The Enzyme Database

Your query returned 3 entries.    printer_iconPrintable version



EC 1.1.98.7     
Accepted name: serine-type anaerobic sulfatase-maturating enzyme
Reaction: S-adenosyl-L-methionine + a [sulfatase]-L-serine = a [sulfatase]-3-oxo-L-alanine + 5′-deoxyadenosine + L-methionine
Glossary: 3-oxo-L-alanine = (S)-formylglycine = (S)-Cα-formylglycine = FGly
Other name(s): atsB (gene name)
Systematic name: [sulfatase]-L-serine:S-adenosyl-L-methionine oxidoreductase (3-oxo-L-alanine-forming)
Comments: A bacterial radical S-adenosyl-L-methionine (AdoMet) enzyme that contains three [4Fe-4S] clusters. The enzyme, found in some bacteria, activates a type I sulfatase enzyme (EC 3.1.6.1) by converting a conserved L-serine residue in the active site to a unique 3-oxo-L-alanine residue that is essential for the sulfatase activity. While the enzyme from Klebsiella pneumoniae is specific for L-serine, the enzyme from Clostridium perfringens can also act on L-cysteine, see EC 1.8.98.7, cysteine-type anaerobic sulfatase-maturating enzyme.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Szameit, C., Miech, C., Balleininger, M., Schmidt, B., von Figura, K. and Dierks, T. The iron sulfur protein AtsB is required for posttranslational formation of formylglycine in the Klebsiella sulfatase. J. Biol. Chem. 274 (1999) 15375–15381. [PMID: 10336424]
2.  Fang, Q., Peng, J. and Dierks, T. Post-translational formylglycine modification of bacterial sulfatases by the radical S-adenosylmethionine protein AtsB. J. Biol. Chem. 279 (2004) 14570–14578. [PMID: 14749327]
3.  Grove, T.L., Lee, K.H., St Clair, J., Krebs, C. and Booker, S.J. In vitro characterization of AtsB, a radical SAM formylglycine-generating enzyme that contains three [4Fe-4S] clusters. Biochemistry 47 (2008) 7523–7538. [PMID: 18558715]
[EC 1.1.98.7 created 2020]
 
 
EC 1.8.3.7     
Accepted name: formylglycine-generating enzyme
Reaction: a [sulfatase]-L-cysteine + O2 + 2 a thiol = a [sulfatase]-3-oxo-L-alanine + hydrogen sulfide + a disulfide + H2O
Glossary: 3-oxo-L-alanine = formylglycine = Cα-formylglycine = FGly
Other name(s): sulfatase-modifying factor 1; Cα-formylglycine-generating enzyme 1; SUMF1 (gene name)
Systematic name: [sulfatase]-L-cysteine:oxygen oxidoreductase (3-oxo-L-alanine-forming)
Comments: Requires a copper cofactor and Ca2+. The enzyme, which is found in both prokaryotes and eukaryotes, catalyses a modification of a conserved L-cysteine residue in the active site of sulfatases, generating a unique 3-oxo-L-alanine residue that is essential for sulfatase activity. The exact nature of the thiol involved is still not clear - dithiothreitol and cysteamine are the most efficiently used thiols in vitro. Glutathione alo acts in vitro, but it is not known whether it is used in vivo.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Dierks, T., Schmidt, B. and von Figura, K. Conversion of cysteine to formylglycine: a protein modification in the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 94 (1997) 11963–11968. [DOI] [PMID: 9342345]
2.  Dierks, T., Miech, C., Hummerjohann, J., Schmidt, B., Kertesz, M.A. and von Figura, K. Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. J. Biol. Chem. 273 (1998) 25560–25564. [DOI] [PMID: 9748219]
3.  Preusser-Kunze, A., Mariappan, M., Schmidt, B., Gande, S.L., Mutenda, K., Wenzel, D., von Figura, K. and Dierks, T. Molecular characterization of the human Cα-formylglycine-generating enzyme. J. Biol. Chem. 280 (2005) 14900–14910. [DOI] [PMID: 15657036]
4.  Roeser, D., Preusser-Kunze, A., Schmidt, B., Gasow, K., Wittmann, J.G., Dierks, T., von Figura, K. and Rudolph, M.G. A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. Proc. Natl. Acad. Sci. USA 103 (2006) 81–86. [DOI] [PMID: 16368756]
5.  Carlson, B.L., Ballister, E.R., Skordalakes, E., King, D.S., Breidenbach, M.A., Gilmore, S.A., Berger, J.M. and Bertozzi, C.R. Function and structure of a prokaryotic formylglycine-generating enzyme. J. Biol. Chem. 283 (2008) 20117–20125. [DOI] [PMID: 18390551]
6.  Holder, P.G., Jones, L.C., Drake, P.M., Barfield, R.M., Banas, S., de Hart, G.W., Baker, J. and Rabuka, D. Reconstitution of formylglycine-generating enzyme with copper(II) for aldehyde tag conversion. J. Biol. Chem. 290 (2015) 15730–15745. [DOI] [PMID: 25931126]
7.  Knop, M., Engi, P., Lemnaru, R. and Seebeck, F.P. In vitro reconstitution of formylglycine-generating enzymes requires copper(I). ChemBioChem 16 (2015) 2147–2150. [DOI] [PMID: 26403223]
8.  Knop, M., Dang, T.Q., Jeschke, G. and Seebeck, F.P. Copper is a cofactor of the formylglycine-generating enzyme. ChemBioChem 18 (2017) 161–165. [DOI] [PMID: 27862795]
9.  Meury, M., Knop, M. and Seebeck, F.P. Structural basis for copper-oxygen mediated C-H bond activation by the formylglycine-generating enzyme. Angew. Chem. Int. Ed. Engl. (2017) . [DOI] [PMID: 28544744]
[EC 1.8.3.7 created 2014]
 
 
EC 1.8.98.7     
Accepted name: cysteine-type anaerobic sulfatase-maturating enzyme
Reaction: S-adenosyl-L-methionine + a [sulfatase]-L-cysteine + H2O = a [sulfatase]-3-oxo-L-alanine + 5′-deoxyadenosine + L-methionine + hydrogen sulfide
Glossary: 3-oxo-L-alanine = formylglycine = Cα-formylglycine = FGly
Other name(s): anSME; Cys-type anaerobic sulfatase-maturating enzyme; anaerobic sulfatase maturase
Systematic name: [sulfatase]-L-cysteine:S-adenosyl-L-methionine oxidoreductase (3-oxo-L-alanine-forming)
Comments: A radical S-adenosylmethionine (AdoMet) enzyme that contains three [4Fe-4S] clusters. The enzyme, found in some bacteria, activates a type I sulfatase enzyme (EC 3.1.6.1) by converting a conserved L-cysteine residue in the active site to a unique 3-oxo-L-alanine residue that is essential for the sulfatase activity. Some enzymes can also act on L-serine, see EC 1.1.98.7, serine-type anaerobic sulfatase-maturating enzyme and EC 1.8.3.7, formylglycine-generating enzyme.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Berteau, O., Guillot, A., Benjdia, A. and Rabot, S. A new type of bacterial sulfatase reveals a novel maturation pathway in prokaryotes. J. Biol. Chem. 281 (2006) 22464–22470. [PMID: 16766528]
2.  Benjdia, A., Subramanian, S., Leprince, J., Vaudry, H., Johnson, M.K. and Berteau, O. Anaerobic sulfatase-maturating enzymes, first dual substrate radical S-adenosylmethionine enzymes. J. Biol. Chem. 283 (2008) 17815–17826. [PMID: 18408004]
3.  Benjdia, A., Leprince, J., Sandstrom, C., Vaudry, H. and Berteau, O. Mechanistic investigations of anaerobic sulfatase-maturating enzyme: direct Cβ H-atom abstraction catalyzed by a radical AdoMet enzyme. J. Am. Chem. Soc. 131 (2009) 8348–8349. [PMID: 19489556]
4.  Benjdia, A., Subramanian, S., Leprince, J., Vaudry, H., Johnson, M.K. and Berteau, O. Anaerobic sulfatase-maturating enzyme--a mechanistic link with glycyl radical-activating enzymes. FEBS J. 277 (2010) 1906–1920. [PMID: 20218986]
5.  Grove, T.L., Ahlum, J.H., Qin, R.M., Lanz, N.D., Radle, M.I., Krebs, C. and Booker, S.J. Further characterization of Cys-type and Ser-type anaerobic sulfatase maturating enzymes suggests a commonality in the mechanism of catalysis. Biochemistry 52 (2013) 2874–2887. [PMID: 23477283]
[EC 1.8.98.7 created 2020]
 
 


Data © 2001–2020 IUBMB
Web site © 2005–2020 Andrew McDonald