The Enzyme Database

Your query returned 5 entries.    printer_iconPrintable version



EC 1.2.1.70     
Accepted name: glutamyl-tRNA reductase
Reaction: L-glutamate 1-semialdehyde + NADP+ + tRNAGlu = L-glutamyl-tRNAGlu + NADPH + H+
For diagram of the early stages of porphyrin biosynthesis, click here
Systematic name: L-glutamate-semialdehyde:NADP+ oxidoreductase (L-glutamyl-tRNAGlu-forming)
Comments: This enzyme forms part of the pathway for the biosynthesis of 5-aminolevulinate from glutamate, known as the C5 pathway. The route shown in the diagram is used in most eubacteria, and in all archaebacteria, algae and plants. However, in the α-proteobacteria, EC 2.3.1.37, 5-aminolevulinate synthase, is used in an alternative route to produce the product 5-aminolevulinate from succinyl-CoA and glycine. This route is found in the mitochondria of fungi and animals, organelles that are considered to be derived from an endosymbiotic α-proteobacterium. Although higher plants do not possess EC 2.3.1.37, the protistan Euglena gracilis possesses both the C5 pathway and EC 2.3.1.37.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 119940-26-0
References:
1.  von Wettstein, D., Gough, S. and Kannangara, C.G. Chlorophyll biosynthesis. Plant Cell 7 (1995) 1039–1057. [DOI] [PMID: 12242396]
2.  Pontoppidan, B. and Kannangara, C.G. Purification and partial characterisation of barley glutamyl-tRNAGlu reductase, the enzyme that directs glutamate to chlorophyll biosynthesis. Eur. J. Biochem. 225 (1994) 529–537. [DOI] [PMID: 7957167]
3.  Schauer, S., Chaturvedi, S., Randau, L., Moser, J., Kitabatake, M., Lorenz, S., Verkamp, E., Schubert, W.D., Nakayashiki, T., Murai, M., Wall, K., Thomann, H.-U., Heinz, D.W., Inokuchi, H, Söll, D. and Jahn, D. Escherichia coli glutamyl-tRNA reductase. Trapping the thioester intermediate. J. Biol. Chem. 277 (2002) 48657–48663. [DOI] [PMID: 12370189]
[EC 1.2.1.70 created 2004]
 
 
EC 2.3.1.37     
Accepted name: 5-aminolevulinate synthase
Reaction: succinyl-CoA + glycine = 5-aminolevulinate + CoA + CO2
For diagram of the early stages of porphyrin biosynthesis, click here
Other name(s): ALAS; ALA synthase; α-aminolevulinic acid synthase; δ-aminolevulinate synthase; δ-aminolevulinate synthetase; δ-aminolevulinic acid synthase; δ-aminolevulinic acid synthetase; δ-aminolevulinic synthetase; 5-aminolevulinate synthetase; 5-aminolevulinic acid synthetase; ALA synthetase; aminolevulinate synthase; aminolevulinate synthetase; aminolevulinic acid synthase; aminolevulinic acid synthetase; aminolevulinic synthetase
Systematic name: succinyl-CoA:glycine C-succinyltransferase (decarboxylating)
Comments: A pyridoxal-phosphate protein. The enzyme in erythrocytes is genetically distinct from that in other tissues.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9037-14-3
References:
1.  Bishop, D.F., Henderson, A.S. and Astrin, K.H. Human δ-aminolevulinate synthase - assignment of the housekeeping gene to 3p21 and the erythroid-specific gene to the X-chromosome. Genomics 7 (1990) 207–214. [PMID: 2347585]
2.  Kikuchi, G., Kumar, A., Talmage, P. and Shemin, D. The enzymatic synthesis of δ-aminolevulinic acid. J. Biol. Chem. 233 (1958) 1214–1219. [PMID: 13598764]
3.  Ramaswamy, N.K. and Nair, P.M. δ-Aminolevulinic acid synthetase from cold-stored potatoes. Biochim. Biophys. Acta 293 (1973) 269–277. [PMID: 4685279]
4.  Scholnick, P.L., Hammaker, L.E. and Marver, H.S. Soluble δ-aminolevulinic acid synthetase of rat liver. I. Some properties of the partially purified enzyme. J. Biol. Chem. 247 (1972) 4126–4131. [PMID: 4624703]
5.  Scholnick, P.L., Hammaker, L.E. and Marver, H.S. Soluble δ-aminolevulinic acid synthetase of rat liver. II. Studies related to the mechanism of enzyme action and hemin inhibition. J. Biol. Chem. 247 (1972) 4132–4137. [PMID: 5035685]
6.  Tait, G.H. Aminolaevulinate synthetase of Micrococcus denitrificans. Purification and properties of the enzyme, and the effect of growth conditions on the enzyme activity in cells. Biochem. J. 131 (1973) 389–403. [PMID: 4722442]
7.  Warnick, G.R. and Burnham, B.F. Regulation of porphyrin biosynthesis. Purification and characterization of δ-aminolevulinic acid synthase. J. Biol. Chem. 246 (1971) 6880–6885. [PMID: 5315997]
[EC 2.3.1.37 created 1972]
 
 
EC 2.6.1.43     
Accepted name: aminolevulinate transaminase
Reaction: 5-aminolevulinate + pyruvate = 4,5-dioxopentanoate + L-alanine
Other name(s): aminolevulinate aminotransferase; γ,δ-dioxovalerate aminotransferase; γ,δ-dioxovaleric acid transaminase; 4,5-dioxovalerate aminotransferase; 4,5-dioxovaleric acid transaminase; 4,5-dioxovaleric transaminase; 5-aminolevulinic acid transaminase; alanine-γ,δ-dioxovalerate aminotransferase; alanine-dioxovalerate aminotransferase; alanine:4,5-dioxovalerate aminotransferase; aminolevulinic acid transaminase; dioxovalerate transaminase; L-alanine-4,5-dioxovalerate aminotransferase; L-alanine:4,5-dioxovaleric acid transaminase; L-alanine:dioxovalerate transaminase; DOVA transaminase; 4,5-dioxovaleric acid aminotransferase
Systematic name: 5-aminolevulinate:pyruvate aminotransferase
Comments: A pyridoxal-phosphate protein.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9012-46-8
References:
1.  Gibson, K.D., Matthew, M. and Neuberger, A. Biosynthesis of porphyrins and chlorophylls. Nature 192 (1961) 204–208. [PMID: 13898421]
2.  Neuberger, A. and Turner, J.M. -Dioxovalerate aminotransferase activity in Rhodopseudomonas spheroides. Biochim. Biophys. Acta 67 (1963) 342–345. [PMID: 13938132]
[EC 2.6.1.43 created 1972]
 
 
EC 4.2.1.24     
Accepted name: porphobilinogen synthase
Reaction: 2 5-aminolevulinate = porphobilinogen + 2 H2O
For diagram of porphyrin biosynthesis (early stages), click here
Glossary: 5-aminolevulinate = δ-aminolevulinate
Other name(s): aminolevulinate dehydratase; δ-aminolevulinate dehydratase; δ-aminolevulinic acid dehydrase; δ-aminolevulinic acid dehydratase; aminolevulinic dehydratase; δ-aminolevulinic dehydratase; 5-levulinic acid dehydratase; 5-aminolevulinate hydro-lyase (adding 5-aminolevulinate and cyclizing); hemB (gene name)
Systematic name: 5-aminolevulinate hydro-lyase (adding 5-aminolevulinate and cyclizing; porphobilinogen-forming)
Comments: The enzyme catalyses the asymmetric condensation and cyclization of two 5-aminolevulinate molecules, which is the first common step in the biosynthesis of tetrapyrrole pigments such as porphyrin, chlorophyll, vitamin B12, siroheme, phycobilin, and cofactor F430. The enzyme is widespread, being essential in organisms that carry out respiration, photosynthesis, or methanogenesis. The enzymes from most organisms utilize metal ions (Zn2+, Mg2+, K+, and Na+) as cofactors that reside at multiple sites, including the active site and allosteric sites. Enzymes from archaea, yeast, and metazoa (including human) contain Zn2+ at the active site. In humans, the enzyme is a primary target for the environmental toxin Pb. The enzymes from some organisms utilize a dynamic equilibrium between architecturally distinct multimeric assemblies as a means for allosteric regulation.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9036-37-7
References:
1.  Gibson, K.D., Neuberger, A. and Scott, J.J. The purification and properties of δ-aminolaevulic acid dehydrase. Biochem. J. 61 (1955) 618–629. [PMID: 13276347]
2.  Komai, H. and Neilands, J.B. The metalloprotein nature of Ustilago δ-aminolevulinate dehydratase. Biochim. Biophys. Acta 171 (1969) 311–320. [DOI] [PMID: 5773436]
3.  Yamasaki, H. and Moriyama, T. δ-Aminolevulinic acid dehydratase of Mycobacterium phlei. Biochim. Biophys. Acta 227 (1971) 698–705. [DOI] [PMID: 4998716]
4.  Mitchell, L.W. and Jaffe, E.K. Porphobilinogen synthase from Escherichia coli is a Zn(II) metalloenzyme stimulated by Mg(II). Arch. Biochem. Biophys. 300 (1993) 169–177. [DOI] [PMID: 8424649]
5.  Jaffe, E.K., Ali, S., Mitchell, L.W., Taylor, K.M., Volin, M. and Markham, G.D. Characterization of the role of the stimulatory magnesium of Escherichia coli porphobilinogen synthase. Biochemistry 34 (1995) 244–251. [PMID: 7819203]
6.  Warren, M.J., Cooper, J.B., Wood, S.P. and Shoolingin-Jordan, P.M. Lead poisoning, haem synthesis and 5-aminolaevulinic acid dehydratase. Trends Biochem. Sci. 23 (1998) 217–221. [DOI] [PMID: 9644976]
7.  Jaffe, E.K. and Lawrence, S.H. Allostery and the dynamic oligomerization of porphobilinogen synthase. Arch. Biochem. Biophys. 519 (2012) 144–153. [DOI] [PMID: 22037356]
8.  Tian, B.X., Erdtman, E. and Eriksson, L.A. Catalytic mechanism of porphobilinogen synthase: the chemical step revisited by QM/MM calculations. J. Phys. Chem. B 116 (2012) 12105–12112. [DOI] [PMID: 22974111]
[EC 4.2.1.24 created 1961]
 
 
EC 5.4.3.8     
Accepted name: glutamate-1-semialdehyde 2,1-aminomutase
Reaction: L-glutamate 1-semialdehyde = 5-aminolevulinate
For diagram of the early stages of porphyrin biosynthesis, click here and for mechanism of reaction, click here
Glossary: L-glutamate 1-semialdehyde = (S)-4-amino-5-oxopentanoate
Other name(s): glutamate-1-semialdehyde aminotransferase
Systematic name: (S)-4-amino-5-oxopentanoate 4,5-aminomutase
Comments: Requires pyridoxal phosphate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 68518-07-0
References:
1.  Gough, S.P. and Kannangara, C.G. Biosynthesis of δ-aminolevulinate in greening barley leaves: glutamate 1-semialdehyde aminotransferase. Carlsberg Res. Commun. 43 (1978) 185–194.
[EC 5.4.3.8 created 1983]
 
 


Data © 2001–2020 IUBMB
Web site © 2005–2020 Andrew McDonald