PMID: 18311744]
[EC 3.5.1.112 created 2012]
 
 
EC 3.5.1.113
Accepted name: 2′′′-acetyl-6′′′-hydroxyneomycin C deacetylase
Reaction: 2′′′-acetyl-6′′′-deamino-6′′′-hydroxyneomycin C + H2O = 6′′′-deamino-6′′′-hydroxyneomycin C + acetate
Other name(s): neoL (gene name)
Systematic name: 2′′′-acetyl-6′′′-hydroxyneomycin C hydrolase (acetate-forming)
Comments: Involved in the biosynthetic pathway of aminoglycoside antibiotics of the neomycin family. The enzyme from the bacterium Streptomyces fradiae also catalyses EC 3.5.1.112, 2′-N-acetylparomamine deacetylase.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Yokoyama, K., Yamamoto, Y., Kudo, F. and Eguchi, T. Involvement of two distinct N-acetylglucosaminyltransferases and a dual-function deacetylase in neomycin biosynthesis. ChemBioChem. 9 (2008) 865–869. [PMID: 18311744]
[EC 3.5.1.113 created 2012]
 
 
*EC 3.5.99.5
Accepted name: 2-aminomuconate deaminase
Reaction: 2-aminomuconate + H2O = (3E)-2-oxohex-3-enedioate + NH3
Other name(s): amnD (gene name); nbaF (gene name)
Systematic name: 2-aminomuconate aminohydrolase
Comments: 2-Aminomuconate is an intermediate in the bacterial biodegradation of nitrobenzene. The enzyme has been isolated from several species, including Pseudomonas pseudocaligenes JS45, Pseudomonas fluorescens KU-7, Pseudomonas sp. AP3 and Burkholderia cenocepacia J2315. The reaction is spontaneous in acid conditions.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, CAS registry number: 201098-29-5
References:
1.  He, Z and Spain, J.C. Studies of the catabolic pathway of degradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45: removal of the amino group from 2-aminomuconic semialdehyde. Appl. Environ. Microbiol. 63 (1997) 4839–4843. [PMID: 9471964]
2.  He, Z. and Spain, J.C. A novel 2-aminomuconate deaminase in the nitrobenzene degradation pathway of Pseudomonas pseudoalcaligenes JS45. J. Bacteriol. 180 (1998) 2502–2506. [PMID: 9573204]
3.  Takenaka, S., Murakami, S., Kim, Y.J. and Aoki, K. Complete nucleotide sequence and functional analysis of the genes for 2-aminophenol metabolism from Pseudomonas sp. AP-3. Arch. Microbiol. 174 (2000) 265–272. [PMID: 11081795]
4.  Muraki, T., Taki, M., Hasegawa, Y., Iwaki, H. and Lau, P.C. Prokaryotic homologs of the eukaryotic 3-hydroxyanthranilate 3,4-dioxygenase and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase in the 2-nitrobenzoate degradation pathway of Pseudomonas fluorescens strain KU-7. Appl. Environ. Microbiol. 69 (2003) 1564–1572. [PMID: 12620844]
[EC 3.5.99.5 created 2000, modified 2012]
 
 
EC 3.5.99.9
Accepted name: 2-nitroimidazole nitrohydrolase
Reaction: 2-nitroimidazole + H2O = imidazol-2-one + nitrite
Other name(s): NnhA; 2NI nitrohydrolase; 2NI denitrase
Systematic name: 2-nitroimidazole nitrohydrolase
Comments: The enzyme catalyses the initial step in the biodegradation of 2-nitroimidazole by the soil bacterium Mycobacterium sp. JS330
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Qu, Y. and Spain, J.C. Catabolic pathway for 2-nitroimidazole involves a novel nitrohydrolase that also confers drug resistance. Environ Microbiol 13 (2011) 1010–1017. [PMID: 21244596]
[EC 3.5.99.9 created 2012]
 
 
*EC 3.6.1.27
Accepted name: undecaprenyl-diphosphate phosphatase
Reaction: ditrans,octacis-undecaprenyl diphosphate + H2O = ditrans,octacis-undecaprenyl phosphate + phosphate
For diagram of peptidoglycan biosynthesis (part 3), click here and for diagram of xanthan biosynthesis, click here
Other name(s): C55-isoprenyl diphosphatase; C55-isoprenyl pyrophosphatase; isoprenyl pyrophosphatase (ambiguous); undecaprenyl pyrophosphate phosphatase; undecaprenyl pyrophosphate pyrophosphatase; UPP phosphatase; Und-PP pyrophosphatase; UppP (ambiguous); BacA; undecaprenyl-diphosphate phosphohydrolase; undecaprenyl-diphosphatase
Systematic name: ditrans,octacis-undecaprenyl-diphosphate phosphohydrolase
Comments: Isolated from the bacteria Micrococcus lysodeikticus [1], Escherichia coli [2,3,5,6] and Bacillus subtilis [4]. The product of the reaction, ditrans,octacis-undecaprenyl phosphate, is essential for cell wall polysaccharide biosynthesis in these strains.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, CAS registry number: 9077-80-9
References:
1.  Goldman, R. and Strominger, J.L. Purification and properties of C55-isoprenylpyrophosphate phosphatase from Micrococcus lysodeikticus. J. Biol. Chem. 247 (1972) 5116–5122. [PMID: 4341539]
2.  El Ghachi, M., Bouhss, A., Blanot, D. and Mengin-Lecreulx, D. The bacA gene of Escherichia coli encodes an undecaprenyl pyrophosphate phosphatase activity. J. Biol. Chem. 279 (2004) 30106–30113. [PMID: 15138271]
3.  El Ghachi, M., Derbise, A., Bouhss, A. and Mengin-Lecreulx, D. Identification of multiple genes encoding membrane proteins with undecaprenyl pyrophosphate phosphatase (UppP) activity in Escherichia coli. J. Biol. Chem. 280 (2005) 18689–18695. [PMID: 15778224]
4.  Bernard, R., El Ghachi, M., Mengin-Lecreulx, D., Chippaux, M. and Denizot, F. BcrC from Bacillus subtilis acts as an undecaprenyl pyrophosphate phosphatase in bacitracin resistance. J. Biol. Chem. 280 (2005) 28852–28857. [PMID: 15946938]
5.  Tatar, L.D., Marolda, C.L., Polischuk, A.N., van Leeuwen, D. and Valvano, M.A. An Escherichia coli undecaprenyl-pyrophosphate phosphatase implicated in undecaprenyl phosphate recycling. Microbiology 153 (2007) 2518–2529. [PMID: 17660416]
6.  Touze, T., Blanot, D. and Mengin-Lecreulx, D. Substrate specificity and membrane topology of Escherichia coli PgpB, an undecaprenyl pyrophosphate phosphatase. J. Biol. Chem. 283 (2008) 16573–16583. [PMID: 18411271]
[EC 3.6.1.27 created 1978, modified 2002, modified 2012]
 
 
EC 3.6.1.63
Accepted name: α-D-ribose 1-methylphosphonate 5-triphosphate diphosphatase
Reaction: α-D-ribose 1-methylphosphonate 5-triphosphate + H2O = α-D-ribose 1-methylphosphonate 5-phosphate + diphosphate
For diagram of phosphonate metabolism, click here
Other name(s): phnM (gene name)
Systematic name: α-D-ribose-1-methylphosphonate-5-triphosphate diphosphohydrolase
Comments: Isolated from the bacterium Escherichia coli.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Kamat, S.S., Williams, H.J. and Raushel, F.M. Intermediates in the transformation of phosphonates to phosphate by bacteria. Nature 480 (2011) 570–573. [PMID: 22089136]
[EC 3.6.1.63 created 2012]
 
 
*EC 3.7.1.14
Accepted name: 2-hydroxy-6-oxonona-2,4-dienedioate hydrolase
Reaction: (1) (2Z,4E)-2-hydroxy-6-oxonona-2,4-diene-1,9-dioate + H2O = (2Z)-2-hydroxypenta-2,4-dienoate + succinate
(2) (2Z,4E,7E)-2-hydroxy-6-oxonona-2,4,7-triene-1,9-dioate + H2O = (2Z)-2-hydroxypenta-2,4-dienoate + fumarate
For diagram of 3-phenylpropanoate catabolism, click here and for diagram of cinnamate catabolism, click here
Other name(s): mhpC (gene name)
Systematic name: (2Z,4E)-2-hydroxy-6-oxona-2,4-dienedioate succinylhydrolase
Comments: This enzyme catalyses a step in a pathway of phenylpropanoid compounds degradation. The first step of the enzyme mechanism involves a reversible keto-enol tautomerization [4].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, UM-BBD
References:
1.  Burlingame, R. and Chapman, P.J. Catabolism of phenylpropionic acid and its 3-hydroxy derivative by Escherichia coli. J. Bacteriol. 155 (1983) 113–121. [PMID: 6345502]
2.  Burlingame, R.P., Wyman, L. and Chapman, P.J. Isolation and characterization of Escherichia coli mutants defective for phenylpropionate degradation. J. Bacteriol. 168 (1986) 55–64. [PMID: 3531186]
3.  Lam, W. W. Y and Bugg, T. D. H. Chemistry of extradiol aromatic ring cleavage: isolation of a stable dienol ring fission intermediate and stereochemistry of its enzymatic hydrolytic clevage. J. Chem. Soc., Chem. Commun. 10 (1994) 1163–1164.
4.  Lam, W.W. and Bugg, T.D. Purification, characterization, and stereochemical analysis of a C-C hydrolase: 2-hydroxy-6-keto-nona-2,4-diene-1,9-dioic acid 5,6-hydrolase. Biochemistry 36 (1997) 12242–12251. [PMID: 9315862]
5.  Ferrández, A., García, J.L. and Díaz, E. Genetic characterization and expression in heterologous hosts of the 3-(3-hydroxyphenyl)propionate catabolic pathway of Escherichia coli K-12. J. Bacteriol. 179 (1997) 2573–2581. [PMID: 9098055]
6.  Díaz, E., Ferrández, A. and García, J.L. Characterization of the hca cluster encoding the dioxygenolytic pathway for initial catabolism of 3-phenylpropionic acid in Escherichia coli K-12. J. Bacteriol. 180 (1998) 2915–2923. [PMID: 9603882]
[EC 3.7.1.14 created 2011, modified 2012]
 
 
EC 3.7.1.19
Accepted name: 2,6-dihydroxypseudooxynicotine hydrolase
Reaction: 1-(2,6-dihydroxypyridin-3-yl)-4-(methylamino)butan-1-one + H2O = 2,6-dihydroxypyridine + 4-methylaminobutanoate
For diagram of nicotine catabolism by arthrobacter, click here
Glossary: 1-(2,6-dihydroxypyridin-3-yl)-4-(methylamino)butan-1-one = 2,6-dihydroxypseudooxynicotine
Systematic name: 1-(2,6-dihydroxypyridin-3-yl)-4-(methylamino)butan-1-one hydrolase
Comments: The enzyme, characterized from the soil bacterium Arthrobacter nicotinovorans, participates in nicotine degradation.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Gherna, R.L., Richardson, S.H. and Rittenberg, S.C. The bacterial oxidation of nicotine. VI. The metabolism of 2,6-dihydroxypseudooxynicotine. J. Biol. Chem. 240 (1965) 3669–3674. [PMID: 5835946]
2.  Sachelaru, P., Schiltz, E., Igloi, G.L. and Brandsch, R. An α/β-fold C—C bond hydrolase is involved in a central step of nicotine catabolism by Arthrobacter nicotinovorans. J. Bacteriol. 187 (2005) 8516–8519. [PMID: 16321959]
[EC 3.7.1.19 created 2012]
 
 
EC 3.7.1.20
Accepted name: 3-fumarylpyruvate hydrolase
Reaction: 3-fumarylpyruvate + H2O = fumarate + pyruvate
Other name(s): nagK (gene name); naaD (gene name)
Systematic name: 3-fumarylpyruvate hydrolase
Comments: The enzyme is involved in bacterial degradation of 5-substituted salicylates, including gentisate (5-hydroxysalicylate), 5-nitrosalicylate and 5-halosalicylates.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Zhou, N.Y., Fuenmayor, S.L. and Williams, P.A. nag genes of Ralstonia (formerly Pseudomonas) sp. strain U2 encoding enzymes for gentisate catabolism. J. Bacteriol. 183 (2001) 700–708. [PMID: 11133965]
2.  Qu, Y. and Spain, J.C. Molecular and biochemical characterization of the 5-nitroanthranilic acid degradation pathway in Bradyrhizobium sp. strain JS329. J. Bacteriol. 193 (2011) 3057–3063. [PMID: 21498645]
[EC 3.7.1.20 created 2012]
 
 
*EC 4.1.1.77
Accepted name: 2-oxo-3-hexenedioate decarboxylase
Reaction: (3E)-2-oxohex-3-enedioate = 2-oxopent-4-enoate + CO2
For diagram of catechol catabolism (meta ring cleavage), click here
Other name(s): 4-oxalocrotonate carboxy-lyase (misleading); 4-oxalocrotonate decarboxylase (misleading); cnbF (gene name); praD (gene name); amnE (gene name); nbaG (gene name); xylI (gene name)
Systematic name: (3E)-2-oxohex-3-enedioate carboxy-lyase (2-oxopent-4-enoate-forming)
Comments: Involved in the meta-cleavage pathway for the degradation of phenols, modified phenols and catechols. The enzyme has been reported to accept multiple tautomeric forms [1-4]. However, careful analysis of the stability of the different tautomers, as well as characterization of the enzyme that produces its substrate, EC 5.3.2.6, 2-hydroxymuconate tautomerase, showed that the actual substrate for the enzyme is (3E)-2-oxohex-3-enedioate [4].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, UM-BBD, CAS registry number: 37325-55-6
References:
1.  Shingler, V., Marklund, U., Powlowski, J. Nucleotide sequence and functional analysis of the complete phenol/3,4-dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600. J. Bacteriol. 174 (1992) 711–724. [PMID: 1732207]
2.  Takenaka, S., Murakami, S., Shinke, R. and Aoki, K. Metabolism of 2-aminophenol by Pseudomonas sp. AP-3: modified meta-cleavage pathway. Arch. Microbiol. 170 (1998) 132–137. [PMID: 9683650]
3.  Stanley, T.M., Johnson, W.H., Jr., Burks, E.A., Whitman, C.P., Hwang, C.C. and Cook, P.F. Expression and stereochemical and isotope effect studies of active 4-oxalocrotonate decarboxylase. Biochemistry 39 (2000) 718–726. [PMID: 10651637]
4.  Wang, S.C., Johnson, W.H., Jr., Czerwinski, R.M., Stamps, S.L. and Whitman, C.P. Kinetic and stereochemical analysis of YwhB, a 4-oxalocrotonate tautomerase homologue in Bacillus subtilis: mechanistic implications for the YwhB- and 4-oxalocrotonate tautomerase-catalyzed reactions. Biochemistry 46 (2007) 11919–11929. [PMID: 17902707]
5.  Kasai, D., Fujinami, T., Abe, T., Mase, K., Katayama, Y., Fukuda, M. and Masai, E. Uncovering the protocatechuate 2,3-cleavage pathway genes. J. Bacteriol. 191 (2009) 6758–6768. [PMID: 19717587]
[EC 4.1.1.77 created 1999, modified 2011, modified 2012]
 
 
EC 4.1.1.95
Accepted name: L-glutamyl-[BtrI acyl-carrier protein] decarboxylase
Reaction: L-glutamyl-[BtrI acyl-carrier protein] = 4-amino butanoyl-[BtrI acyl-carrier protein] + CO2
Other name(s): btrK (gene name)
Systematic name: L-glutamyl-[BtrI acyl-carrier protein] carboxy-lyase
Comments: Binds pyridoxal 5′-phosphate. Catalyses a step in the biosynthesis of the side chain of the aminoglycoside antibiotics of the butirosin family. Has very low activity with substrates not bound to an acyl-carrier protein.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Li, Y., Llewellyn, N.M., Giri, R., Huang, F. and Spencer, J.B. Biosynthesis of the unique amino acid side chain of butirosin: possible protective-group chemistry in an acyl carrier protein-mediated pathway. Chem. Biol. 12 (2005) 665–675. [PMID: 15975512]
[EC 4.1.1.95 created 2012]
 
 
EC 4.1.1.96
Accepted name: carboxynorspermidine decarboxylase
Reaction: (1) carboxynorspermidine = bis(3-aminopropyl)amine + CO2
(2) carboxyspermidine = spermidine + CO2
Glossary: bis(3-aminopropyl)amine = norspermidine
Other name(s): carboxyspermidine decarboxylase; CANSDC; VC1623 (gene name)
Systematic name: carboxynorspermidine carboxy-lyase (bis(3-aminopropyl)amine-forming)
Comments: A pyridoxal 5′-phosphate enzyme. Part of a bacterial polyamine biosynthesis pathway. The enzyme is essential for biofilm formation in the bacterium Vibrio cholerae [1]. The enzyme from Campylobacter jejuni only produces spermidine in vivo even though it shows activity with carboxynorspermidine in vitro [3].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Lee, J., Sperandio, V., Frantz, D.E., Longgood, J., Camilli, A., Phillips, M.A. and Michael, A.J. An alternative polyamine biosynthetic pathway is widespread in bacteria and essential for biofilm formation in Vibrio cholerae. J. Biol. Chem. 284 (2009) 9899–9907. [PMID: 19196710]
2.  Deng, X., Lee, J., Michael, A.J., Tomchick, D.R., Goldsmith, E.J. and Phillips, M.A. Evolution of substrate specificity within a diverse family of β/α-barrel-fold basic amino acid decarboxylases: X-ray structure determination of enzymes with specificity for L-arginine and carboxynorspermidine. J. Biol. Chem. 285 (2010) 25708–25719. [PMID: 20534592]
3.  Hanfrey, C.C., Pearson, B.M., Hazeldine, S., Lee, J., Gaskin, D.J., Woster, P.M., Phillips, M.A. and Michael, A.J. Alternative spermidine biosynthetic route is critical for growth of Campylobacter jejuni and is the dominant polyamine pathway in human gut microbiota. J. Biol. Chem. 286 (2011) 43301–43312. [PMID: 22025614]
[EC 4.1.1.96 created 2012]
 
 
*EC 4.1.3.17
Accepted name: 4-hydroxy-4-methyl-2-oxoglutarate aldolase
Reaction: (1) 4-hydroxy-4-methyl-2-oxoglutarate = 2 pyruvate
(2) 2-hydroxy-4-oxobutane-1,2,4-tricarboxylate = oxaloacetate + pyruvate
For diagram of the protocatechuate 3,4-cleavage pathway, click here
Other name(s): pyruvate aldolase; γ-methyl-γ-hydroxy-α-ketoglutaric aldolase; 4-hydroxy-4-methyl-2-ketoglutarate aldolase; 4-hydroxy-4-methyl-2-oxoglutarate pyruvate-lyase; HMG aldolase; CHA aldolase; 4-carboxy-4-hydroxy-2-oxoadipate aldolase
Systematic name: 4-hydroxy-4-methyl-2-oxoglutarate pyruvate-lyase (pyruvate-forming)
Comments: Requires a divalent metal ion [3]. This enzyme participates in the degradation of 3,4-dihydroxybenzoate (via the meta-cleavage pathway), phthalate, syringate and 3,4,5-trihydroxybenzoate [1-3]. The enzyme from Pseudomonas ochraceae can also cleave 4-hydroxy-2-oxoglutarate to glyoxylate and pyruvate, and also catalyses the reaction of EC 4.1.1.3 (oxaloacetate decarboxylase) [3].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, CAS registry number: 37290-65-6
References:
1.  Tack, B.F., Chapman, P.J. and Dagley, S. Purification and properties of 4-hydroxy-4-methyl-2-oxoglutarate aldolase. J. Biol. Chem. 247 (1972) 6444–6449. [PMID: 5076765]
2.  Wood, W.A. 2-Keto-3-deoxy-6-phosphogluconic and related aldolases. In: Boyer, P.D. (Ed.), The Enzymes, 3rd edn, vol. 7, Academic Press, New York, 1972, pp. 281–302.
3.  Maruyama, K. Purification and properties of 2-pyrone-4,6-dicarboxylate hydrolase. J. Biochem. (Tokyo) 93 (1983) 557–565. [PMID: 6841353]
4.  Nogales, J., Canales, A., Jiménez-Barbero, J., Serra B., Pingarrón, J. M., García, J. L. and Díaz, E. Unravelling the gallic acid degradation pathway in bacteria: the gal cluster from Pseudomonas putida. Mol. Microbiol. 79 (2011) 359–374. [PMID: 21219457]
[EC 4.1.3.17 created 1972, modified 2012]
 
 
*EC 4.2.1.33
Accepted name: 3-isopropylmalate dehydratase
Reaction: (2R,3S)-3-isopropylmalate = (2S)-2-isopropylmalate (overall reaction)
(1a) (2R,3S)-3-isopropylmalate = 2-isopropylmaleate + H2O
(1b) 2-isopropylmaleate + H2O = (2S)-2-isopropylmalate
For diagram of leucine biosynthesis, click here
Glossary: α-isopropylmalate = (2S)-2-isopropylmalate
β-isopropylmalate = (2R,3S)-3-isopropylmalate
Other name(s): (2R,3S)-3-isopropylmalate hydro-lyase; β-isopropylmalate dehydratase; isopropylmalate isomerase; α-isopropylmalate isomerase; 3-isopropylmalate hydro-lyase
Systematic name: (2R,3S)-3-isopropylmalate hydro-lyase (2-isopropylmaleate-forming)
Comments: Forms part of the leucine biosynthesis pathway. The enzyme brings about the interconversion of the two isomers of isopropylmalate. It contains an iron-sulfur cluster.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, PDB, CAS registry number: 37290-72-5
References:
1.  Gross, S.R., Burns, R.O. and Umbarger, H.E. The biosynthesis of leucine. II. The enzymic isomerization of β-carboxy-β-hydroxyisocaproate and α-hydroxy-β-carboxyisocaproate. Biochemistry 2 (1963) 1046–1052. [PMID: 14087357]
2.  Calvo, J. M., Stevens, C. M., Kalyanpur, M. G., and Umbarger, H. E. The absolute configuration of α-hydroxy-β-carboxyisocaproic acid (3-isopropylmalic acid), an intermediate in leucine biosynthesis. Biochemistry 3 (1964) 2024–2027. [PMID: 14269331]
3.  Cole, F.E., Kalyanpur, M. G. and Stevens, C. M. Absolute configuration of α-isopropylmalate and the mechanism of its conversion to β-isopropylmalate in the biosynthesis of leucine. Biochemistry 12 (1973) 3346–3350. [PMID: 4270046]
4.  Jang, S. and Imlay, J.A. Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron-sulfur enzymes. J. Biol. Chem. 282 (2007) 929–937. [PMID: 17102132]
[EC 4.2.1.33 created 1972, modified 1976, modified 2012]
 
 
EC 4.2.1.52
Transferred entry: dihydrodipicolinate synthase. Now EC 4.3.3.7, 4-hydroxy-2,3,4,5-tetrahydrodipicolinate synthase.
[EC 4.2.1.52 created 1972, deleted 2012]
 
 
*EC 4.2.1.54
Accepted name: lactoyl-CoA dehydratase
Reaction: (R)-lactoyl-CoA = acryloyl-CoA + H2O
Other name(s): lactoyl coenzyme A dehydratase; lactyl-coenzyme A dehydrase; lactyl CoA dehydratase; acrylyl coenzyme A hydratase; lactoyl-CoA hydro-lyase
Systematic name: (R)-lactoyl-CoA hydro-lyase (acryloyl-CoA-forming)
Comments: A bacterial enzyme that is involved in propanoate fermentation (also known as the acrylate pathway).
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, UM-BBD, CAS registry number: 9031-12-3
References:
1.  Baldwin, R.L., Wood, W.A. and Emery, R.S. Lactate metabolism by Peptostreptococcus elsdenii: evidence for lactyl coenzyme a dehydrase. Biochim. Biophys. Acta 97 (1965) 202–213. [PMID: 14292829]
2.  Schweiger, G. and Buckel, W. On the dehydration of (R)-lactate in the fermentation of alanine to propionate by Clostridium propionicum. FEBS Lett. 171 (1984) 79–84. [PMID: 6586495]
3.  Kuchta, R.D. and Abeles, R.H. Lactate reduction in Clostridium propionicum. Purification and properties of lactyl-CoA dehydratase. J. Biol. Chem. 260 (1985) 13181–13189. [PMID: 4055736]
4.  Kuchta, R.D., Hanson, G.R., Holmquist, B. and Abeles, R.H. Fe-S centers in lactyl-CoA dehydratase. Biochemistry 25 (1986) 7301–7307. [PMID: 3026450]
5.  Hofmeister, A.E. and Buckel, W. (R)-lactyl-CoA dehydratase from Clostridium propionicum. Stereochemistry of the dehydration of (R)-2-hydroxybutyryl-CoA to crotonyl-CoA. Eur. J. Biochem. 206 (1992) 547–552. [PMID: 1597194]
[EC 4.2.1.54 created 1972, modified 2012]
 
 
EC 4.2.1.58
Deleted entry: crotonoyl-[acyl-carrier-protein] hydratase. The reaction described is covered by EC 4.2.1.59.
[EC 4.2.1.58 created 1972, deleted 2012]
 
 
*EC 4.2.1.59
Accepted name: 3-hydroxyacyl-[acyl-carrier-protein] dehydratase
Reaction: a (3R)-3-hydroxyacyl-[acyl-carrier protein] = a trans-2-enoyl-[acyl-carrier protein] + H2O
Other name(s): fabZ (gene name); fabA (gene name); D-3-hydroxyoctanoyl-[acyl carrier protein] dehydratase; D-3-hydroxyoctanoyl-acyl carrier protein dehydratase; β-hydroxyoctanoyl-acyl carrier protein dehydrase; β-hydroxyoctanoyl thioester dehydratase; β-hydroxyoctanoyl-ACP-dehydrase; (3R)-3-hydroxyoctanoyl-[acyl-carrier-protein] hydro-lyase; (3R)-3-hydroxyoctanoyl-[acyl-carrier-protein] hydro-lyase (oct-2-enoyl-[acyl-carrier protein]-forming); 3-hydroxyoctanoyl-[acyl-carrier-protein] dehydratase
Systematic name: (3R)-3-hydroxyacyl-[acyl-carrier protein] hydro-lyase (trans-2-enoyl-[acyl-carrier protein]-forming)
Comments: This enzyme is responsible for the dehydration step of the dissociated (type II) fatty-acid biosynthesis system that occurs in plants and bacteria. The enzyme uses fatty acyl thioesters of ACP in vivo. Different forms of the enzyme may have preferences for substrates with different chain length. For example, the activity of FabZ, the ubiquitous enzyme in bacteria, decreases with increasing chain length. Gram-negative bacteria that produce unsaturated fatty acids, such as Escherichia coli, have another form (FabA) that prefers intermediate chain length, and also catalyses EC 5.3.3.14, trans-2-decenoyl-[acyl-carrier protein] isomerase. Despite the differences both forms can catalyse all steps leading to the synthesis of palmitate (C16:0). FabZ, but not FabA, can also accept unsaturated substrates [4].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, CAS registry number: 9030-85-7
References:
1.  Mizugaki, M., Swindell, A.C. and Wkil, S.J. Intermediate- and long-chain β-hydroxyacyl-ACP dehydrases from E. coli fatty acid synthetase. Biochem. Biophys. Res. Commun. 33 (1968) 520–527. [PMID: 4881058]
2.  Sharma, A., Henderson, B.S., Schwab, J.M. and Smith, J.L. Crystallization and preliminary X-ray analysis of β-hydroxydecanoyl thiol ester dehydrase from Escherichia coli. J. Biol. Chem. 265 (1990) 5110–5112. [PMID: 2180957]
3.  Mohan, S., Kelly, T.M., Eveland, S.S., Raetz, C.R. and Anderson, M.S. An Escherichia coli gene (FabZ) encoding (3R)-hydroxymyristoyl acyl carrier protein dehydrase. Relation to fabA and suppression of mutations in lipid A biosynthesis. J. Biol. Chem. 269 (1994) 32896–32903. [PMID: 7806516]
4.  Heath, R.J. and Rock, C.O. Roles of the FabA and FabZ β-hydroxyacyl-acyl carrier protein dehydratases in Escherichia coli fatty acid biosynthesis. J. Biol. Chem. 271 (1996) 27795–27801. [PMID: 8910376]
[EC 4.2.1.59 created 1972, modified 2012]
 
 
EC 4.2.1.60
Deleted entry: 3-hydroxydecanoyl-[acyl-carrier-protein] dehydratase. The reaction described is covered by EC 4.2.1.59.
[EC 4.2.1.60 created 1972, modified 2006, deleted 2012]
 
 
EC 4.2.1.61
Deleted entry: 3-hydroxypalmitoyl-[acyl-carrier-protein] dehydratase. The reaction described is covered by EC 4.2.1.59.
[EC 4.2.1.61 created 1972, deleted 2012]
 
 
*EC 4.2.1.93
Accepted name: ATP-dependent NAD(P)H-hydrate dehydratase
Reaction: (1) ATP + (6S)-6β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine dinucleotide = ADP + phosphate + NADH
(2) ATP + (6S)-6β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine dinucleotide phosphate = ADP + phosphate + NADPH
For diagram of reaction, click here
Glossary: (6S)-6β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine dinucleotide = (S)-NADH-hydrate = (S)-NADHX
(6S)-6β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine dinucleotide phosphate = (S)-NADPH-hydrate = (S)-NADPHX
Other name(s): reduced nicotinamide adenine dinucleotide hydrate dehydratase; ATP-dependent H4NAD(P)+OH dehydratase; (6S)-β-6-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine-dinucleotide hydro-lyase(ATP-hydrolysing); (6S)-6-β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine-dinucleotide hydro-lyase (ATP-hydrolysing; NADH-forming)
Systematic name: (6S)-6β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine-dinucleotide hydro-lyase (ATP-hydrolysing; NADH-forming)
Comments: Acts equally well on hydrated NADH and hydrated NADPH. NAD(P)H spontaneously hydrates to both the (6S)- and (6R)- isomers, and these are interconverted by EC 5.1.99.6, NAD(P)H-hydrate epimerase, to a 60:40 ratio [4]. Hence EC 4.2.1.93 together with EC 5.1.99.6 can restore the mixture of hydrates into NAD(P)H [3,4]. The enzyme from eukaryotes has no activity with ADP, contrary to the enzyme from bacteria (cf. EC 4.2.1.136, ADP-dependent NAD(P)H-hydrate dehydratase) [4].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, CAS registry number: 116669-08-0
References:
1.  Meinhart, J.O., Chaykin, S. and Krebs, E.G. Enzymatic conversion of a reduced diphosphopyridine nucleotide derivative to reduced diphosphopyridine nucleotide. J. Biol. Chem. 220 (1956) 821–829. [PMID: 13331940]
2.  Regueiro Varela, B., Amelunxen, R. and Grisolia, S. Synthesis and degradation of monohydroxytetrahydronicotinamide adenine dinucleotide phosphate. Physiol. Chem. Phys. 2 (1970) 445–454.
3.  Acheson, S.A., Kirkman, H.N. and Wolfenden, R. Equilibrium of 5,6-hydration of NADH and mechanism of ATP-dependent dehydration. Biochemistry 27 (1988) 7371–7375. [PMID: 3061454]
4.  Marbaix, A.Y., Noel, G., Detroux, A.M., Vertommen, D., Van Schaftingen, E. and Linster, C.L. Extremely conserved ATP- or ADP-dependent enzymatic system for nicotinamide nucleotide repair. J. Biol. Chem. 286 (2011) 41246–41252. [PMID: 21994945]
[EC 4.2.1.93 created 1992, modified 2012]
 
 
EC 4.2.1.134
Accepted name: very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase
Reaction: a very-long-chain (3R)-3-hydroxyacyl-CoA = a very-long-chain trans-2,3-dehydroacyl-CoA + H2O
Glossary: a very-long-chain acyl-CoA = an acyl-CoA thioester where the acyl chain contains 23 or more carbon atoms.
Other name(s): PHS1 (gene name); PAS2 (gene name)
Systematic name: very-long-chain (3R)-3-hydroxyacyl-CoA hydro-lyase
Comments: This is the third component of the elongase, a microsomal protein complex responsible for extending palmitoyl-CoA and stearoyl-CoA (and modified forms thereof) to very-long chain acyl CoAs. cf. EC 2.3.1.199, very-long-chain 3-oxoacyl-CoA synthase, EC 1.1.1.330, very-long-chain 3-oxoacyl-CoA reductase, and EC 1.3.1.93, very-long-chain enoyl-CoA reductase.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Bach, L., Michaelson, L.V., Haslam, R., Bellec, Y., Gissot, L., Marion, J., Da Costa, M., Boutin, J.P., Miquel, M., Tellier, F., Domergue, F., Markham, J.E., Beaudoin, F., Napier, J.A. and Faure, J.D. The very-long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development. Proc. Natl. Acad. Sci. USA 105 (2008) 14727–14731. [PMID: 18799749]
2.  Kihara, A., Sakuraba, H., Ikeda, M., Denpoh, A. and Igarashi, Y. Membrane topology and essential amino acid residues of Phs1, a 3-hydroxyacyl-CoA dehydratase involved in very long-chain fatty acid elongation. J. Biol. Chem. 283 (2008) 11199–11209. [PMID: 18272525]
[EC 4.2.1.134 created 2012, modified 2014]
 
 
EC 4.2.1.135
Accepted name: UDP-N-acetylglucosamine 4,6-dehydratase (configuration-retaining)
Reaction: UDP-N-acetyl-α-D-glucosamine = UDP-2-acetamido-2,6-dideoxy-α-D-xylo-hex-4-ulose + H2O
For diagram of legionaminic acid biosynthesis, click here, and for mechanism, click here
Glossary: N,N′-diacetylbacillosamine = 2,4-diacetamido-2,4,6-trideoxy-α-D-glucopyranose
Other name(s): PglF
Systematic name: UDP-N-acetyl-α-D-glucosamine hydro-lyase (configuration-retaining; UDP-2-acetamido-2,6-dideoxy-α-D-xylo-hex-4-ulose-forming)
Comments: Contains NAD+ as a cofactor [2]. This is the first enzyme in the biosynthetic pathway of N,N′-diacetylbacillosamine [1], the first carbohydrate in the glycoprotein N-linked heptasaccharide in Campylobacter jejuni. This enzyme belongs to the short-chain dehydrogenase/reductase family of enzymes.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, PDB
References:
1.  Schoenhofen, I.C., McNally, D.J., Vinogradov, E., Whitfield, D., Young, N.M., Dick, S., Wakarchuk, W.W., Brisson, J.R. and Logan, S.M. Functional characterization of dehydratase/aminotransferase pairs from Helicobacter and Campylobacter: enzymes distinguishing the pseudaminic acid and bacillosamine biosynthetic pathways. J. Biol. Chem. 281 (2006) 723–732. [PMID: 16286454]
2.  Olivier, N.B., Chen, M.M., Behr, J.R. and Imperiali, B. In vitro biosynthesis of UDP-N,N′-diacetylbacillosamine by enzymes of the Campylobacter jejuni general protein glycosylation system. Biochemistry 45 (2006) 13659–13669. [PMID: 17087520]
[EC 4.2.1.135 created 2012]
 
 
EC 4.2.1.136
Accepted name: ADP-dependent NAD(P)H-hydrate dehydratase
Reaction: (1) ADP + (6S)-6β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine dinucleotide = AMP + phosphate + NADH
(2) ADP + (6S)-6β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine dinucleotide phosphate = AMP + phosphate + NADPH
Glossary: (6S)-6β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine dinucleotide = (S)-NADH-hydrate = (S)-NADHX
(6S)-6β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine dinucleotide phosphate = (S)-NADPH-hydrate = (S)-NADPHX
Other name(s): (6S)-β-6-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine-dinucleotide hydro-lyase(ADP-hydrolysing); (6S)-6-β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine-dinucleotide hydro-lyase (ADP-hydrolysing; NADH-forming)
Systematic name: (6S)-6β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine-dinucleotide hydro-lyase (ADP-hydrolysing; NADH-forming)
Comments: Acts equally well on hydrated NADH and hydrated NADPH. NAD(P)H spontaneously hydrates to both the (6S)- and (6R)- isomers. The enzyme from bacteria consists of two domains, one of which acts as an NAD(P)H-hydrate epimerase that interconverts the two isomers to a 60:40 ratio (cf. EC 5.1.99.6), while the other catalyses the dehydration. Hence the enzyme can restore the complete mixture of isomers into NAD(P)H. The enzyme has no activity with ATP, contrary to the enzyme from eukaryotes (cf. EC 4.2.1.93, ATP-dependent NAD(P)H-hydrate dehydratase).
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Marbaix, A.Y., Noel, G., Detroux, A.M., Vertommen, D., Van Schaftingen, E. and Linster, C.L. Extremely conserved ATP- or ADP-dependent enzymatic system for nicotinamide nucleotide repair. J. Biol. Chem. 286 (2011) 41246–41252. [PMID: 21994945]
[EC 4.2.1.136 created 2012]
 
 
EC 4.2.1.137
Accepted name: sporulenol synthase
Reaction: sporulenol = tetraprenyl-β-curcumene + H2O
For diagram of sesquarterpenoid biosynthesis, click here
Glossary: sporulenol = (1R,2R,4aS,4bR,6aS,10aS,10bR,12aS)-2,4b,7,7,10a,12a-hexamethyl-1-[(3R)-3-(4-methylcyclohexa-1,4-dien-1-yl)butyl]octadecahydrochrysen-2-ol
Other name(s): sqhC (gene name)
Systematic name: tetraprenyl-β-curcumene—sporulenol cyclase
Comments: The reaction occurs in the reverse direction. Isolated from Bacillus subtilis. Similar sesquarterpenoids are present in a number of Bacillus species.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Sato, T., Yoshida, S., Hoshino, H., Tanno, M., Nakajima, M. and Hoshino, T. Sesquarterpenes (C35 terpenes) biosynthesized via the cyclization of a linear C35 isoprenoid by a tetraprenyl-β-curcumene synthase and a tetraprenyl-β-curcumene cyclase: identification of a new terpene cyclase. J. Am. Chem. Soc. 133 (2011) 9734–9737. [PMID: 21627333]
[EC 4.2.1.137 created 2012]
 
 
*EC 4.2.3.32
Accepted name: levopimaradiene synthase
Reaction: (+)-copalyl diphosphate = abieta-8(14),12-diene + diphosphate
For diagram of abietadiene, abietate, isopimaradiene, labdadienol and sclareol biosynthesis, click here and for diagram of abietadiene, levopimaradiene and isopimara-7,15-diene biosynthesis, click here
Glossary: levopimaradiene = abieta-8(14),12-diene
Other name(s): PtTPS-LAS; LPS; copalyl-diphosphate diphosphate-lyase [abieta-8(14),12-diene-forming]
Systematic name: (+)-copalyl-diphosphate diphosphate-lyase [abieta-8(14),12-diene-forming]
Comments: In Ginkgo, the enzyme catalyses the initial cyclization step in the biosynthesis of ginkgolides, a structurally unique family of diterpenoids that are highly specific platelet-activating-factor receptor antagonists [1]. Levopimaradiene is widely distributed in higher plants. In some species the enzyme also forms abietadiene, palustradiene, and neoabietadiene [2].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Schepmann, H.G., Pang, J. and Matsuda, S.P. Cloning and characterization of Ginkgo biloba levopimaradiene synthase which catalyzes the first committed step in ginkgolide biosynthesis. Arch. Biochem. Biophys. 392 (2001) 263–269. [PMID: 11488601]
2.  Ro, D.K. and Bohlmann, J. Diterpene resin acid biosynthesis in loblolly pine (Pinus taeda): functional characterization of abietadiene/levopimaradiene synthase (PtTPS-LAS) cDNA and subcellular targeting of PtTPS-LAS and abietadienol/abietadienal oxidase (PtAO, CYP720B1). Phytochemistry 67 (2006) 1572–1578. [PMID: 16497345]
[EC 4.2.3.32 created 2008, modified 2012]
 
 
EC 4.2.3.131
Accepted name: miltiradiene synthase
Reaction: (+)-copalyl diphosphate = miltiradiene + diphosphate
For diagram of abietane diterpenoids biosynthesis, click here
Other name(s): SmMDS; SmiKSL; RoKSL
Systematic name: (+)-copalyl-diphosphate diphosphate-lyase (cyclizing, miltiradiene-forming)
Comments: Isolated from the plants Rosmarinus officinalis (rosemary) and Salvia miltiorrhiza. The enzyme from the plant Selaginella moellendorffii is mutifunctional and also catalyses EC 5.5.1.12, copalyl diphosphate synthase [2].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Gao, W., Hillwig, M.L., Huang, L., Cui, G., Wang, X., Kong, J., Yang, B. and Peters, R.J. A functional genomics approach to tanshinone biosynthesis provides stereochemical insights. Org. Lett. 11 (2009) 5170–5173. [PMID: 19905026]
2.  Sugai, Y., Ueno, Y., Hayashi, K., Oogami, S., Toyomasu, T., Matsumoto, S., Natsume, M., Nozaki, H. and Kawaide, H. Enzymatic 13C labeling and multidimensional NMR analysis of miltiradiene synthesized by bifunctional diterpene cyclase in Selaginella moellendorffii. J. Biol. Chem. 286 (2011) 42840–42847. [PMID: 22027823]
3.  Bruckner, K., Bozic, D., Manzano, D., Papaefthimiou, D., Pateraki, I., Scheler, U., Ferrer, A., de Vos, R.C., Kanellis, A.K. and Tissier, A. Characterization of two genes for the biosynthesis of abietane-type diterpenes in rosemary (Rosmarinus officinalis) glandular trichomes. Phytochemistry 101 (2014) 52–64. [PMID: 24569175]
[EC 4.2.3.131 created 2012]
 
 
EC 4.2.3.132
Accepted name: neoabietadiene synthase
Reaction: (+)-copalyl diphosphate = neoabietadiene + diphosphate
For diagram of abietane diterpenoids biosynthesis, click here
Glossary: neoabietadiene = abieta-8(14),13(15)-diene
Other name(s): AgAS; PtTPS-LAS
Systematic name: (+)-copaly-diphosphate diphosphate-lyase (cyclizing, neoabietadiene-forming)
Comments: Isolated from Abies grandis (grand fir) [1]. This class I enzyme forms about equal proportions of abietadiene, levopimaradiene and neoabietadiene. See also EC 4.2.3.18, abieta-7,13-diene synthase and EC 4.2.3.32, levopimaradiene synthase. An X-ray study of this multifunctional enzyme showed that the class I activity is in the α domain, while (+)-copalyl diphosphate synthase activity (EC 5.5.1.12, a class II activity) is in the β and γ domains [2]. In Pinus taeda (loblolly pine) the major product is levopimaradiene, with less abietadiene and neoabietadiene [3].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Peters, R.J., Flory, J.E., Jetter, R., Ravn, M.M., Lee, H.J., Coates, R.M. and Croteau, R.B. Abietadiene synthase from grand fir (Abies grandis): characterization and mechanism of action of the "pseudomature" recombinant enzyme. Biochemistry 39 (2000) 15592–15602. [PMID: 11112547]
2.  Zhou, K., Gao, Y., Hoy, J.A., Mann, F.M., Honzatko, R.B. and Peters, R.J. Insights into diterpene cyclization from structure of bifunctional abietadiene synthase from Abies grandis. J. Biol. Chem. 287 (2012) 6840–6850. [PMID: 22219188]
3.  Ro, D.K. and Bohlmann, J. Diterpene resin acid biosynthesis in loblolly pine (Pinus taeda): functional characterization of abietadiene/levopimaradiene synthase (PtTPS-LAS) cDNA and subcellular targeting of PtTPS-LAS and abietadienol/abietadienal oxidase (PtAO, CYP720B1). Phytochemistry 67 (2006) 1572–1578. [PMID: 16497345]
[EC 4.2.3.132 created 2012]
 
 
EC 4.2.3.133
Accepted name: α-copaene synthase
Reaction: (2E,6E)-farnesyl diphosphate = (-)-α-copaene + diphosphate
For diagram of cadinane sesquiterpenoid biosynthesis, click here
Glossary: (-)-α-copaene = (1R,2S,6S,7S,8S)-1,3-dimethyl-8-(propan-2-yl)tricyclo[4.4.0.02,7]dec-3-ene
For diagram of the structures of α-copaene and β-copaene, click here
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, α-copaene-forming)
Comments: Isolated from Helianthus annuus (sunflower). The enzyme also produces β-caryophyllene, δ-cadinene and traces of other sesquiterpenoids. See EC 4.2.3.13 (+)-δ-cadinene synthase, EC 4.2.3.57 (-)-β-caryophyllene synthase.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Gopfert, J.C., Macnevin, G., Ro, D.K. and Spring, O. Identification, functional characterization and developmental regulation of sesquiterpene synthases from sunflower capitate glandular trichomes. BMC Plant Biol. 9:86 (2009). [PMID: 19580670]
2.  Xie, X., Kirby, J. and Keasling, J.D. Functional characterization of four sesquiterpene synthases from Ricinus communis (castor bean). Phytochemistry 78 (2012) 20–28. [PMID: 22459969]
[EC 4.2.3.133 created 2012]
 
 
EC 4.2.3.134
Accepted name: 5-phosphonooxy-L-lysine phospho-lyase
Reaction: (5R)-5-phosphooxy-L-lysine + H2O = (S)-2-amino-6-oxohexanoate + NH3 + phosphate
Other name(s): 5-phosphohydroxy-L-lysine ammoniophospholyase; AGXT2L2 (gene name); (5R)-5-phosphonooxy-L-lysine phosphate-lyase (deaminating; (S)-2-amino-6-oxohexanoate-forming)
Systematic name: (5R)-5-phosphooxy-L-lysine phosphate-lyase (deaminating; (S)-2-amino-6-oxohexanoate-forming)
Comments: A pyridoxal-phosphate protein. Has no activity with phosphoethanolamine (cf. EC 4.2.3.2, ethanolamine-phosphate phospho-lyase).
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Tsai, C.H. and Henderson, L.M. Degradation of O-phosphohydroxylysine by rat liver. Purification of the phospho-lyase. J. Biol. Chem. 249 (1974) 5784–5789. [PMID: 4412716]
2.  Veiga-da-Cunha, M., Hadi, F., Balligand, T., Stroobant, V. and Van Schaftingen, E. Molecular identification of hydroxylysine kinase and of ammoniophospholyases acting on 5-phosphohydroxy-L-lysine and phosphoethanolamine. J. Biol. Chem. 287 (2012) 7246–7255. [PMID: 22241472]
[EC 4.2.3.134 created 2012]
 
 
EC 4.2.3.135
Accepted name: Δ6-protoilludene synthase
Reaction: (2E,6E)-farnesyl diphosphate = Δ6-protoilludene + diphosphate
For diagram of bicyclic and tricyclic sesquiterpenoids derived from humuladienyl cation, click here
Glossary: Δ6-protoilludene = (4aS,7aS,7bR)-3,6,6,7b-tetramethyl-2,4,4a,5,6,7,7a,7b-octahydro-1H-cyclobuta[1,2-e]indene
Other name(s): 6-protoilludene synthase
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, Δ6-protoilludene-forming)
Comments: Isolated from the fungus Armillaria gallica. Δ6-Protoilludene is the first step in the biosynthesis of the melleolides.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Engels, B., Heinig, U., Grothe, T., Stadler, M. and Jennewein, S. Cloning and characterization of an Armillaria gallica cDNA encoding protoilludene synthase, which catalyzes the first committed step in the synthesis of antimicrobial melleolides. J. Biol. Chem. 286 (2011) 6871–6878. [PMID: 21148562]
[EC 4.2.3.135 created 2012]
 
 
EC 4.2.3.136
Accepted name: α-isocomene synthase
Reaction: (2E,6E)-farnesyl diphosphate = (-)-α-isocomene + diphosphate
For diagram of bicyclic and tricyclic sesquiterpenoids derived from humuladienyl cation, click here and for mechanism, click here
Glossary: (-)-α-isocomene = (1R,3aS,5aS,8aR)-1,3a,4,5a-tetramethyl-1,2,3,3a,5a,6,7,8-octahydrocyclopenta[c]pentalene
Other name(s): MrTPS2
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, (-)-α-isocomene-forming)
Comments: Isolated from the roots of the plant Matricaria chamomilla var. recutita (chamomile). The enzyme also produced traces of five other sesquiterpenoids.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Irmisch, S., Krause, S.T., Kunert, G., Gershenzon, J., Degenhardt, J. and Kollner, T.G. The organ-specific expression of terpene synthase genes contributes to the terpene hydrocarbon composition of chamomile essential oils. BMC Plant Biol. 12:84 (2012). [PMID: 22682202]
[EC 4.2.3.136 created 2012]
 
 
EC 4.2.3.137
Accepted name: (E)-2-epi-β-caryophyllene synthase
Reaction: (2E,6E)-farnesyl diphosphate = (E)-2-epi-β-caryophyllene + diphosphate
Other name(s): 2-epi-(E)-β-caryophyllene synthase; SmMTPSL26
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, (E)-2-epi-β-caryophyllene-forming)
Comments: Isolated from the plant Selaginella moellendorfii. The enzyme also gives two other sesquiterpenoids.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Li, G., Kollner, T.G., Yin, Y., Jiang, Y., Chen, H., Xu, Y., Gershenzon, J., Pichersky, E. and Chen, F. Nonseed plant Selaginella moellendorfii has both seed plant and microbial types of terpene synthases. Proc. Natl. Acad. Sci. USA 109 (2012) 14711–14715. [PMID: 22908266]
[EC 4.2.3.137 created 2012]
 
 
EC 4.2.3.138
Accepted name: (+)-epi-α-bisabolol synthase
Reaction: (2E,6E)-farnesyl diphosphate + H2O = (+)-epi-α-bisabolol + diphosphate
For diagram of bisabolene biosynthesis, click here
Glossary: (+)-epi-α-bisabolol = (2S)-6-methyl-2-[(1R)-4-methylcyclohex-3-en-1-yl]hept-5-en-2-ol
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, (+)-epi-α-bisabolol-forming)
Comments: Isolated from the plant Phyla dulcis (Aztec sweet herb). (+)-epi-α-Bisabolol is the precursor of the sweetener hernandulcin.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Attia, M., Kim, S.U. and Ro, D.K. Molecular cloning and characterization of (+)-epi-α-bisabolol synthase, catalyzing the first step in the biosynthesis of the natural sweetener, hernandulcin, in Lippia dulcis. Arch. Biochem. Biophys. 527 (2012) 37–44. [PMID: 22867794]
[EC 4.2.3.138 created 2012]
 
 
EC 4.2.3.139
Accepted name: valerena-4,7(11)-diene synthase
Reaction: (2E,6E)-farnesyl diphosphate = valerena-4,7(11)-diene + diphosphate
For mechanism, click here
Glossary: valerena-4,7(11)-diene = (4S,7R,7aR)-3,7-dimethyl-4-(2-methylprop-1-en-1-yl)-2,4,5,6,7,7a-hexahydro-1H-indene
Other name(s): VoTPS2; VoTPS7
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, valerena-4,7(11)-diene-forming)
Comments: Isolated from the plant Valeriana officinalis (valerian). Note that due to a different numbering system the product is also known as valerena-1,10-diene.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Pyle, B.W., Tran, H.T., Pickel, B., Haslam, T.M., Gao, Z., Macnevin, G., Vederas, J.C., Kim, S.U. and Ro, D.K. Enzymatic synthesis of valerena-4,7(11)-diene by a unique sesquiterpene synthase from the valerian plant (Valeriana officinalis). FEBS J. 279 (2012) 3136–3146. [PMID: 22776156]
2.  Yeo, Y.S., Nybo, S.E., Chittiboyina, A.G., Weerasooriya, A.D., Wang, Y.H., Gongora-Castillo, E., Vaillancourt, B., Buell, C.R., DellaPenna, D., Celiz, M.D., Jones, A.D., Wurtele, E.S., Ransom, N., Dudareva, N., Shaaban, K.A., Tibrewal, N., Chandra, S., Smillie, T., Khan, I.A., Coates, R.M., Watt, D.S. and Chappell, J. Functional identification of valerena-1,10-diene synthase, a terpene synthase catalyzing a unique chemical cascade in the biosynthesis of biologically active sesquiterpenes in Valeriana officinalis. J. Biol. Chem. 288 (2013) 3163–3173. [PMID: 23243312]
[EC 4.2.3.139 created 2012]
 
 
EC 4.2.3.140
Accepted name: cis-abienol synthase
Reaction: (13E)-8α-hydroxylabd-13-en-15-yl diphosphate = cis-abienol + diphosphate
For diagram of labdane, pimarane and phyllocadane diterpenoids biosynthesis, click here
Glossary: cis-abienol = (12Z)-labda-12,14-dien-8α-ol
(13E)-8α-hydroxylabd-13-en-15-yl diphosphate = copal-8-ol diphosphate
Other name(s): Z-abienol synthase; CAS; ABS
Systematic name: (13E)-8α-hydroxylabd-13-en-15-yl-diphosphate-lyase (cis-abienol forming)
Comments: Isolated from the plants Abies balsamea (balsam fir) [1] and Nicotiana tabacum (tobacco) [2].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Zerbe, P., Chiang, A., Yuen, M., Hamberger, B., Hamberger, B., Draper, J.A., Britton, R. and Bohlmann, J. Bifunctional cis-abienol synthase from Abies balsamea discovered by transcriptome sequencing and its implications for diterpenoid fragrance production. J. Biol. Chem. 287 (2012) 12121–12131. [PMID: 22337889]
2.  Sallaud, C., Giacalone, C., Topfer, R., Goepfert, S., Bakaher, N., Rosti, S. and Tissier, A. Characterization of two genes for the biosynthesis of the labdane diterpene Z-abienol in tobacco (Nicotiana tabacum) glandular trichomes. Plant J. 72 (2012) 1–17. [PMID: 22672125]
[EC 4.2.3.140 created 2012]
 
 
EC 4.3.1.28
Accepted name: L-lysine cyclodeaminase
Reaction: L-lysine = L-pipecolate + NH3
Other name(s): rapL (gene name); fkbL (gene name); tubZ (gene name); visC (gene name)
Systematic name: L-lysine ammonia-lyase (cyclizing; ammonia-forming)
Comments: Requires bound NAD+. The enzyme produces the non-proteinogenic amino acid L-pipecolate, which is incorporated into multiple secondary metabolite products, including rapamycin, tobulysin, virginiamycin and pristinamycin.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Khaw, L.E., Bohm, G.A., Metcalfe, S., Staunton, J. and Leadlay, P.F. Mutational biosynthesis of novel rapamycins by a strain of Streptomyces hygroscopicus NRRL 5491 disrupted in rapL, encoding a putative lysine cyclodeaminase. J. Bacteriol. 180 (1998) 809–814. [PMID: 9473033]
2.  Gatto, G.J., Jr., Boyne, M.T., 2nd, Kelleher, N.L. and Walsh, C.T. Biosynthesis of pipecolic acid by RapL, a lysine cyclodeaminase encoded in the rapamycin gene cluster. J. Am. Chem. Soc. 128 (2006) 3838–3847. [PMID: 16536560]
3.  Tsotsou, G.E. and Barbirato, F. Biochemical characterisation of recombinant Streptomyces pristinaespiralis L-lysine cyclodeaminase. Biochimie 89 (2007) 591–604. [PMID: 17291665]
[EC 4.3.1.28 created 2012]
 
 
EC 4.3.2.6
Accepted name: γ-L-glutamyl-butirosin B γ-glutamyl cyclotransferase
Reaction: γ-L-glutamyl-butirosin B = butirosin B + 5-oxoproline
Glossary: γ-L-glutamyl-butirosin B = (1R,2R,3S,4R,6S)-6-amino-4-{[(2R)-4-(γ-L-glutamylamino)-2-hydroxybutanoyl]amino}-3-hydroxy-2-(α-D-ribofuranosyloxy)cyclohexyl
Other name(s): btrG (gene name)
Systematic name: γ-L-glutamyl-butirosin B γ-glutamyl cyclotransferase (5-oxoproline producing)
Comments: The enzyme catalyses the last step in the biosynthesis of the aminoglycoside antibiotic butirosin B. The enzyme acts as a cyclotransferase, cleaving the amide bond via transamidation using the α-amine of the terminal γ-L-glutamate of the side chain, releasing it as the cyclic 5-oxoproline.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Llewellyn, N.M., Li, Y. and Spencer, J.B. Biosynthesis of butirosin: transfer and deprotection of the unique amino acid side chain. Chem. Biol. 14 (2007) 379–386. [PMID: 17462573]
[EC 4.3.2.6 created 2012]
 
 
EC 4.3.3.7
Accepted name: 4-hydroxy-tetrahydrodipicolinate synthase
Reaction: pyruvate + L-aspartate-4-semialdehyde = (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H2O
For diagram of lysine biosynthesis (early stages), click here
Glossary: (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate = (2S,4S)-4-hydroxy-2,3,4,5-tetrahydropyridine-2,6-dicarboxylate
Other name(s): dihydrodipicolinate synthase (incorrect); dihydropicolinate synthetase (incorrect); dihydrodipicolinic acid synthase (incorrect); L-aspartate-4-semialdehyde hydro-lyase (adding pyruvate and cyclizing); dapA (gene name).
Systematic name: L-aspartate-4-semialdehyde hydro-lyase [adding pyruvate and cyclizing; (4S)-4-hydroxy-2,3,4,5-tetrahydro-(2S)-dipicolinate-forming]
Comments: Studies of the enzyme from the bacterium Escherichia coli have shown that the reaction can be divided into three consecutive steps: Schiff base formation between pyruvate and an active-site lysine, the addition of L-aspartate-semialdehyde, and finally transimination leading to cyclization with simultaneous dissociation of the product.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Yugari, Y. and Gilvarg, C. The condensation step in diaminopimelate synthesis. J. Biol. Chem. 240 (1965) 4710–4716. [PMID: 5321309]
2.  Blickling, S., Renner, C., Laber, B., Pohlenz, H.D., Holak, T.A. and Huber, R. Reaction mechanism of Escherichia coli dihydrodipicolinate synthase investigated by X-ray crystallography and NMR spectroscopy. Biochemistry 36 (1997) 24–33. [PMID: 8993314]
3.  Devenish, S.R., Blunt, J.W. and Gerrard, J.A. NMR studies uncover alternate substrates for dihydrodipicolinate synthase and suggest that dihydrodipicolinate reductase is also a dehydratase. J. Med. Chem. 53 (2010) 4808–4812. [PMID: 20503968]
4.  Soares da Costa, T.P., Muscroft-Taylor, A.C., Dobson, R.C., Devenish, S.R., Jameson, G.B. and Gerrard, J.A. How essential is the ’essential’ active-site lysine in dihydrodipicolinate synthase. Biochimie 92 (2010) 837–845. [PMID: 20353808]
[EC 4.3.3.7 created 1972 as EC 4.2.1.52, transferred 2012 to EC 4.3.3.7]
 
 
EC 4.4.1.26
Accepted name: olivetolic acid cyclase
Reaction: 3,5,7-trioxododecanoyl-CoA = CoA + 2,4-dihydroxy-6-pentylbenzoate
For diagram of cannabinoid biosynthesis, click here
Glossary: 2,4-dihydroxy-6-pentylbenzoate = olivetolate
Other name(s): OAC
Systematic name: 3,5,7-trioxododecanoyl-CoA CoA-lyase (2,4-dihydroxy-6-pentylbenzoate-forming)
Comments: Part of the cannabinoids biosynthetic pathway in the plant Cannabis sativa.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Gagne, S.J., Stout, J.M., Liu, E., Boubakir, Z., Clark, S.M. and Page, J.E. Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides. Proc. Natl. Acad. Sci. USA 109 (2012) 12811–12816. [PMID: 22802619]
[EC 4.4.1.26 created 2012]
 
 
*EC 5.1.3.14
Accepted name: UDP-N-acetylglucosamine 2-epimerase (non-hydrolysing)
Reaction: UDP-N-acetyl-α-D-glucosamine = UDP-N-acetyl-α-D-mannosamine
For diagram of UDP-N-acetylgalactosamine and UDP-N-acetylmannosamine biosynthesis, click here
Other name(s): UDP-N-acetylglucosamine 2′-epimerase (ambiguous); uridine diphosphoacetylglucosamine 2′-epimerase (ambiguous); uridine diphospho-N-acetylglucosamine 2′-epimerase (ambiguous); uridine diphosphate-N-acetylglucosamine-2′-epimerase (ambiguous); rffE (gene name); mnaA (gene name); UDP-N-acetyl-D-glucosamine 2-epimerase
Systematic name: UDP-N-acetyl-α-D-glucosamine 2-epimerase
Comments: This bacterial enzyme catalyses the reversible interconversion of UDP-GlcNAc and UDP-ManNAc. The latter is used in a variety of bacterial polysaccharide biosyntheses. cf. EC 3.2.1.183, UDP-N-acetylglucosamine 2-epimerase (hydrolysing).
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, PDB, CAS registry number: 9037-71-2
References:
1.  Kawamura, T., Kimura, M., Yamamori, S. and Ito, E. Enzymatic formation of uridine diphosphate N-acetyl-D-mannosamine. J. Biol. Chem. 253 (1978) 3595–3601. [PMID: 418068]
2.  Meier-Dieter, U., Starman, R., Barr, K., Mayer, H. and Rick, P.D. Biosynthesis of enterobacterial common antigen in Escherichia coli. Biochemical characterization of Tn10 insertion mutants defective in enterobacterial common antigen synthesis. J. Biol. Chem. 265 (1990) 13490–13497. [PMID: 2166030]
3.  Morgan, P. M., Sala, R. F., and Tanner, M. E. Eliminations in the reactions catalyzed by UDP-N-acetylglucosamine 2-epimerase. J. Am. Chem. Soc. 119 (1997) 10269–10277.
4.  Campbell, R.E., Mosimann, S.C., Tanner, M.E. and Strynadka, N.C. The structure of UDP-N-acetylglucosamine 2-epimerase reveals homology to phosphoglycosyl transferases. Biochemistry 39 (2000) 14993–15001. [PMID: 11106477]
5.  Samuel, J. and Tanner, M.E. Active site mutants of the "non-hydrolyzing" UDP-N-acetylglucosamine 2-epimerase from Escherichia coli. Biochim. Biophys. Acta 1700 (2004) 85–91. [PMID: 15210128]
6.  Soldo, B., Lazarevic, V., Pooley, H.M. and Karamata, D. Characterization of a Bacillus subtilis thermosensitive teichoic acid-deficient mutant: gene mnaA (yvyH) encodes the UDP-N-acetylglucosamine 2-epimerase. J. Bacteriol. 184 (2002) 4316–4320. [PMID: 12107153]
[EC 5.1.3.14 created 1976, modified 2012]
 
 
EC 5.1.3.25
Accepted name: dTDP-L-rhamnose 4-epimerase
Reaction: dTDP-6-deoxy-β-L-talose = dTDP-β-L-rhamnose
Glossary: dTDP-β-L-rhamnose = dTDP-6-deoxy-β-L-mannose
dTDP-6-deoxy-β-L-talose = dTDP-β-L-pneumose
Other name(s): dTDP-4-L-rhamnose 4-epimerase; wbiB (gene name)
Systematic name: dTDP-6-deoxy-β-L-talose 4-epimerase
Comments: The equilibrium is strongly towards dTDP-β-L-rhamnose.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Yoo, H.G., Kwon, S.Y., Karki, S. and Kwon, H.J. A new route to dTDP-6-deoxy-L-talose and dTDP-L-rhamnose: dTDP-L-rhamnose 4-epimerase in Burkholderia thailandensis. Bioorg. Med. Chem. Lett. 21 (2011) 3914–3917. [PMID: 21640586]
[EC 5.1.3.25 created 2012]
 
 
EC 5.1.99.6
Accepted name: NAD(P)H-hydrate epimerase
Reaction: (1) (6R)-6β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine dinucleotide = (6S)-6β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine dinucleotide
(2) (6R)-6β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine dinucleotide phosphate = (6S)-6β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine dinucleotide phosphate
Glossary: 6β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine dinucleotide = NADHX = NADH-hydrate
6β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine dinucleotide phosphate = NADPHX = NADPH-hydrate
Other name(s): NAD(P)HX epimerase
Systematic name: (6R)-6β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine dinucleotide 6-epimerase
Comments: The enzyme can use either (R)-NADH-hydrate or (R)-NADPH-hydrate as a substrate. Its physiological role is to convert the (R) forms to the (S) forms, which could then be restored to active dinucleotides by EC 4.2.1.93, ATP-dependent NAD(P)H-hydrate dehydratase.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Marbaix, A.Y., Noel, G., Detroux, A.M., Vertommen, D., Van Schaftingen, E. and Linster, C.L. Extremely conserved ATP- or ADP-dependent enzymatic system for nicotinamide nucleotide repair. J. Biol. Chem. 286 (2011) 41246–41252. [PMID: 21994945]
[EC 5.1.99.6 created 2012]
 
 
EC 5.2.1.14
Accepted name: β-carotene isomerase
Reaction: all-trans-β-carotene = 9-cis-β-carotene
For diagram of strigol biosynthesis, click here
Other name(s): DWARF27 (gene name)
Systematic name: β-carotene 9-cis-all-trans isomerase
Comments: The enzyme participates in a pathway leading to biosynthesis of strigolactones, plant hormones involved in promotion of symbiotic associations known as arbuscular mycorrhiza.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Lin, H., Wang, R., Qian, Q., Yan, M., Meng, X., Fu, Z., Yan, C., Jiang, B., Su, Z., Li, J. and Wang, Y. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21 (2009) 1512–1525. [PMID: 19470589]
2.  Alder, A., Jamil, M., Marzorati, M., Bruno, M., Vermathen, M., Bigler, P., Ghisla, S., Bouwmeester, H., Beyer, P. and Al-Babili, S. The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 335 (2012) 1348–1351. [PMID: 22422982]
[EC 5.2.1.14 created 2012]
 
 
EC 5.3.2.6
Accepted name: 2-hydroxymuconate tautomerase
Reaction: (2Z,4E)-2-hydroxyhexa-2,4-dienedioate = (3E)-2-oxohex-3-enedioate
For diagram of catechol catabolism (meta ring cleavage), click here
Glossary: (2Z,4E)-2-hydroxyhexa-2,4-dienedioate = (2Z,4E)-2-hydroxymuconate
Other name(s): 4-oxalocrotonate tautomerase (misleading); 4-oxalocrotonate isomerase (misleading); cnbG (gene name); praC (gene name); xylH (gene name)
Systematic name: (2Z,4E)-2-hydroxyhexa-2,4-dienedioate ketoenol isomerase
Comments: Involved in the meta-cleavage pathway for the degradation of phenols, modified phenols and catechols. The enol form (2Z,4E)-2-hydroxyhexa-2,4-dienedioate is produced as part of this pathway and is converted to the keto form (3E)-2-oxohex-3-enedioate by the enzyme [6]. Another keto form, (4E)-2-oxohex-4-enedioate (4-oxalocrotonate), was originally thought to be produced by the enzyme [1,2] but later shown to be produced non-enzymically [5].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Whitman, C.P., Aird, B.A., Gillespie, W.R. and Stolowich, N.J. Chemical and enzymatic ketonization of 2-hydroxymuconate, a conjugated enol. J. Am. Chem. Soc. 113 (1991) 3154–3162.
2.  Whitman, C.P., Hajipour, G., Watson, R.J., Johnson, W.H., Jr., Bembenek, M.E. and Stolowich, N.J. Stereospecific ketonization of 2-hydroxymuconate by 4-oxalocrotonate tautomerase and 5-(carboxymethyl)-2-hydroxymuconate isomerase. J. Am. Chem. Soc. 114 (1992) 10104–10110.
3.  Subramanya, H.S., Roper, D.I., Dauter, Z., Dodson, E.J., Davies, G.J., Wilson, K.S. and Wigley, D.B. Enzymatic ketonization of 2-hydroxymuconate: specificity and mechanism investigated by the crystal structures of two isomerases. Biochemistry 35 (1996) 792–802. [PMID: 8547259]
4.  Stivers, J.T., Abeygunawardana, C., Mildvan, A.S., Hajipour, G., Whitman, C.P. and Chen, L.H. Catalytic role of the amino-terminal proline in 4-oxalocrotonate tautomerase: affinity labeling and heteronuclear NMR studies. Biochemistry 35 (1996) 803–813. [PMID: 8547260]
5.  Wang, S.C., Johnson, W.H., Jr., Czerwinski, R.M., Stamps, S.L. and Whitman, C.P. Kinetic and stereochemical analysis of YwhB, a 4-oxalocrotonate tautomerase homologue in Bacillus subtilis: mechanistic implications for the YwhB- and 4-oxalocrotonate tautomerase-catalyzed reactions. Biochemistry 46 (2007) 11919–11929. [PMID: 17902707]
6.  Kasai, D., Fujinami, T., Abe, T., Mase, K., Katayama, Y., Fukuda, M. and Masai, E. Uncovering the protocatechuate 2,3-cleavage pathway genes. J. Bacteriol. 191 (2009) 6758–6768. [PMID: 19717587]
[EC 5.3.2.6 created 2012]
 
 
EC 5.4.3.9
Accepted name: glutamate 2,3-aminomutase
Reaction: L-glutamate = 3-aminopentanedioate
Glossary: 3-aminopentanedioate = isoglutamate
Systematic name: L-glutamate 2,3-aminomutase
Comments: This enzyme is a member of the ’AdoMet radical’ (radical SAM) family. It contains pyridoxal phosphate and a [4Fe-4S] cluster, which is coordinated by 3 cysteines and binds an exchangeable S-adenosyl-L-methionine molecule. During the reaction cycle, the AdoMet forms a 5′-deoxyadenosyl radical, which is regenerated at the end of the reaction.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Ruzicka, F.J. and Frey, P.A. Glutamate 2,3-aminomutase: a new member of the radical SAM superfamily of enzymes. Biochim. Biophys. Acta 1774 (2007) 286–296. [PMID: 17222594]
[EC 5.4.3.9 created 2012]
 
 
EC 5.4.99.58
Accepted name: methylornithine synthase
Reaction: L-lysine = (3R)-3-methyl-D-ornithine
Glossary: (3R)-3-methyl-D-ornithine = (2R,3R)-2,5-diamino-3-methylpentanoate
Other name(s): PylB
Systematic name: L-lysine carboxy-aminomethylmutase
Comments: The enzyme is a member of the superfamily of S-adenosyl-L-methionine-dependent radical (radical AdoMet) enzymes. Binds a [4Fe-4S] cluster that is coordinated by 3 cysteines and an exchangeable S-adenosyl-L-methionine molecule. The reaction is part of the biosynthesis pathway of pyrrolysine, a naturally occurring amino acid found in some archaeal methyltransferases.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Gaston, M.A., Zhang, L., Green-Church, K.B. and Krzycki, J.A. The complete biosynthesis of the genetically encoded amino acid pyrrolysine from lysine. Nature 471 (2011) 647–650. [PMID: 21455182]
2.  Quitterer, F., List, A., Eisenreich, W., Bacher, A. and Groll, M. Crystal structure of methylornithine synthase (PylB): insights into the pyrrolysine biosynthesis. Angew. Chem. Int. Ed. Engl. 51 (2012) 1339–1342. [PMID: 22095926]
[EC 5.4.99.58 created 2012]
 
 
*EC 5.5.1.12
Accepted name: copalyl diphosphate synthase
Reaction: geranylgeranyl diphosphate = (+)-copalyl diphosphate
For diagram of abietadiene, abietate, isopimaradiene, labdadienol and sclareol biosynthesis, click here, for diagram of labdane diterpenoids biosynthesis, click here and for diagram of pimarane diterpenoids biosynthesis, click here
Other name(s): (+)-copalyl-diphosphate lyase (decyclizing)
Systematic name: (+)-copalyl-diphosphate lyase (ring-opening)
Comments: In some plants, such as Salvia miltiorrhiza, this enzyme is monofunctional. In other plants this activity is often a part of a bifunctional enzyme. For example, in Selaginella moellendorffii this activity is catalysed by a bifunctional enzyme that also catalyses EC 4.2.3.131, miltiradiene synthase, while in the tree Abies grandis (grand fir) it is catalysed by a bifunctional enzyme that also catalyses EC 4.2.3.18, abietadiene synthase.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG, CAS registry number: 157972-08-2
References:
1.  Peters, R.J., Ravn, M.M., Coates, R.M. and Croteau, R.B. Bifunctional abietadiene synthase: free diffusive transfer of the (+)-copalyl diphosphate intermediate between two distinct active sites. J. Am. Chem. Soc. 123 (2001) 8974–8978. [PMID: 11552804]
2.  Sugai, Y., Ueno, Y., Hayashi, K., Oogami, S., Toyomasu, T., Matsumoto, S., Natsume, M., Nozaki, H. and Kawaide, H. Enzymatic 13C labeling and multidimensional NMR analysis of miltiradiene synthesized by bifunctional diterpene cyclase in Selaginella moellendorffii. J. Biol. Chem. 286 (2011) 42840–42847. [PMID: 22027823]
3.  Peters, R.J. and Croteau, R.B. Abietadiene synthase catalysis: mutational analysis of a prenyl diphosphate ionization-initiated cyclization and rearrangement. Proc. Natl. Acad. Sci. USA 99 (2002) 580–584. [PMID: 11805316]
4.  Ravn, M.M., Peters, R.J., Coates, R.M. and Croteau, R. Mechanism of abietadiene synthase catalysis: stereochemistry and stabilization of the cryptic pimarenyl carbocation intermediates. J. Am. Chem. Soc. 124 (2002) 6998–7006. [PMID: 12059223]
5.  Peters, R.J. and Croteau, R.B. Abietadiene synthase catalysis: conserved residues involved in protonation-initiated cyclization of geranylgeranyl diphosphate to (+)-copalyl diphosphate. Biochemistry 41 (2002) 1836–1842. [PMID: 11827528]
[EC 5.5.1.12 created 2002, modified 2012]
 
 
EC 6.1.1.25
Deleted entry: lysine—tRNAPyl ligase. The tRNAPyl is now known only to be charged with pyrrolysine (cf. EC 6.1.1.26).
[EC 6.1.1.25 created 2002, deleted 2012]
 
 
EC 6.2.1.39
Accepted name: [butirosin acyl-carrier protein]—L-glutamate ligase
Reaction: (1) ATP + L-glutamate + BtrI acyl-carrier protein = ADP + phosphate + L-glutamyl-[BtrI acyl-carrier protein]
(2) ATP + L-glutamate + 4-amino butanoyl-[BtrI acyl-carrier protein] = ADP + phosphate + 4-(γ-L-glutamylamino)butanoyl-[BtrI acyl-carrier protein]
Other name(s): [BtrI acyl-carrier protein]—L-glutamate ligase; BtrJ
Systematic name: [BtrI acyl-carrier protein]:L-glutamate ligase (ADP-forming)
Comments: Catalyses two steps in the biosynthesis of the side chain of the aminoglycoside antibiotics of the butirosin family. The enzyme adds one molecule of L-glutamate to a dedicated acyl-carrier protein, and following decarboxylation of the product by EC 4.1.1.95, L-glutamyl-[BtrI acyl-carrier protein] decarboxylase, adds a second L-glutamate molecule. Requires Mg2+ or Mn2+, and activity is enhanced in the presence of Mn2+.
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Li, Y., Llewellyn, N.M., Giri, R., Huang, F. and Spencer, J.B. Biosynthesis of the unique amino acid side chain of butirosin: possible protective-group chemistry in an acyl carrier protein-mediated pathway. Chem. Biol. 12 (2005) 665–675. [PMID: 15975512]
[EC 6.2.1.39 created 2012]
 
 
EC 6.3.2.27
Deleted entry: The activity is covered by two independent enzymes, EC 6.3.2.38 N2-citryl-N6-acetyl-N6-hydroxylysine synthase, and EC 6.3.2.39, aerobactin synthase
[EC 6.3.2.27 created 2002, modified 2006, deleted 2012]
 
 
EC 6.3.2.38
Accepted name: N2-citryl-N6-acetyl-N6-hydroxylysine synthase
Reaction: 2 ATP + citrate + N6-acetyl-N6-hydroxy-L-lysine + H2O = 2 ADP + 2 phosphate + N2-citryl-N6-acetyl-N6-hydroxy-L-lysine
For diagram of aerobactin biosynthesis, click here
Other name(s): Nα-citryl-Nε-acetyl-Nε-hydroxylysine synthase; iucA (gene name)
Systematic name: citrate:N6-acetyl-N6-hydroxy-L-lysine ligase (ADP-forming)
Comments: Requires Mg2+. Aerobactin is one of a group of high-affinity iron chelators known as siderophores and is produced under conditions of iron deprivation [5]. It is a dihydroxamate comprising two molecules of N6-acetyl-N6-hydroxy-L-lysine and one molecule of citrate. This enzyme catalyses the first of two synthase reactions to link N6-acetyl-N6-hydroxy-L-lysine and citrate [4,5].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Appanna, D.L., Grundy, B.J., Szczepan, E.W. and Viswanatha, T. Aerobactin synthesis in a cell-free system of Aerobacter aerogenes 62-1. Biochim. Biophys. Acta 801 (1984) 437–443.
2.  Gibson, F. and Magrath, D.I. The isolation and characterization of a hydroxamic acid (aerobactin) formed by Aerobacter aerogenes 62-I. Biochim. Biophys. Acta 192 (1969) 175–184. [PMID: 4313071]
3.  Maurer, P.J. and Miller, M. Microbial iron chelators: total synthesis of aerobactin and its constituent amino acid, N6-acetyl-N6-hydroxylysine. J. Am. Chem. Soc. 104 (1982) 3096–3101.
4.  de Lorenzo, V., Bindereif, A., Paw, B.H. and Neilands, J.B. Aerobactin biosynthesis and transport genes of plasmid ColV-K30 in Escherichia coli K-12. J. Bacteriol. 165 (1986) 570–578. [PMID: 2935523]
5.  Challis, G.L. A widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases. ChemBioChem 6 (2005) 601–611. [PMID: 15719346]
[EC 6.3.2.38 created 2012]
 
 
EC 6.3.2.39
Accepted name: aerobactin synthase
Reaction: 2 ATP + N2-citryl-N6-acetyl-N6-hydroxy-L-lysine + N6-acetyl-N6-hydroxy-L-lysine + H2O = 2 ADP + 2 phosphate + aerobactin
For diagram of aerobactin biosynthesis, click here
Other name(s): iucC (gene name)
Systematic name: N2-citryl-N6-acetyl-N6-hydroxy-L-lysine:N6-acetyl-N6-hydroxy-L-lysine ligase (ADP-forming)
Comments: Requires Mg2+. Aerobactin is one of a group of high-affinity iron chelators known as siderophores and is produced under conditions of iron deprivation [6]. It is a dihydroxamate comprising two molecules of N6-acetyl-N6-hydroxy-L-lysine and one molecule of citric acid. This enzyme catalyses the second of two synthase reactions to link N6-acetyl-N6-hydroxy-L-lysine and citrate [3,4,5].
Links to other databases: BRENDA, EXPASY, IUBMB, KEGG
References:
1.  Appanna, D.L., Grundy, B.J., Szczepan, E.W. and Viswanatha, T. Aerobactin synthesis in a cell-free system of Aerobacter aerogenes 62-1. Biochim. Biophys. Acta 801 (1984) 437–443.
2.  Gibson, F. and Magrath, D.I. The isolation and characterization of a hydroxamic acid (aerobactin) formed by Aerobacter aerogenes 62-I. Biochim. Biophys. Acta 192 (1969) 175–184. [PMID: 4313071]
3.  Maurer, P.J. and Miller, M. Microbial iron chelators: total synthesis of aerobactin and its constituent amino acid, N6-acetyl-N6-hydroxylysine. J. Am. Chem. Soc. 104 (1982) 3096–3101.
4.  de Lorenzo, V., Bindereif, A., Paw, B.H. and Neilands, J.B. Aerobactin biosynthesis and transport genes of plasmid ColV-K30 in Escherichia coli K-12. J. Bacteriol. 165 (1986) 570–578. [PMID: 2935523]
5.  de Lorenzo, V. and Neilands, J.B. Characterization of iucA and iucC genes of the aerobactin system of plasmid ColV-K30 in Escherichia coli. J. Bacteriol. 167 (1986) 350–355. [PMID: 3087960]
6.  Challis, G.L. A widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases. ChemBioChem 6 (2005) 601–611. [PMID: 15719346]
[EC 6.3.2.39 created 2012]
 
 


Data © 2001–2017 IUBMB
Web site © 2005–2017 Andrew McDonald