The Enzyme Database

Your query returned 10 entries.    printer_iconPrintable version

EC 1.2.1.96     
Accepted name: 4-hydroxybenzaldehyde dehydrogenase (NADP+)
Reaction: 4-hydroxybenzaldehyde + NADP+ + H2O = 4-hydroxybenzoate + NADPH + 2 H+
Other name(s): p-hydroxybenzaldehyde dehydrogenase (ambiguous); pchA (gene name)
Systematic name: 4-hydroxybenzaldehyde:NADP+ oxidoreductase
Comments: Involved in the aerobic pathway for degradation of toluene, 4-methylphenol, and 2,4-xylenol by several Pseudomonas strains. The enzyme is also active with 4-hydroxy-3-methylbenzaldehyde. cf. EC 1.2.1.64, 4-hydroxybenzaldehyde dehydrogenase (NAD+).
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 61229-72-9
References:
1.  Whited, G.M. and Gibson, D.T. Separation and partial characterization of the enzymes of the toluene-4-monooxygenase catabolic pathway in Pseudomonas mendocina KR1. J. Bacteriol. 173 (1991) 3017–3020. [DOI] [PMID: 2019564]
2.  Chen, Y.F., Chao, H. and Zhou, N.Y. The catabolism of 2,4-xylenol and p-cresol share the enzymes for the oxidation of para-methyl group in Pseudomonas putida NCIMB 9866. Appl. Microbiol. Biotechnol. 98 (2014) 1349–1356. [DOI] [PMID: 23736872]
[EC 1.2.1.96 created 2015]
 
 
EC 1.13.11.74     
Accepted name: 2-aminophenol 1,6-dioxygenase
Reaction: 2-aminophenol + O2 = 2-aminomuconate 6-semialdehyde
Other name(s): amnA (gene name); amnB (gene name); 2-aminophenol:oxygen 1,6-oxidoreductase (decyclizing)
Systematic name: 2-aminophenol:oxygen 1,6-oxidoreductase (ring-opening)
Comments: The enzyme, a member of the nonheme-iron(II)-dependent dioxygenase family, is an extradiol-type dioxygenase that utilizes a non-heme ferrous iron to cleave the aromatic ring at the meta position (relative to the hydroxyl substituent). The enzyme also has some activity with 2-amino-5-methylphenol and 2-amino-4-methylphenol [1]. The enzyme from the bacterium Comamonas testosteroni CNB-1 also has the activity of EC 1.13.11.76, 2-amino-5-chlorophenol 1,6-dioxygenase [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Takenaka, S., Murakami, S., Shinke, R., Hatakeyama, K., Yukawa, H. and Aoki, K. Novel genes encoding 2-aminophenol 1,6-dioxygenase from Pseudomonas species AP-3 growing on 2-aminophenol and catalytic properties of the purified enzyme. J. Biol. Chem. 272 (1997) 14727–14732. [DOI] [PMID: 9169437]
2.  Wu, J.F., Sun, C.W., Jiang, C.Y., Liu, Z.P. and Liu, S.J. A novel 2-aminophenol 1,6-dioxygenase involved in the degradation of p-chloronitrobenzene by Comamonas strain CNB-1: purification, properties, genetic cloning and expression in Escherichia coli. Arch. Microbiol. 183 (2005) 1–8. [DOI] [PMID: 15580337]
3.  Li, D.F., Zhang, J.Y., Hou, Y.J., Liu, L., Hu, Y., Liu, S.J., Wang da, C. and Liu, W. Structures of aminophenol dioxygenase in complex with intermediate, product and inhibitor. Acta Crystallogr. D Biol. Crystallogr. 69 (2013) 32–43. [DOI] [PMID: 23275161]
[EC 1.13.11.74 created 2013]
 
 
EC 1.14.13.236     
Accepted name: toluene 4-monooxygenase
Reaction: toluene + NADH + H+ + O2 = 4-methylphenol + NAD+ + H2O
Glossary: 4-methylphenol = p-cresol
Other name(s): TMO
Systematic name: toluene,NADH:oxygen oxidoreductase (4-hydroxylating)
Comments: This bacterial enzyme belongs to a family of soluble diiron hydroxylases that includes toluene-, benzene-, xylene- and methane monooxygenases, phenol hydroxylases, and alkene epoxidases. The enzyme comprises a four-component complex that includes a hydroxylase, NADH-ferredoxin oxidoreductase, a Rieske-type [2Fe-2S] ferredoxin, and an effector protein.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Whited, G.M. and Gibson, D.T. Toluene-4-monooxygenase, a three-component enzyme system that catalyzes the oxidation of toluene to p-cresol in Pseudomonas mendocina KR1. J. Bacteriol. 173 (1991) 3010–3016. [DOI] [PMID: 2019563]
2.  Hemmi, H., Studts, J.M., Chae, Y.K., Song, J., Markley, J.L. and Fox, B.G. Solution structure of the toluene 4-monooxygenase effector protein (T4moD). Biochemistry 40 (2001) 3512–3524. [DOI] [PMID: 11297417]
3.  Schwartz, J.K., Wei, P.P., Mitchell, K.H., Fox, B.G. and Solomon, E.I. Geometric and electronic structure studies of the binuclear nonheme ferrous active site of toluene-4-monooxygenase: parallels with methane monooxygenase and insight into the role of the effector proteins in O2 activation. J. Am. Chem. Soc. 130 (2008) 7098–7109. [DOI] [PMID: 18479085]
4.  Bailey, L.J., Acheson, J.F., McCoy, J.G., Elsen, N.L., Phillips, G.N., Jr. and Fox, B.G. Crystallographic analysis of active site contributions to regiospecificity in the diiron enzyme toluene 4-monooxygenase. Biochemistry 51 (2012) 1101–1113. [DOI] [PMID: 22264099]
5.  Hosseini, A., Brouk, M., Lucas, M.F., Glaser, F., Fishman, A. and Guallar, V. Atomic picture of ligand migration in toluene 4-monooxygenase. J. Phys. Chem. B 119 (2015) 671–678. [DOI] [PMID: 24798294]
[EC 1.14.13.236 created 2017]
 
 
EC 1.14.14.20     
Accepted name: phenol 2-monooxygenase (FADH2)
Reaction: phenol + FADH2 + O2 = catechol + FAD + H2O
Other name(s): pheA1 (gene name)
Systematic name: phenol,FADH2:oxygen oxidoreductase (2-hydroxylating)
Comments: The enzyme catalyses the ortho-hydroxylation of simple phenols into the corresponding catechols. It accepts 4-methylphenol, 4-chlorophenol, and 4-fluorophenol [1] as well as 4-nitrophenol, 3-nitrophenol, and resorcinol [3]. The enzyme is part of a two-component system that also includes an NADH-dependent flavin reductase. It is strictly dependent on FADH2 and does not accept FMNH2 [1,3]. cf. EC 1.14.13.7, phenol 2-monooxygenase (NADPH).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kirchner, U., Westphal, A.H., Muller, R. and van Berkel, W.J. Phenol hydroxylase from Bacillus thermoglucosidasius A7, a two-protein component monooxygenase with a dual role for FAD. J. Biol. Chem. 278 (2003) 47545–47553. [DOI] [PMID: 12968028]
2.  van den Heuvel, R.H., Westphal, A.H., Heck, A.J., Walsh, M.A., Rovida, S., van Berkel, W.J. and Mattevi, A. Structural studies on flavin reductase PheA2 reveal binding of NAD in an unusual folded conformation and support novel mechanism of action. J. Biol. Chem. 279 (2004) 12860–12867. [DOI] [PMID: 14703520]
3.  Saa, L., Jaureguibeitia, A., Largo, E., Llama, M.J. and Serra, J.L. Cloning, purification and characterization of two components of phenol hydroxylase from Rhodococcus erythropolis UPV-1. Appl. Microbiol. Biotechnol. 86 (2010) 201–211. [DOI] [PMID: 19787347]
[EC 1.14.14.20 created 2016]
 
 
EC 1.17.9.1     
Accepted name: 4-methylphenol dehydrogenase (hydroxylating)
Reaction: 4-methylphenol + 4 oxidized azurin + H2O = 4-hydroxybenzaldehyde + 4 reduced azurin + 4 H+ (overall reaction)
(1a) 4-methylphenol + 2 oxidized azurin + H2O = 4-hydroxybenzyl alcohol + 2 reduced azurin + 2 H+
(1b) 4-hydroxybenzyl alcohol + 2 oxidized azurin = 4-hydroxybenzaldehyde + 2 reduced azurin + 2 H+
Glossary: 4-methylphenol = 4-cresol = p-cresol
Other name(s): pchCF (gene names); p-cresol-(acceptor) oxidoreductase (hydroxylating); p-cresol methylhydroxylase; 4-cresol dehydrogenase (hydroxylating)
Systematic name: 4-methylphenol:oxidized azurin oxidoreductase (methyl-hydroxylating)
Comments: This bacterial enzyme contains a flavin (FAD) subunit and a cytochrome c subunit. The flavin subunit abstracts two hydrogen atoms from the substrate, forming a quinone methide intermediate, then hydrates the latter at the benzylic carbon with a hydroxyl group derived from water. The protons are lost to the bulk solvent, while the electrons are passed to the heme on the cytochrome subunit, and from there to azurin, a small copper-binding protein that is co-localized with the enzyme in the periplasm. The first hydroxylation forms 4-hydroxybenzyl alcohol; a second hydroxylation converts this into 4-hydroxybenzaldehyde.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 66772-07-4
References:
1.  Hopper, D.J. and Taylor, D.G. The purification and properties of p-cresol-(acceptor) oxidoreductase (hydroxylating), a flavocytochrome from Pseudomonas putida. Biochem. J. 167 (1977) 155–162. [PMID: 588247]
2.  McIntire, W., Edmondson, D.E. and Singer, T.P. 8α-O-Tyrosyl-FAD: a new form of covalently bound flavin from p-cresol methylhydroxylase. J. Biol. Chem. 255 (1980) 6553–6555. [PMID: 7391034]
3.  Hopper, D.J., Jones, M.R. and Causer, M.J. Periplasmic location of p-cresol methylhydroxylase in Pseudomonas putida. FEBS Lett. 182 (1985) 485–488. [PMID: 3920077]
4.  Bossert, I.D., Whited, G., Gibson, D.T. and Young, L.Y. Anaerobic oxidation of p-cresol mediated by a partially purified methylhydroxylase from a denitrifying bacterium. J. Bacteriol. 171 (1989) 2956–2962. [DOI] [PMID: 2722739]
5.  Reeve, C.D., Carver, M.A. and Hopper, D.J. Stereochemical aspects of the oxidation of 4-ethylphenol by the bacterial enzyme 4-ethylphenol methylenehydroxylase. Biochem. J. 269 (1990) 815–819. [PMID: 1697166]
6.  Peters, F., Heintz, D., Johannes, J., van Dorsselaer, A. and Boll, M. Genes, enzymes, and regulation of para-cresol metabolism in Geobacter metallireducens. J. Bacteriol. 189 (2007) 4729–4738. [PMID: 17449613]
7.  Johannes, J., Bluschke, A., Jehmlich, N., von Bergen, M. and Boll, M. Purification and characterization of active-site components of the putative p-cresol methylhydroxylase membrane complex from Geobacter metallireducens. J. Bacteriol. 190 (2008) 6493–6500. [PMID: 18658262]
[EC 1.17.9.1 created 1983 as EC 1.17.99.1, modified 2001, modified 2011, modified 2015, transferred 2018 to EC 1.17.9.1]
 
 
EC 1.17.99.1      
Transferred entry: 4-methylphenol dehydrogenase (hydroxylating). Now EC 1.17.9.1, 4-methylphenol dehydrogenase (hydroxylating)
[EC 1.17.99.1 created 1983, modified 2001, modified 2011, modified 2015, deleted 2018]
 
 
EC 2.4.2.55     
Accepted name: nicotinate D-ribonucleotide:phenol phospho-D-ribosyltransferase
Reaction: nicotinate D-ribonucleotide + phenol = nicotinate + phenyl 5-phospho-α-D-ribofuranoside
Other name(s): ArsAB
Systematic name: nicotinate D-ribonucleotide:phenol phospho-D-ribosyltransferase
Comments: The enzyme is involved in the biosynthesis of phenolic cobamides in the Gram-positive bacterium Sporomusa ovata. It can also transfer the phospho-D-ribosyl group to 4-methylphenol and 5,6-dimethylbenzimidazole. The related EC 2.4.2.21, nicotinate-nucleotide dimethylbenzimidazole phosphoribosyltransferase, also transfers the phospho-D-ribosyl group from nicotinate D-ribonucleotide to 5,6-dimethylbenzimidazole, but shows no activity with 4-methylphenol or phenol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Chan, C.H. and Escalante-Semerena, J.C. ArsAB, a novel enzyme from Sporomusa ovata activates phenolic bases for adenosylcobamide biosynthesis. Mol. Microbiol. 81 (2011) 952–967. [DOI] [PMID: 21696461]
[EC 2.4.2.55 created 2013]
 
 
EC 2.5.1.77      
Transferred entry: 7,8-didemethyl-8-hydroxy-5-deazariboflavin synthase. Now EC 2.5.1.147, 5-amino-6-(D-ribitylamino)uracil—L-tyrosine 4-methylphenol transferase and EC 4.3.1.32, 7,8-didemethyl-8-hydroxy-5-deazariboflavin synthase.
[EC 2.5.1.77 created 2010, deleted 2018]
 
 
EC 4.1.1.83     
Accepted name: 4-hydroxyphenylacetate decarboxylase
Reaction: (4-hydroxyphenyl)acetate + H+ = 4-methylphenol + CO2
Other name(s): p-hydroxyphenylacetate decarboxylase; p-Hpd; 4-Hpd; 4-hydroxyphenylacetate carboxy-lyase
Systematic name: (4-hydroxyphenyl)acetate carboxy-lyase (4-methylphenol-forming)
Comments: The enzyme, from the strict anaerobe Clostridium difficile, can also use (3,4-dihydroxyphenyl)acetate as a substrate, yielding 4-methylcatechol as a product. The enzyme is a glycyl radical enzyme.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 340137-18-0
References:
1.  D'Ari, L. and Barker, H.A. p-Cresol formation by cell-free extracts of Clostridium difficile. Arch. Microbiol. 143 (1985) 311–312. [PMID: 3938267]
2.  Selmer, T. and Andrei, P.I. p-Hydroxyphenylacetate decarboxylase from Clostridium difficile. A novel glycyl radical enzyme catalysing the formation of p-cresol. Eur. J. Biochem. 268 (2001) 1363–1372. [DOI] [PMID: 11231288]
3.  Andrei, P.I., Pierik, A.J., Zauner, S., Andrei-Selmer, L.C. and Selmer, T. Subunit composition of the glycyl radical enzyme p-hydroxyphenylacetate decarboxylase. A small subunit, HpdC, is essential for catalytic activity. Eur. J. Biochem. 271 (2004) 2225–2230. [DOI] [PMID: 15153112]
[EC 4.1.1.83 created 2005]
 
 
EC 4.1.99.19     
Accepted name: 2-iminoacetate synthase
Reaction: L-tyrosine + S-adenosyl-L-methionine + NADPH = 2-iminoacetate + 4-methylphenol + 5′-deoxyadenosine + L-methionine + NADP+ + H+
For diagram of thiamine diphosphate biosynthesis, click here
Glossary: 4-methylphenol = 4-cresol = p-cresol
Other name(s): thiH (gene name)
Systematic name: L-tyrosine 4-methylphenol-lyase (2-iminoacetate-forming)
Comments: Binds a [4Fe-4S] cluster that is coordinated by 3 cysteines and an exchangeable S-adenosyl-L-methionine molecule. The first stage of catalysis is reduction of the S-adenosyl-L-methionine to produce methionine and a 5-deoxyadenosin-5-yl radical that is crucial for the conversion of the substrate. The reductant is assumed to be NADPH, which is provided by a flavoprotein:NADPH oxidoreductase system [4]. Part of the pathway for thiamine biosynthesis.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Leonardi, R., Fairhurst, S.A., Kriek, M., Lowe, D.J. and Roach, P.L. Thiamine biosynthesis in Escherichia coli: isolation and initial characterisation of the ThiGH complex. FEBS Lett. 539 (2003) 95–99. [DOI] [PMID: 12650933]
2.  Kriek, M., Martins, F., Challand, M.R., Croft, A. and Roach, P.L. Thiamine biosynthesis in Escherichia coli: identification of the intermediate and by-product derived from tyrosine. Angew. Chem. Int. Ed. Engl. 46 (2007) 9223–9226. [DOI] [PMID: 17969213]
3.  Kriek, M., Martins, F., Leonardi, R., Fairhurst, S.A., Lowe, D.J. and Roach, P.L. Thiazole synthase from Escherichia coli: an investigation of the substrates and purified proteins required for activity in vitro. J. Biol. Chem. 282 (2007) 17413–17423. [DOI] [PMID: 17403671]
4.  Challand, M.R., Martins, F.T. and Roach, P.L. Catalytic activity of the anaerobic tyrosine lyase required for thiamine biosynthesis in Escherichia coli. J. Biol. Chem. 285 (2010) 5240–5248. [DOI] [PMID: 19923213]
[EC 4.1.99.19 created 2011, modified 2014]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald