The Enzyme Database

Your query returned 4 entries.    printer_iconPrintable version



EC 1.14.13.153     
Accepted name: (+)-sabinene 3-hydroxylase
Reaction: (+)-sabinene + NADPH + H+ + O2 = (+)-cis-sabinol + NADP+ + H2O
For diagram of thujane monoterpenoid biosynthesis, click here
Systematic name: (+)-sabinene,NADPH:oxygen oxidoreductase (3-hydroxylating)
Comments: Requires cytochrome P-450. The enzyme has been characterized from Salvia officinalis (sage).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Karp, F., Harris, J.L. and Croteau, R. Metabolism of monoterpenes: demonstration of the hydroxylation of (+)-sabinene to (+)-cis-sabinol by an enzyme preparation from sage (Salvia officinalis) leaves. Arch. Biochem. Biophys. 256 (1987) 179–193. [DOI] [PMID: 3111374]
[EC 1.14.13.153 created 2012]
 
 
EC 4.2.3.108     
Accepted name: 1,8-cineole synthase
Reaction: geranyl diphosphate + H2O = 1,8-cineole + diphosphate
For diagram of menthane monoterpenoid biosynthesis, click here
Glossary: 1,8-cineole = 1,3,3-trimethyl-2-oxabicyclo[2.2.2]octane
Other name(s): 1,8-cineole cyclase; geranyl pyrophoshate:1,8-cineole cyclase; 1,8-cineole synthetase
Systematic name: geranyl-diphosphate diphosphate-lyase (cyclizing, 1,8-cineole-forming)
Comments: Requires Mn2+ or Zn2+. Mg2+ is less effective than either. 1,8-Cineole is the main product from the enzyme with just traces of other monoterpenoids. The oxygen atom is derived from water. The reaction proceeds via linalyl diphosphate and α-terpineol, the stereochemistry of both depends on the organism. However neither intermediate can substitute for geranyl diphosphate. The reaction in Salvia officinalis (sage) proceeds via (–)-(3R)-linalyl diphosphate [1-3] while that in Arabidopsis (rock cress) proceeds via (+)-(3S)-linalyl diphosphate [4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 110637-19-9
References:
1.  Croteau, R., Alonso, W.R., Koepp, A.E. and Johnson, M.A. Biosynthesis of monoterpenes: partial purification, characterization, and mechanism of action of 1,8-cineole synthase. Arch. Biochem. Biophys. 309 (1994) 184–192. [DOI] [PMID: 8117108]
2.  Wise, M.L., Savage, T.J., Katahira, E. and Croteau, R. Monoterpene synthases from common sage (Salvia officinalis). cDNA isolation, characterization, and functional expression of (+)-sabinene synthase, 1,8-cineole synthase, and (+)-bornyl diphosphate synthase. J. Biol. Chem. 273 (1998) 14891–14899. [DOI] [PMID: 9614092]
3.  Peters, R.J. and Croteau, R.B. Alternative termination chemistries utilized by monoterpene cyclases: chimeric analysis of bornyl diphosphate, 1,8-cineole, and sabinene synthases. Arch. Biochem. Biophys. 417 (2003) 203–211. [DOI] [PMID: 12941302]
4.  Chen, F., Ro, D.K., Petri, J., Gershenzon, J., Bohlmann, J., Pichersky, E. and Tholl, D. Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole. Plant Physiol. 135 (2004) 1956–1966. [DOI] [PMID: 15299125]
5.  Keszei, A., Brubaker, C.L., Carter, R., Kollner, T., Degenhardt, J. and Foley, W.J. Functional and evolutionary relationships between terpene synthases from Australian Myrtaceae. Phytochemistry 71 (2010) 844–852. [DOI] [PMID: 20399476]
[EC 4.2.3.108 created 2012]
 
 
EC 4.2.3.110     
Accepted name: (+)-sabinene synthase
Reaction: geranyl diphosphate = (+)-sabinene + diphosphate
For diagram of thujane monoterpenoid biosynthesis, click here
Glossary: (+)-sabinene = (+)-thuj-4(10)-ene = (1R,5R)-1-isopropyl-4-methylenebicyclo[3.1.0]hexane
Other name(s): SS
Systematic name: geranyl-diphosphate diphosphate-lyase [cyclizing, (+)-sabinene-forming]
Comments: Isolated from Salvia officinalis (sage). The recombinant enzyme gave 63% (+)-sabinene, 21% γ-terpinene, and traces of other monoterpenoids. See EC 4.2.3.114 γ-terpinene synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Wise, M.L., Savage, T.J., Katahira, E. and Croteau, R. Monoterpene synthases from common sage (Salvia officinalis). cDNA isolation, characterization, and functional expression of (+)-sabinene synthase, 1,8-cineole synthase, and (+)-bornyl diphosphate synthase. J. Biol. Chem. 273 (1998) 14891–14899. [DOI] [PMID: 9614092]
2.  Peters, R.J. and Croteau, R.B. Alternative termination chemistries utilized by monoterpene cyclases: chimeric analysis of bornyl diphosphate, 1,8-cineole, and sabinene synthases. Arch. Biochem. Biophys. 417 (2003) 203–211. [DOI] [PMID: 12941302]
[EC 4.2.3.110 created 2012]
 
 
EC 5.5.1.8     
Accepted name: (+)-bornyl diphosphate synthase
Reaction: geranyl diphosphate = (+)-bornyl diphosphate
For diagram of bornane and related monoterpenoids, click here
Glossary: (+)-bornyl diphosphate = (1R,2S,4R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl diphosphate
Other name(s): bornyl pyrophosphate synthase (ambiguous); bornyl pyrophosphate synthetase (ambiguous); (+)-bornylpyrophosphate cyclase; geranyl-diphosphate cyclase (ambiguous); (+)-bornyl-diphosphate lyase (decyclizing)
Systematic name: (+)-bornyl-diphosphate lyase (ring-opening)
Comments: Requires Mg2+. The enzyme from Salvia officinalis (sage) can also use (3R)-linalyl diphosphate or more slowly neryl diphosphate in vitro [3]. The reaction proceeds via isomeration of geranyl diphosphate to (3R)-linalyl diphosphate. The oxygen and phosphorus originally linked to C-1 of geranyl diphosphate end up linked to C-2 of (+)-bornyl diphosphate [3]. cf. EC 5.5.1.22 [(–)-bornyl diphosphate synthase].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 72668-91-8
References:
1.  Croteau, R. and Karp, F. Biosynthesis of monoterpenes: preliminary characterization of bornyl pyrophosphate synthetase from sage (Salvia officinalis) and demonstration that geranyl pyrophosphate is the preferred substrate for cyclization. Arch. Biochem. Biophys. 198 (1979) 512–522. [DOI] [PMID: 42356]
2.  Croteau, R., Gershenzon, J., Wheeler, C.J. and Satterwhite, D.M. Biosynthesis of monoterpenes: stereochemistry of the coupled isomerization and cyclization of geranyl pyrophosphate to camphane and isocamphane monoterpenes. Arch. Biochem. Biophys. 277 (1990) 374–381. [DOI] [PMID: 2178556]
3.  Croteau, R., Satterwhite, D.M., Cane, D.E. and Chang, C.C. Biosynthesis of monoterpenes. Enantioselectivity in the enzymatic cyclization of (+)- and (-)-linalyl pyrophosphate to (+)- and (-)-bornyl pyrophosphate. J. Biol. Chem. 261 (1986) 13438–13445. [PMID: 3759972]
4.  Croteau, R., Felton, N.M. and Wheeler, C.J. Stereochemistry at C-1 of geranyl pyrophosphate and neryl pyrophosphate in the cyclization to (+)- and (-)-bornyl pyrophosphate. J. Biol. Chem. 260 (1985) 5956–5962. [PMID: 3997807]
5.  Croteau, R.B., Shaskus, J.J., Renstrom, B., Felton, N.M., Cane, D.E., Saito, A. and Chang, C. Mechanism of the pyrophosphate migration in the enzymatic cyclization of geranyl and linalyl pyrophosphates to (+)- and (-)-bornyl pyrophosphates. Biochemistry 24 (1985) 7077–7085. [PMID: 4084562]
6.  McGeady, P. and Croteau, R. Isolation and characterization of an active-site peptide from a monoterpene cyclase labeled with a mechanism-based inhibitor. Arch. Biochem. Biophys. 317 (1995) 149–155. [DOI] [PMID: 7872777]
7.  Wise, M.L., Savage, T.J., Katahira, E. and Croteau, R. Monoterpene synthases from common sage (Salvia officinalis). cDNA isolation, characterization, and functional expression of (+)-sabinene synthase, 1,8-cineole synthase, and (+)-bornyl diphosphate synthase. J. Biol. Chem. 273 (1998) 14891–14899. [DOI] [PMID: 9614092]
8.  Whittington, D.A., Wise, M.L., Urbansky, M., Coates, R.M., Croteau, R.B. and Christianson, D.W. Bornyl diphosphate synthase: structure and strategy for carbocation manipulation by a terpenoid cyclase. Proc. Natl. Acad. Sci. USA 99 (2002) 15375–15380. [DOI] [PMID: 12432096]
9.  Peters, R.J. and Croteau, R.B. Alternative termination chemistries utilized by monoterpene cyclases: chimeric analysis of bornyl diphosphate, 1,8-cineole, and sabinene synthases. Arch. Biochem. Biophys. 417 (2003) 203–211. [DOI] [PMID: 12941302]
[EC 5.5.1.8 created 1984, modified 2012]
 
 


Data © 2001–2020 IUBMB
Web site © 2005–2020 Andrew McDonald