The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

EC 1.1.1.422     
Accepted name: pseudoephedrine dehydrogenase
Reaction: (+)-(1S,2S)-pseudoephedrine + NAD+ = (S)-2-(methylamino)-1-phenylpropan-1-one + NADH + H+
Glossary: (+)-(1S,2S)-pseudoephedrine = (1S,2S)-2-(methylamino)-1-phenylpropan-1-ol
(S)-2-(methylamino)-1-phenylpropan-1-one = (S)-methcathinone
Other name(s): PseDH
Systematic name: (+)-(1S,2S)-pseudoephedrine:NAD+ 1-oxidoreductase
Comments: The enzyme, characterized from the bacterium Arthrobacter sp. TS-15, acts on a broad range of different aryl-alkyl ketones, such as haloketones, ketoamines, diketones, and ketoesters. It accepts various types of aryl groups including phenyl-, pyridyl-, thienyl-, and furyl-rings, but the presence of an aromatic ring is essential for the activity. In addition, the presence of a functional group on the alkyl chain, such as an amine, a halogen, or a ketone, is also crucial. The enzyme exhibits a strict anti-Prelog enantioselectivity. When acting on diketones, it catalyses the reduction of only the keto group closest to the ring, with no further reduction to the diol. cf. EC 1.1.1.423, ephedrine dehydrogenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Shanati, T., Lockie, C., Beloti, L., Grogan, G. and Ansorge-Schumacher, M.B. Two enantiocomplementary ephedrine dehydrogenases from Arthrobacter sp. TS-15 with broad substrate specificity. ACS Catal. 9 (2019) 6202–6211.
2.  Shanati, T., Ansorge-Schumacher, M. Enzymes and methods for the stereoselective reduction of carbonyl compounds, oxidation and stereoselective reductive amination - for the enantioselective preparation of alcohol amine compounds. (2019) Patent WO2019002459.
3.  Shanati, T. and Ansorge-Schumacher, M.B. Biodegradation of ephedrine isomers by Arthrobacter sp. strain TS-15: discovery of novel ephedrine and pseudoephedrine dehydrogenases. Appl. Environ. Microbiol. 86(6):e02487-19 (2020). [DOI] [PMID: 31900306]
[EC 1.1.1.422 created 2020]
 
 


Data © 2001–2020 IUBMB
Web site © 2005–2020 Andrew McDonald