EC 4.2.3.158     Relevance: 100%
Accepted name: (–)-spiroviolene synthase
Reaction: geranylgeranyl diphosphate = (–)-spiroviolene + diphosphate
Glossary: (–)-spiroviolene = (2R,3a′S,3b′R,5S,6a′R)-2,4′,4′,5,6a′-pentamethyl-2′,3′,3a′,3b′,4′,5′,6′,6a′-octahydrospiro[cyclopentane-1,1′-cyclopenta[a]pentalene]
Systematic name: geranylgeranyl-diphosphate diphosphate-lyase [cyclizing, (–)-spiroviolene-forming]
Comments: The enzyme, which forms the diterpene (–)-spiroviolene, has been characterized from the bacterium Streptomyces violens.
References:
1.  Rabe, P., Rinkel, J., Dolja, E., Schmitz, T., Nubbemeyer, B., Luu, T.H. and Dickschat, J.S. Mechanistic investigations of two bacterial diterpene cyclases: spiroviolene synthase and tsukubadiene synthase. Angew. Chem. Int. Ed. Engl. 56 (2017) 2776–2779. [PMID: 28146322]
2.  Xu, H. and Dickschat, J.S. Revision of the cyclisation mechanism for the diterpene spiroviolene and investigations of Its mass spectrometric fragmentation. Chembiochem 22 (2021) 850–854. [PMID: 33084237]
[EC 4.2.3.158 created 2017]
 
 
EC 4.2.3.224     Relevance: 59.7%
Accepted name: allokutznerene synthase
Reaction: geranylgeranyl diphosphate = allokutznerene + diphosphate
Glossary: allokutznerene = (3S,3aS,7aR,10aR,10bS)-3,6,7a,10,10-pentamethyl-1,2,3,4,5,7,7a,8,9,10,10a,10b-dodecahydrodicyclopenta[d,g]indene
Other name(s): PmS
Systematic name: geranylgeranyl-diphosphate diphosphate-lyase (cyclizing, allokutznerene-formimg)
Comments: A diterpene synthase isolated from the bacterium Allokutzneria albata. It also produces bonnadiene (EC 4.2.3.223, bonnadiene synthase), phomopsene (EC 4.2.3.222, phomopsene synthase) and traces of (–)-spiroviolene (EC 4.2.3.158, (–)-spiroviolene synthase).
References:
1.  Lauterbach, L., Rinkel, J. and Dickschat, J.S. Two bacterial diterpene synthases from Allokutzneria albata produce bonnadiene, phomopsene, and allokutznerene. Angew. Chem. Int. Ed. Engl. 57 (2018) 8280–8283. [PMID: 29758116]
[EC 4.2.3.224 created 2024]
 
 
EC 4.2.3.223     Relevance: 59.7%
Accepted name: bonnadiene synthase
Reaction: geranylgeranyl diphosphate = bonnadiene + diphosphate
Glossary: bonnadiene = (1R,7R,7aR,11aR)-1,4,9-trimethyl-7-(propan-2-yl)-2,3,5,6,7,7a,10,11-octahydro-1H-benzo[d]azulene
Other name(s): BdS
Systematic name: geranylgeranyl-diphosphate diphosphate-lyase (cyclizing, bonnadiene-formimg)
Comments: A diterpene synthase isolated from the bacterium Allokutzneria albata. It also generates allokutznerene (EC 4.2.3.224, allokutznerene synthase), phomopsene (EC 4.2.3.222, phomopsene synthase) and traces of (–)-spiroviolene (EC 4.2.3.158, (–)-spiroviolene synthase).
References:
1.  Lauterbach, L., Rinkel, J. and Dickschat, J.S. Two bacterial diterpene synthases from Allokutzneria albata produce bonnadiene, phomopsene, and allokutznerene. Angew. Chem. Int. Ed. Engl. 57 (2018) 8280–8283. [PMID: 29758116]
[EC 4.2.3.223 created 2024]
 
 
EC 4.2.3.222     Relevance: 55.4%
Accepted name: phomopsene synthase
Reaction: geranylgeranyl diphosphate = phomopsene + diphosphate
Glossary: phomopsene = (1S,6aS,6bR,9aR,10aS)-1,4,7,7,9a-pentamethyl-1,2,3,5,6,6a,6b,7,8,9,9a,10-dodecahydrodicyclopenta[a,d]indene
Other name(s): PaPS; NtPS; NrPS; PmS
Systematic name: geranylgeranyl-diphosphate diphosphate-lyase (cyclizing, phomopsene-formimg)
Comments: A diterpene synthase from the fungus Diaporthe amygdali. Phomopsene synthase has also been isolated from the bacteria Nocardia testacea, Nocardia rhamnosiphila, and Allokutzneria albata. The Allokutzneria albata enzyme also generates allokutznerene (EC 4.2.3.224, allokutznerene synthase), bonnadiene (EC 4.2.3.223, bonnadiene synthase) and traces of (–)-spiroviolene (EC 4.2.3.158, (–)-spiroviolene synthase).
References:
1.  Toyomasu, T., Kaneko, A., Tokiwano, T., Kanno, Y., Kanno, Y., Niida, R., Miura, S., Nishioka, T., Ikeda, C., Mitsuhashi, W., Dairi, T., Kawano, T., Oikawa, H., Kato, N. and Sassa, T. Biosynthetic gene-based secondary metabolite screening: a new diterpene, methyl phomopsenonate, from the fungus Phomopsis amygdali. J. Org. Chem. 74 (2009) 1541–1548. [PMID: 19161275]
2.  Shinde, S.S., Minami, A., Chen, Z., Tokiwano, T., Toyomasu, T., Kato, N., Sassa, T. and Oikawa, H. Cyclization mechanism of phomopsene synthase: mass spectrometry based analysis of various site-specifically labeled terpenes. J. Antibiot. (Tokyo) 70 (2017) 632–638. [PMID: 28270685]
3.  Lauterbach, L., Rinkel, J. and Dickschat, J.S. Two bacterial diterpene synthases from Allokutzneria albata produce bonnadiene, phomopsene, and allokutznerene. Angew. Chem. Int. Ed. Engl. 57 (2018) 8280–8283. [PMID: 29758116]
4.  Rinkel, J., Steiner, S.T. and Dickschat, J.S. Diterpene biosynthesis in actinomycetes: studies on cattleyene synthase and phomopsene synthase. Angew. Chem. Int. Ed. Engl. 58 (2019) 9230–9233. [PMID: 31034729]
[EC 4.2.3.222 created 2024]
 
 
EC 5.3.3.11     Relevance: 33.1%
Accepted name: isopiperitenone Δ-isomerase
Reaction: isopiperitenone = piperitenone
Systematic name: isopiperitenone Δ84-isomerase
Comments: Involved in the biosynthesis of menthol and related monoterpenes in peppermint (Mentha piperita) leaves.
References:
1.  Kjonaas, R.B., Venkatachalam, K.V. and Croteau, R. Metabolism of monoterpenes: oxidation of isopiperitenol to isopiperitenone, and subsequent isomerization to piperitenone by soluble enzyme preparations from peppermint (Mentha piperita) leaves. Arch. Biochem. Biophys. 238 (1985) 49–60. [PMID: 3885858]
[EC 5.3.3.11 created 1989]
 
 
EC 1.1.1.243     Relevance: 31%
Accepted name: carveol dehydrogenase
Reaction: (–)-trans-carveol + NADP+ = (–)-carvone + NADPH + H+
Other name(s): (–)-trans-carveol dehydrogenase
Systematic name: (–)-trans-carveol:NADP+ oxidoreductase
References:
1.  Gershenzon, J., Maffei, M. and Croteau, R. Biochemical and histochemical-localization of monoterpene biosynthesis in the glandular trichomes of spearmint (Mentha spicata). Plant Physiol. 89 (1989) 1351–1357. [PMID: 16666709]
[EC 1.1.1.243 created 1992]
 
 
EC 5.5.1.28     Relevance: 29.7%
Accepted name: (–)-kolavenyl diphosphate synthase
Reaction: geranylgeranyl diphosphate = (–)-kolavenyl diphosphate
Glossary: (–)-kolavenyl diphosphate = (2E)-5-[(1R,2S,4aS,8aS)-1,2,4a,5-tetramethyl-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-yl]-3-methylpent-2-en-1-yl diposphate
Other name(s): SdKPS; TwTPS14; TwTPS10/KPS; SdCPS2; clerodienyl diphosphate synthase; CLPP
Systematic name: (–)-kolavenyl diphosphate lyase (ring-opening)
Comments: Isolated from the hallucinogenic plant Salvia divinorum (seer’s sage) and the medicinal plant Tripterygium wilfordii (thunder god vine).
References:
1.  Hansen, N.L., Heskes, A.M., Hamberger, B., Olsen, C.E., Hallstrom, B.M., Andersen-Ranberg, J. and Hamberger, B. The terpene synthase gene family in Tripterygium wilfordii harbors a labdane-type diterpene synthase among the monoterpene synthase TPS-b subfamily. Plant J. 89 (2017) 429–441. [PMID: 27801964]
2.  Chen, X., Berim, A., Dayan, F.E. and Gang, D.R. A (–)-kolavenyl diphosphate synthase catalyzes the first step of salvinorin A biosynthesis in Salvia divinorum. J. Exp. Bot. 68 (2017) 1109–1122. [PMID: 28204567]
[EC 5.5.1.28 created 2017]
 
 
EC 4.2.3.186     Relevance: 29.7%
Accepted name: ent-13-epi-manoyl oxide synthase
Reaction: ent-8α-hydroxylabd-13-en-15-yl diphosphate = ent-13-epi-manoyl oxide + diphosphate
Glossary: Ent-13-epi-manoyl oxide = (13R)-ent-8,13-epoxylabd-14-ene
Other name(s): SmKSL2; ent-LDPP synthase
Systematic name: ent-8α-hydroxylabd-13-en-15-yl-diphosphate diphosphate-lyase (cyclizing, ent-13-epi-manoyl-oxide-forming)
Comments: Isolated from the plant Salvia miltiorrhiza (red sage).
References:
1.  Cui, G., Duan, L., Jin, B., Qian, J., Xue, Z., Shen, G., Snyder, J.H., Song, J., Chen, S., Huang, L., Peters, R.J. and Qi, X. Functional divergence of diterpene syntheses in the medicinal plant Salvia miltiorrhiza. Plant Physiol. 169 (2015) 1607–1618. [PMID: 26077765]
[EC 4.2.3.186 created 2017]
 
 
EC 4.2.3.95     Relevance: 29.5%
Accepted name: (-)-α-cuprenene synthase
Reaction: (2E,6E)-farnesyl diphosphate = (-)-α-cuprenene + diphosphate
Other name(s): Cop6
Systematic name: (-)-α-cuprenene hydrolase [cyclizing, (-)-α-cuprenene-forming]
Comments: The enzyme from the fungus Coprinopsis cinerea produces (-)-α-cuprenene with high selectivity.
References:
1.  Lopez-Gallego, F., Agger, S.A., Abate-Pella, D., Distefano, M.D. and Schmidt-Dannert, C. Sesquiterpene synthases Cop4 and Cop6 from Coprinus cinereus: catalytic promiscuity and cyclization of farnesyl pyrophosphate geometric isomers. ChemBioChem 11 (2010) 1093–1106. [PMID: 20419721]
[EC 4.2.3.95 created 2012]
 
 
EC 4.2.3.6     Relevance: 28.5%
Accepted name: trichodiene synthase
Reaction: (2E,6E)-farnesyl diphosphate = trichodiene + diphosphate
Other name(s): trichodiene synthetase; sesquiterpene cyclase; trans,trans-farnesyl-diphosphate sesquiterpenoid-lyase
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, trichodiene-forming)
References:
1.  Hohn, T.M. and Vanmiddlesworth, F. Purification and characterization of the sesquiterpene cyclase trichodiene synthetase from Fusarium sporotrichioides. Arch. Biochem. Biophys. 251 (1986) 756–761. [PMID: 3800398]
2.  Hohn, T.M. and Beremand, P.D. Isolation and nucleotide sequence of a sesquiterpene cyclase gene from the trichothecene-producing fungus Fusarium sporotrichioides. Gene 79 (1989) 131–138. [PMID: 2777086]
3.  Rynkiewicz, M.J., Cane, D.E. and Christianson, D.W. Structure of trichodiene synthase from Fusarium sporotrichioides provides mechanistic inferences on the terpene cyclization cascade. Proc. Natl. Acad. Sci. USA 98 (2001) 13543–13548. [PMID: 11698643]
[EC 4.2.3.6 created 1989 as EC 4.1.99.6, transferred 2000 to EC 4.2.3.6]
 
 
EC 1.14.13.104      
Transferred entry: (+)-menthofuran synthase. Now EC 1.14.14.143, (+)-menthofuran synthase
[EC 1.14.13.104 created 2008, deleted 2018]
 
 
EC 1.3.99.25     Relevance: 28.2%
Accepted name: carvone reductase
Reaction: (1) (+)-dihydrocarvone + acceptor = (–)-carvone + reduced acceptor
(2) (–)-isodihydrocarvone + acceptor = (+)-carvone + reduced acceptor
Glossary: (+)-dihydrocarvone = (1S,4R)-menth-8-en-2-one
(+)-isodihydrocarvone = (1S,4R)-menth-8-en-2-one
(–)-carvone = (4R)-mentha-1(6),8-dien-6-one = (5R)-2-methyl-5-(prop-1-en-2-yl)cyclohex-2-en-1-one
Systematic name: (+)-dihydrocarvone:acceptor 1,6-oxidoreductase
Comments: This enzyme participates in the carveol and dihydrocarveol degradation pathway of the Gram-positive bacterium Rhodococcus erythropolis DCL14. The enzyme has not been purified, and requires an unknown cofactor, which is different from NAD+, NADP+ or a flavin.
References:
1.  van der Werf, M.J. and Boot, A.M. Metabolism of carveol and dihydrocarveol in Rhodococcus erythropolis DCL14. Microbiology 146 (2000) 1129–1141. [PMID: 10832640]
[EC 1.3.99.25 created 2008]
 
 
EC 1.1.1.296     Relevance: 28%
Accepted name: dihydrocarveol dehydrogenase
Reaction: menth-8-en-2-ol + NAD+ = menth-8-en-2-one + NADH + H+
Glossary: (+)-dihydrocarveol = (1S,2S,4S)-menth-8-en-2-ol
(+)-isodihydrocarveol = (1S,2S,4R)-menth-8-en-2-ol
(+)-neoisodihydrocarveol = (1S,2R,4R)-menth-8-en-2-ol
(–)-dihydrocarvone = (1S,4S)-menth-8-en-2-one
(+)-isodihydrocarvone = (1S,4R)-menth-8-en-2-one
Other name(s): carveol dehydrogenase (ambiguous)
Systematic name: menth-8-en-2-ol:NAD+ oxidoreductase
Comments: This enzyme from the Gram-positive bacterium Rhodococcus erythropolis DCL14 forms part of the carveol and dihydrocarveol degradation pathway. The enzyme accepts all eight stereoisomers of menth-8-en-2-ol as substrate, although some isomers are converted faster than others. The preferred substrates are (+)-neoisodihydrocarveol, (+)-isodihydrocarveol, (+)-dihydrocarveol and (–)-isodihydrocarveol.
References:
1.  van der Werf, M.J. and Boot, A.M. Metabolism of carveol and dihydrocarveol in Rhodococcus erythropolis DCL14. Microbiology 146 (2000) 1129–1141. [PMID: 10832640]
[EC 1.1.1.296 created 2008]
 
 
EC 1.23.1.3     Relevance: 27%
Accepted name: (–)-pinoresinol reductase
Reaction: (–)-lariciresinol + NADP+ = (–)-pinoresinol + NADPH + H+
Glossary: (–)-lariciresinol = 4-[(2R,3S,4S)-4-[(4-hydroxy-3-methoxyphenyl)methyl]-3-(hydroxymethyl)oxolan-2-yl]-2-methoxyphenol
(–)-pinoresinol = (1R,3aS,4R,6aS)-4,4′-(tetrahydro-1H,3H-furo[3,4-c]furan-1,4-diyl)bis(2-methoxyphenol)
Other name(s): pinoresinol/lariciresinol reductase; pinoresinol-lariciresinol reductases; (–)-pinoresinol-(–)-lariciresinol reductase; PLR
Systematic name: (–)-lariciresinol:NADP+ oxidoreductase
Comments: The reaction is catalysed in vivo in the opposite direction to that shown. A multifunctional enzyme that usually further reduces the product to (+)-secoisolariciresinol [EC 1.23.1.4, (–)-lariciresinol reductase]. Isolated from the plants Thuja plicata (western red cedar) [1], Linum perenne (perennial flax) [2] and Arabidopsis thaliana (thale cress) [3].
References:
1.  Fujita, M., Gang, D.R., Davin, L.B. and Lewis, N.G. Recombinant pinoresinol-lariciresinol reductases from western red cedar (Thuja plicata) catalyze opposite enantiospecific conversions. J. Biol. Chem. 274 (1999) 618–627. [PMID: 9872995]
2.  Hemmati, S., Schmidt, T.J. and Fuss, E. (+)-Pinoresinol/(-)-lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B. FEBS Lett. 581 (2007) 603–610. [PMID: 17257599]
3.  Nakatsubo, T., Mizutani, M., Suzuki, S., Hattori, T. and Umezawa, T. Characterization of Arabidopsis thaliana pinoresinol reductase, a new type of enzyme involved in lignan biosynthesis. J. Biol. Chem. 283 (2008) 15550–15557. [PMID: 18347017]
[EC 1.23.1.3 created 2013]
 
 
EC 1.14.13.47      
Transferred entry: (S)-limonene 3-monooxygenase. Now EC 1.14.14.99, (S)-limonene 3-monooxygenase
[EC 1.14.13.47 created 1992, modified 2003, deleted 2018]
 
 
EC 3.1.1.83     Relevance: 26.5%
Accepted name: monoterpene ε-lactone hydrolase
Reaction: (1) isoprop(en)ylmethyloxepan-2-one + H2O = 6-hydroxyisoprop(en)ylmethylhexanoate (general reaction)
(2) 4-isopropenyl-7-methyloxepan-2-one + H2O = 6-hydroxy-3-isopropenylheptanoate
(3) 7-isopropyl-4-methyloxepan-2-one + H2O = 6-hydroxy-3,7-dimethyloctanoate
Other name(s): MLH
Systematic name: isoprop(en)ylmethyloxepan-2-one lactonohydrolase
Comments: The enzyme catalyses the ring opening of ε-lactones which are formed during degradation of dihydrocarveol by the Gram-positive bacterium Rhodococcus erythropolis DCL14. The enzyme also acts on ethyl caproate, indicating that it is an esterase with a preference for lactones (internal cyclic esters). The enzyme is not stereoselective.
References:
1.  van der Vlugt-Bergmans , C.J. and van der Werf , M.J. Genetic and biochemical characterization of a novel monoterpene ε-lactone hydrolase from Rhodococcus erythropolis DCL14. Appl. Environ. Microbiol. 67 (2001) 733–741. [PMID: 11157238]
[EC 3.1.1.83 created 2008]
 
 
EC 1.14.13.48      
Transferred entry: (S)-limonene 6-monooxygenase. Now classified as EC 1.14.14.51, (S)-limonene 6-monooxygenase
[EC 1.14.13.48 created 1992, modified 2003, deleted 2017]
 
 
EC 1.14.13.49      
Transferred entry: (S)-limonene 7-monooxygenase. Now classified as EC 1.14.14.52, (S)-limonene 7-monooxygenase
[EC 1.14.13.49 created 1992, modified 2003, deleted 2017]
 
 
EC 1.14.13.105     Relevance: 22.4%
Accepted name: monocyclic monoterpene ketone monooxygenase
Reaction: (1) (–)-menthone + NADPH + H+ + O2 = (4R,7S)-7-isopropyl-4-methyloxepan-2-one + NADP+ + H2O
(2) dihydrocarvone + NADPH + H+ + O2 = 4-isopropenyl-7-methyloxepan-2-one + NADP+ + H2O
(3) (iso)-dihydrocarvone + NADPH + H+ + O2 = 6-isopropenyl-3-methyloxepan-2-one + NADP+ + H2O
(4a) 1-hydroxymenth-8-en-2-one + NADPH + H+ + O2 = 7-hydroxy-4-isopropenyl-7-methyloxepan-2-one + NADP+ + H2O
(4b) 7-hydroxy-4-isopropenyl-7-methyloxepan-2-one = 3-isopropenyl-6-oxoheptanoate (spontaneous)
Other name(s): 1-hydroxy-2-oxolimonene 1,2-monooxygenase; dihydrocarvone 1,2-monooxygenase; MMKMO
Systematic name: (–)-menthone,NADPH:oxygen oxidoreductase
Comments: A flavoprotein (FAD). This Baeyer-Villiger monooxygenase enzyme from the Gram-positive bacterium Rhodococcus erythropolis DCL14 has wide substrate specificity, catalysing the lactonization of a large number of monocyclic monoterpene ketones and substituted cyclohexanones [2]. Both (1R,4S)- and (1S,4R)-1-hydroxymenth-8-en-2-one are metabolized, with the lactone product spontaneously rearranging to form 3-isopropenyl-6-oxoheptanoate [1].
References:
1.  van der Werf, M.J., Swarts, H.J. and de Bont, J.A. Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene. Appl. Environ. Microbiol. 65 (1999) 2092–2102. [PMID: 10224006]
2.  Van Der Werf, M.J. Purification and characterization of a Baeyer-Villiger mono-oxygenase from Rhodococcus erythropolis DCL14 involved in three different monocyclic monoterpene degradation pathways. Biochem. J. 347 (2000) 693–701. [PMID: 10769172]
3.  van der Werf, M.J. and Boot, A.M. Metabolism of carveol and dihydrocarveol in Rhodococcus erythropolis DCL14. Microbiology 146 (2000) 1129–1141. [PMID: 10832640]
[EC 1.14.13.105 created 2008]