The Enzyme Database

Displaying entries 1-50 of 485.

<< Previous | Next >>    printer_iconPrintable version

EC 1.1.1.95     
Accepted name: phosphoglycerate dehydrogenase
Reaction: 3-phospho-D-glycerate + NAD+ = 3-phosphooxypyruvate + NADH + H+
For diagram of serine biosynthesis, click here
Other name(s): PHGDH (gene name); D-3-phosphoglycerate:NAD+ oxidoreductase; α-phosphoglycerate dehydrogenase; 3-phosphoglycerate dehydrogenase; 3-phosphoglyceric acid dehydrogenase; D-3-phosphoglycerate dehydrogenase; glycerate 3-phosphate dehydrogenase; glycerate-1,3-phosphate dehydrogenase; phosphoglycerate oxidoreductase; phosphoglyceric acid dehydrogenase; SerA; 3-phosphoglycerate:NAD+ 2-oxidoreductase; SerA 3PG dehydrogenase; 3PHP reductase
Systematic name: 3-phospho-D-glycerate:NAD+ 2-oxidoreductase
Comments: This enzyme catalyses the first committed and rate-limiting step in the phosphoserine pathway of serine biosynthesis. The reaction occurs predominantly in the direction of reduction. The enzyme from the bacterium Escherichia coli also catalyses the activity of EC 1.1.1.399, 2-oxoglutarate reductase [6].
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9075-29-0
References:
1.  Pizer, L.I. The pathway and control of serine biosynthesis in Escherichia coli. J. Biol. Chem. 238 (1963) 3934–3944. [PMID: 14086727]
2.  Walsh, D.A. and Sallach, H.J. Purification and properties of chicken liver D-3-phosphoglycerate dehydrogenase. Biochemistry 4 (1965) 1076–1085. [PMID: 4378782]
3.  Slaughter, J.C. and Davies, D.D. The isolation and characterization of 3-phosphoglycerate dehydrogenase from peas. Biochem. J. 109 (1968) 743–748. [PMID: 4386930]
4.  Sugimoto, E. and Pizer, L.I. The mechanism of end product inhibition of serine biosynthesis. I. Purification and kinetics of phosphoglycerate dehydrogenase. J. Biol. Chem. 243 (1968) 2081. [PMID: 4384871]
5.  Schuller, D.J., Grant, G.A. and Banaszak, L.J. The allosteric ligand site in the Vmax-type cooperative enzyme phosphoglycerate dehydrogenase. Nat. Struct. Biol. 2 (1995) 69–76. [PMID: 7719856]
6.  Zhao, G. and Winkler, M.E. A novel α-ketoglutarate reductase activity of the serA-encoded 3-phosphoglycerate dehydrogenase of Escherichia coli K-12 and its possible implications for human 2-hydroxyglutaric aciduria. J. Bacteriol. 178 (1996) 232–239. [DOI] [PMID: 8550422]
7.  Achouri, Y., Rider, M.H., Schaftingen, E.V. and Robbi, M. Cloning, sequencing and expression of rat liver 3-phosphoglycerate dehydrogenase. Biochem. J. 323 (1997) 365–370. [PMID: 9163325]
8.  Dey, S., Grant, G.A. and Sacchettini, J.C. Crystal structure of Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase: extreme asymmetry in a tetramer of identical subunits. J. Biol. Chem. 280 (2005) 14892–14899. [DOI] [PMID: 15668249]
[EC 1.1.1.95 created 1972, modified 2006, modified 2016]
 
 
EC 1.1.1.136     
Accepted name: UDP-N-acetylglucosamine 6-dehydrogenase
Reaction: UDP-N-acetyl-α-D-glucosamine + 2 NAD+ + H2O = UDP-2-acetamido-2-deoxy-α-D-glucuronate + 2 NADH + 2 H+
For diagram of UDP-N-acetylgalactosamine and UDP-N-acetylmannosamine biosynthesis, click here
Other name(s): uridine diphosphoacetylglucosamine dehydrogenase; UDP-acetylglucosamine dehydrogenase; UDP-2-acetamido-2-deoxy-D-glucose:NAD oxidoreductase; UDP-GlcNAc dehydrogenase; WbpA; WbpO
Systematic name: UDP-N-acetyl-α-D-glucosamine:NAD+ 6-oxidoreductase
Comments: This enzyme participates in the biosynthetic pathway for UDP-α-D-ManNAc3NAcA (UDP-2,3-diacetamido-2,3-dideoxy-α-D-mannuronic acid), an important precursor of B-band lipopolysaccharide.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9054-83-5
References:
1.  Fan, D.-F., John, C.E., Zalitis, J. and Feingold, D.S. UDPacetylglucosamine dehydrogenase from Achromobacter georgiopolitanum. Arch. Biochem. Biophys. 135 (1969) 45–49. [DOI] [PMID: 4312076]
2.  Miller, W.L., Wenzel, C.Q., Daniels, C., Larocque, S., Brisson, J.R. and Lam, J.S. Biochemical characterization of WbpA, a UDP-N-acetyl-D-glucosamine 6-dehydrogenase involved in O-antigen biosynthesis in Pseudomonas aeruginosa PAO1. J. Biol. Chem. 279 (2004) 37551–37558. [DOI] [PMID: 15226302]
[EC 1.1.1.136 created 1972, modified 2012]
 
 
EC 1.1.1.170     
Accepted name: 3β-hydroxysteroid-4α-carboxylate 3-dehydrogenase (decarboxylating)
Reaction: a 3β-hydroxysteroid-4α-carboxylate + NAD(P)+ = a 3-oxosteroid + CO2 + NAD(P)H
For diagram of sterol ring A modification, click here
Other name(s): 3β-hydroxy-4β-methylcholestenecarboxylate 3-dehydrogenase (decarboxylating); 3β-hydroxy-4β-methylcholestenoate dehydrogenase; sterol 4α-carboxylic decarboxylase; sterol-4α-carboxylate 3-dehydrogenase (decarboxylating) (ambiguous); ERG26 (gene name); NSDHL (gene name)
Systematic name: 3β-hydroxysteroid-4α-carboxylate:NAD(P)+ 3-oxidoreductase (decarboxylating)
Comments: The enzyme participates in the biosynthesis of several important sterols such as ergosterol and cholesterol. It is part of a three enzyme system that removes methyl groups from the C-4 position of steroid molecules. The first enzyme, EC 1.14.18.9, 4α-methylsterol monooxygenase, catalyses three successive oxidations of the methyl group, resulting in a carboxyl group; the second enzyme, EC 1.1.1.170, catalyses an oxidative decarboxylation that results in a reduction of the 3β-hydroxy group at the C-3 carbon to an oxo group; and the last enzyme, EC 1.1.1.270, 3β-hydroxysteroid 3-dehydrogenase, reduces the 3-oxo group back to a 3β-hydroxyl. If a second methyl group remains at the C-4 position, this enzyme also catalyses its epimerization from 4β to 4α orientation, so it could serve as a substrate for a second round of demethylation. cf. EC 1.1.1.418, plant 3β-hydroxysteroid-4α-carboxylate 3-dehydrogenase (decarboxylating).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 71822-23-6
References:
1.  Sharpless, K.B., Snyder, T.E., Spencer, T.A., Maheshwari, K.K. and Nelson, J.A. Biological demethylation of 4,4-dimethyl sterols, Evidence for enzymic epimerization of the 4β-methyl group prior to its oxidative removal. J. Am. Chem. Soc. 91 (1969) 3394–3396. [PMID: 5791927]
2.  Rahimtula, A.D. and Gaylor, J.L. Partial purification of a microsomal sterol 4α-carboxylic acid decarboxylase. J. Biol. Chem. 247 (1972) 9–15. [PMID: 4401584]
3.  Brady, D.R., Crowder, R.D. and Hayes, W.J. Mixed function oxidases in sterol metabolism. Source of reducing equivalents. J. Biol. Chem. 255 (1980) 10624–10629. [PMID: 7430141]
4.  Gachotte, D., Barbuch, R., Gaylor, J., Nickel, E. and Bard, M. Characterization of the Saccharomyces cerevisiae ERG26 gene encoding the C-3 sterol dehydrogenase (C-4 decarboxylase) involved in sterol biosynthesis. Proc. Natl. Acad. Sci. USA 95 (1998) 13794–13799. [DOI] [PMID: 9811880]
5.  Caldas, H. and Herman, G.E. NSDHL, an enzyme involved in cholesterol biosynthesis, traffics through the Golgi and accumulates on ER membranes and on the surface of lipid droplets. Hum. Mol. Genet. 12 (2003) 2981–2991. [DOI] [PMID: 14506130]
[EC 1.1.1.170 created 1978, modified 2002, modified 2012, modified 2019]
 
 
EC 1.1.1.205     
Accepted name: IMP dehydrogenase
Reaction: IMP + NAD+ + H2O = XMP + NADH + H+
For diagram of AMP and GMP biosynthesis, click here
Glossary: IMP = inosine 5′-phosphate
XMP = xanthosine 5′-phosphate
Other name(s): inosine-5′-phosphate dehydrogenase; inosinic acid dehydrogenase; inosinate dehydrogenase; inosine 5′-monophosphate dehydrogenase; inosine monophosphate dehydrogenase; IMP oxidoreductase; inosine monophosphate oxidoreductase
Systematic name: IMP:NAD+ oxidoreductase
Comments: The enzyme acts on the hydroxy group of the hydrated derivative of the substrate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-93-7
References:
1.  Magasanik, B., Moyed, H.S. and Gehring, L.B. Enzymes essential for the biosynthesis of nucleic acid guanine; inosine 5′-phosphate dehydrogenase of Aerobacter aerogenes. J. Biol. Chem. 226 (1957) 339–350. [PMID: 13428767]
2.  Turner, J.F. and King, J.E. Inosine 5-phosphate dehydrogenase of pea seeds. Biochem. J. 79 (1961) 147. [PMID: 13778733]
[EC 1.1.1.205 created 1961 as EC 1.2.1.14, transferred 1984 to EC 1.1.1.205]
 
 
EC 1.1.1.260     
Accepted name: sulcatone reductase
Reaction: sulcatol + NAD+ = sulcatone + NADH + H+
Glossary: sulcatone = 6-methylhept-5-en-2-one
sulcatol = 6-methylhept-5-en-2-ol
Systematic name: sulcatol:NAD+ oxidoreductase
Comments: Studies on the effects of growth-stage and nutrient supply on the stereochemistry of sulcatone reduction in Clostridia pasteurianum, C. tyrobutyricum and Lactobacillus brevis suggest that there may be at least two sulcatone reductases with different stereospecificities.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 196522-54-0
References:
1.  Belan, A., Botle, J., Fauve, A., Gourcy, J.G. and Veschambre, H. Use of biological systems for the preparation of chiral molecules. 3. An application in pheromone synthesis: Preparation of sulcatol enantiomers. J. Org. Chem. 52 (1987) 256–260.
2.  Tidswell, E.C., Salter, G.J., Kell, D.B. and Morris, J.G. Enantioselectivity of sulcatone reduction by some anaerobic bacteria. Enzyme Microb. Technol. 21 (1997) 143–147.
3.  Tidswell, E.C., Thompson, A.N. and Morris, J.G. Selection in chemostat culture of a mutant strain of Clostridium tryobutyricum improved in its reduction of ketones. J. Appl. Microbiol. Biotechnol. 35 (1991) 317–322.
[EC 1.1.1.260 created 2000, modified 2001]
 
 
EC 1.1.1.290     
Accepted name: 4-phosphoerythronate dehydrogenase
Reaction: 4-phospho-D-erythronate + NAD+ = (3R)-3-hydroxy-2-oxo-4-phosphooxybutanoate + NADH + H+
For diagram of pyridoxal biosynthesis, click here
Other name(s): PdxB; PdxB 4PE dehydrogenase; 4-O-phosphoerythronate dehydrogenase; 4PE dehydrogenase; erythronate-4-phosphate dehydrogenase
Systematic name: 4-phospho-D-erythronate:NAD+ 2-oxidoreductase
Comments: This enzyme catalyses a step in a bacterial pathway for the biosynthesis of pyridoxal 5′-phosphate. The enzyme contains a tightly-bound NAD(H) cofactor that is not re-oxidized by free NAD+. In order to re-oxidize the cofactor and restore enzyme activity, the enzyme catalyses the reduction of a 2-oxo acid (such as 2-oxoglutarate, oxaloacetate, or pyruvate) to the respective (R)-hydroxy acid [6]. cf. EC 1.1.1.399, 2-oxoglutarate reductase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 125858-75-5
References:
1.  Lam, H.M. and Winkler, M.E. Metabolic relationships between pyridoxine (vitamin B6) and serine biosynthesis in Escherichia coli K-12. J. Bacteriol. 172 (1990) 6518–6528. [DOI] [PMID: 2121717]
2.  Pease, A.J., Roa, B.R., Luo, W. and Winkler, M.E. Positive growth rate-dependent regulation of the pdxA, ksgA, and pdxB genes of Escherichia coli K-12. J. Bacteriol. 184 (2002) 1359–1369. [DOI] [PMID: 11844765]
3.  Zhao, G. and Winkler, M.E. A novel α-ketoglutarate reductase activity of the serA-encoded 3-phosphoglycerate dehydrogenase of Escherichia coli K-12 and its possible implications for human 2-hydroxyglutaric aciduria. J. Bacteriol. 178 (1996) 232–239. [DOI] [PMID: 8550422]
4.  Grant, G.A. A new family of 2-hydroxyacid dehydrogenases. Biochem. Biophys. Res. Commun. 165 (1989) 1371–1374. [DOI] [PMID: 2692566]
5.  Schoenlein, P.V., Roa, B.B. and Winkler, M.E. Divergent transcription of pdxB and homology between the pdxB and serA gene products in Escherichia coli K-12. J. Bacteriol. 171 (1989) 6084–6092. [DOI] [PMID: 2681152]
6.  Rudolph, J., Kim, J. and Copley, S.D. Multiple turnovers of the nicotino-enzyme PdxB require α-keto acids as cosubstrates. Biochemistry 49 (2010) 9249–9255. [DOI] [PMID: 20831184]
[EC 1.1.1.290 created 2006, modified 2016]
 
 
EC 1.1.1.305     
Accepted name: UDP-glucuronic acid dehydrogenase (UDP-4-keto-hexauronic acid decarboxylating)
Reaction: UDP-α-D-glucuronate + NAD+ = UDP-β-L-threo-pentapyranos-4-ulose + CO2 + NADH + H+
For diagram of UDP-4-amino-4-deoxy-β-L-arabinose biosynthesis, click here
Other name(s): UDP-GlcUA decarboxylase; ArnADH; UDP-glucuronate:NAD+ oxidoreductase (decarboxylating)
Systematic name: UDP-α-D-glucuronate:NAD+ oxidoreductase (decarboxylating)
Comments: The activity is part of a bifunctional enzyme also performing the reaction of EC 2.1.2.13 (UDP-4-amino-4-deoxy-L-arabinose formyltransferase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Breazeale, S.D., Ribeiro, A.A., McClerren, A.L. and Raetz, C.R.H. A formyltransferase required for polymyxin resistance in Escherichia coli and the modification of lipid A with 4-amino-4-deoxy-L-arabinose. Identification and function of UDP-4-deoxy-4-formamido-L-arabinose. J. Biol. Chem. 280 (2005) 14154–14167. [DOI] [PMID: 15695810]
2.  Gatzeva-Topalova, P.Z., May, A.P. and Sousa, M.C. Crystal structure of Escherichia coli ArnA (PmrI) decarboxylase domain. A key enzyme for lipid A modification with 4-amino-4-deoxy-L-arabinose and polymyxin resistance. Biochemistry 43 (2004) 13370–13379. [DOI] [PMID: 15491143]
3.  Williams, G.J., Breazeale, S.D., Raetz, C.R.H. and Naismith, J.H. Structure and function of both domains of ArnA, a dual function decarboxylase and a formyltransferase, involved in 4-amino-4-deoxy-L-arabinose biosynthesis. J. Biol. Chem. 280 (2005) 23000–23008. [DOI] [PMID: 15809294]
4.  Gatzeva-Topalova, P.Z., May, A.P. and Sousa, M.C. Structure and mechanism of ArnA: conformational change implies ordered dehydrogenase mechanism in key enzyme for polymyxin resistance. Structure 13 (2005) 929–942. [DOI] [PMID: 15939024]
5.  Yan, A., Guan, Z. and Raetz, C.R.H. An undecaprenyl phosphate-aminoarabinose flippase required for polymyxin resistance in Escherichia coli. J. Biol. Chem. 282 (2007) 36077–36089. [DOI] [PMID: 17928292]
[EC 1.1.1.305 created 2010]
 
 
EC 1.1.1.318     
Accepted name: eugenol synthase
Reaction: eugenol + a carboxylate + NADP+ = a coniferyl ester + NADPH + H+
Other name(s): LtCES1; EGS1; EGS2
Systematic name: eugenol:NADP+ oxidoreductase (coniferyl ester reducing)
Comments: The enzyme acts in the opposite direction. The enzymes from the plants Ocimum basilicum (sweet basil) [1,3], Clarkia breweri and Petunia hybrida [4] only accept coniferyl acetate and form eugenol. The enzyme from Pimpinella anisum (anise) forms anol (from 4-coumaryl acetate) in vivo, although the recombinant enzyme can form eugenol from coniferyl acetate [5]. The enzyme from Larrea tridentata (creosote bush) also forms chavicol from a coumaryl ester and can use NADH [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Koeduka, T., Fridman, E., Gang, D.R., Vassão, D.G., Jackson, B.L., Kish, C.M., Orlova, I., Spassova, S.M., Lewis, N.G., Noel, J.P., Baiga, T.J., Dudareva, N. and Pichersky, E. Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester. Proc. Natl. Acad. Sci. USA 103 (2006) 10128–10133. [DOI] [PMID: 16782809]
2.  Vassão, D.G., Kim, S.J., Milhollan, J.K., Eichinger, D., Davin, L.B. and Lewis, N.G. A pinoresinol-lariciresinol reductase homologue from the creosote bush (Larrea tridentata) catalyzes the efficient in vitro conversion of p-coumaryl/coniferyl alcohol esters into the allylphenols chavicol/eugenol, but not the propenylphenols p-anol/isoeugenol. Arch. Biochem. Biophys. 465 (2007) 209–218. [DOI] [PMID: 17624297]
3.  Louie, G.V., Baiga, T.J., Bowman, M.E., Koeduka, T., Taylor, J.H., Spassova, S.M., Pichersky, E. and Noel, J.P. Structure and reaction mechanism of basil eugenol synthase. PLoS One 2 (2007) e993. [DOI] [PMID: 17912370]
4.  Koeduka, T., Louie, G.V., Orlova, I., Kish, C.M., Ibdah, M., Wilkerson, C.G., Bowman, M.E., Baiga, T.J., Noel, J.P., Dudareva, N. and Pichersky, E. The multiple phenylpropene synthases in both Clarkia breweri and Petunia hybrida represent two distinct protein lineages. Plant J. 54 (2008) 362–374. [DOI] [PMID: 18208524]
5.  Koeduka, T., Baiga, T.J., Noel, J.P. and Pichersky, E. Biosynthesis of t-anethole in anise: characterization of t-anol/isoeugenol synthase and an O-methyltransferase specific for a C7-C8 propenyl side chain. Plant Physiol. 149 (2009) 384–394. [DOI] [PMID: 18987218]
[EC 1.1.1.318 created 2012]
 
 
EC 1.1.1.319     
Accepted name: isoeugenol synthase
Reaction: isoeugenol + acetate + NADP+ = coniferyl acetate + NADPH + H+
Other name(s): IGS1; t-anol/isoeugenol synthase 1
Systematic name: eugenol:NADP+ oxidoreductase (coniferyl acetate reducing)
Comments: The enzyme acts in the opposite direction. In Ocimum basilicum (sweet basil), Clarkia breweri and Petunia hybrida only isoeugenol is formed [1,2]. However in Pimpinella anisum (anise) only anol is formed in vivo, although the cloned enzyme does produce isoeugenol [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Koeduka, T., Fridman, E., Gang, D.R., Vassão, D.G., Jackson, B.L., Kish, C.M., Orlova, I., Spassova, S.M., Lewis, N.G., Noel, J.P., Baiga, T.J., Dudareva, N. and Pichersky, E. Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester. Proc. Natl. Acad. Sci. USA 103 (2006) 10128–10133. [DOI] [PMID: 16782809]
2.  Koeduka, T., Louie, G.V., Orlova, I., Kish, C.M., Ibdah, M., Wilkerson, C.G., Bowman, M.E., Baiga, T.J., Noel, J.P., Dudareva, N. and Pichersky, E. The multiple phenylpropene synthases in both Clarkia breweri and Petunia hybrida represent two distinct protein lineages. Plant J. 54 (2008) 362–374. [DOI] [PMID: 18208524]
3.  Koeduka, T., Baiga, T.J., Noel, J.P. and Pichersky, E. Biosynthesis of t-anethole in anise: characterization of t-anol/isoeugenol synthase and an O-methyltransferase specific for a C7-C8 propenyl side chain. Plant Physiol. 149 (2009) 384–394. [DOI] [PMID: 18987218]
[EC 1.1.1.319 created 2012]
 
 
EC 1.1.1.329     
Accepted name: 2-deoxy-scyllo-inosamine dehydrogenase
Reaction: 2-deoxy-scyllo-inosamine + NAD(P)+ = 3-amino-2,3-dideoxy-scyllo-inosose + NAD(P)H + H+
For diagram of paromamine biosynthesis, click here
Glossary: 2-deoxy-scyllo-inosamine = (1R,2S,3S,4R,5S)-5-aminocyclohexane-1,2,3,4-tetrol
Other name(s): neoA (gene name); kanK (gene name, ambiguous); kanE (gene name, ambiguous)
Systematic name: 2-deoxy-scyllo-inosamine:NAD(P)+ 1-oxidoreductase
Comments: Requires zinc. Involved in the biosynthetic pathways of several clinically important aminocyclitol antibiotics, including kanamycin, neomycin and ribostamycin. cf. EC 1.1.99.38, 2-deoxy-scyllo-inosamine dehydrogenase (AdoMet-dependent).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kudo, F., Yamamoto, Y., Yokoyama, K., Eguchi, T. and Kakinuma, K. Biosynthesis of 2-deoxystreptamine by three crucial enzymes in Streptomyces fradiae NBRC 12773. J. Antibiot. (Tokyo) 58 (2005) 766–774. [DOI] [PMID: 16506694]
2.  Nepal, K.K., Oh, T.J. and Sohng, J.K. Heterologous production of paromamine in Streptomyces lividans TK24 using kanamycin biosynthetic genes from Streptomyces kanamyceticus ATCC12853. Mol. Cells 27 (2009) 601–608. [DOI] [PMID: 19466609]
[EC 1.1.1.329 created 2012]
 
 
EC 1.1.1.331     
Accepted name: secoisolariciresinol dehydrogenase
Reaction: (–)-secoisolariciresinol + 2 NAD+ = (–)-matairesinol + 2 NADH + 2 H+
For diagram of matairesinol biosynthesis, click here
Systematic name: (–)-secoisolariciresinol:NAD+ oxidoreductase
Comments: Isolated from the plants Forsythia intermedia [1] and Podophyllum peltatum [1-3]. An intermediate lactol is detected in vitro.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Xia, Z.Q., Costa, M.A., Pelissier, H.C., Davin, L.B. and Lewis, N.G. Secoisolariciresinol dehydrogenase purification, cloning, and functional expression. Implications for human health protection. J. Biol. Chem. 276 (2001) 12614–12623. [DOI] [PMID: 11278426]
2.  Youn, B., Moinuddin, S.G., Davin, L.B., Lewis, N.G. and Kang, C. Crystal structures of apo-form and binary/ternary complexes of Podophyllum secoisolariciresinol dehydrogenase, an enzyme involved in formation of health-protecting and plant defense lignans. J. Biol. Chem. 280 (2005) 12917–12926. [DOI] [PMID: 15653677]
3.  Moinuddin, S.G., Youn, B., Bedgar, D.L., Costa, M.A., Helms, G.L., Kang, C., Davin, L.B. and Lewis, N.G. Secoisolariciresinol dehydrogenase: mode of catalysis and stereospecificity of hydride transfer in Podophyllum peltatum. Org. Biomol. Chem. 4 (2006) 808–816. [DOI] [PMID: 16493463]
[EC 1.1.1.331 created 2012]
 
 
EC 1.1.1.335     
Accepted name: UDP-N-acetyl-2-amino-2-deoxyglucuronate dehydrogenase
Reaction: UDP-N-acetyl-2-amino-2-deoxy-α-D-glucuronate + NAD+ = UDP-2-acetamido-2-deoxy-α-D-ribo-hex-3-uluronate + NADH + H+
For diagram of UDP-2,3-diacetamido-2,3-dideoxy-D-mannuronate biosynthesis, click here
Other name(s): WlbA; WbpB
Systematic name: UDP-N-acetyl-2-amino-2-deoxy-α-D-glucuronate:NAD+ 3-oxidoreductase
Comments: This enzyme participates in the biosynthetic pathway for UDP-α-D-ManNAc3NAcA (UDP-2,3-diacetamido-2,3-dideoxy-α-D-mannuronic acid), an important precursor of B-band lipopolysaccharide. The enzymes from Pseudomonas aeruginosa serotype O5 and Thermus thermophilus form a complex with the the enzyme catalysing the next step the pathway (EC 2.6.1.98, UDP-2-acetamido-2-deoxy-ribo-hexuluronate aminotransferase). The enzyme also possesses an EC 1.1.99.2 (L-2-hydroxyglutarate dehydrogenase) activity, and utilizes the 2-oxoglutarate produced by EC 2.6.1.98 to regenerate the tightly bound NAD+. The enzymes from Bordetella pertussis and Chromobacterium violaceum do not bind NAD+ as tightly and do not require 2-oxoglutarate to function.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Westman, E.L., McNally, D.J., Charchoglyan, A., Brewer, D., Field, R.A. and Lam, J.S. Characterization of WbpB, WbpE, and WbpD and reconstitution of a pathway for the biosynthesis of UDP-2,3-diacetamido-2,3-dideoxy-D-mannuronic acid in Pseudomonas aeruginosa. J. Biol. Chem. 284 (2009) 11854–11862. [DOI] [PMID: 19282284]
2.  Larkin, A. and Imperiali, B. Biosynthesis of UDP-GlcNAc(3NAc)A by WbpB, WbpE, and WbpD: enzymes in the Wbp pathway responsible for O-antigen assembly in Pseudomonas aeruginosa PAO1. Biochemistry 48 (2009) 5446–5455. [DOI] [PMID: 19348502]
3.  Thoden, J.B. and Holden, H.M. Structural and functional studies of WlbA: A dehydrogenase involved in the biosynthesis of 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid. Biochemistry 49 (2010) 7939–7948. [DOI] [PMID: 20690587]
4.  Thoden, J.B. and Holden, H.M. Biochemical and structural characterization of WlbA from Bordetella pertussis and Chromobacterium violaceum: enzymes required for the biosynthesis of 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid. Biochemistry 50 (2011) 1483–1491. [DOI] [PMID: 21241053]
[EC 1.1.1.335 created 2012]
 
 
EC 1.1.1.367     
Accepted name: UDP-2-acetamido-2,6-β-L-arabino-hexul-4-ose reductase
Reaction: UDP-2-acetamido-2,6-dideoxy-β-L-talose + NAD(P)+ = UDP-2-acetamido-2,6-β-L-arabino-hexul-4-ose + NAD(P)H + H+
For diagram of UDP-N-acetyl-β-L-fucosamine biosynthesis, click here
Glossary: UDP-2-acetamido-2,6-dideoxy-β-L-talose = UDP-N-acetyl-β-L-pneumosamine
Other name(s): WbjC; Cap5F
Systematic name: UDP-2-acetamido-2,6-dideoxy-L-talose:NADP+ oxidoreductase
Comments: Part of the biosynthesis of UDP-N-acetyl-L-fucosamine. Isolated from the bacteria Pseudomonas aeruginosa and Staphylococcus aureus.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kneidinger, B., O'Riordan, K., Li, J., Brisson, J.R., Lee, J.C. and Lam, J.S. Three highly conserved proteins catalyze the conversion of UDP-N-acetyl-D-glucosamine to precursors for the biosynthesis of O antigen in Pseudomonas aeruginosa O11 and capsule in Staphylococcus aureus type 5. Implications for the UDP-N-acetyl-L-fucosamine biosynthetic pathway. J. Biol. Chem. 278 (2003) 3615–3627. [DOI] [PMID: 12464616]
2.  Mulrooney, E.F., Poon, K.K., McNally, D.J., Brisson, J.R. and Lam, J.S. Biosynthesis of UDP-N-acetyl-L-fucosamine, a precursor to the biosynthesis of lipopolysaccharide in Pseudomonas aeruginosa serotype O11. J. Biol. Chem. 280 (2005) 19535–19542. [DOI] [PMID: 15778500]
3.  Miyafusa, T., Tanaka, Y., Kuroda, M., Ohta, T. and Tsumoto, K. Expression, purification, crystallization and preliminary diffraction analysis of CapF, a capsular polysaccharide-synthesis enzyme from Staphylococcus aureus. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64 (2008) 512–515. [DOI] [PMID: 18540063]
[EC 1.1.1.367 created 2014]
 
 
EC 1.1.1.386     
Accepted name: ipsdienol dehydrogenase
Reaction: (R)-ipsdienol + NAD(P)+ = ipsdienone + NAD(P)H + H+
For diagram of acyclic monoterpenoid biosynthesis, click here
Glossary: ipsdienone = 2-methyl-6-methyleneocta-2,7-dien-4-one
(R)-ipsdienol = (4R)-2-methyl-6-methyleneocta-2,7-dien-4-ol
Other name(s): IDOLDH
Systematic name: (R)-ipsdienol:NAD(P)+ oxidoreductase
Comments: The enzyme is involved in pheromone production by the pine engraver beetle, Ips pini.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Figueroa-Teran, R., Welch, W.H., Blomquist, G.J. and Tittiger, C. Ipsdienol dehydrogenase (IDOLDH): a novel oxidoreductase important for Ips pini pheromone production. Insect Biochem. Mol. Biol. 42 (2012) 81–90. [DOI] [PMID: 22101251]
[EC 1.1.1.386 created 2015]
 
 
EC 1.1.1.399     
Accepted name: 2-oxoglutarate reductase
Reaction: (R)-2-hydroxyglutarate + NAD+ = 2-oxoglutarate + NADH + H+
Other name(s): serA (gene name)
Systematic name: (R)-2-hydroxyglutarate:NAD+ 2-oxidireductase
Comments: The enzyme catalyses a reversible reaction. The enzyme from the bacterium Peptoniphilus asaccharolyticus is specific for (R)-2-hydroxyglutarate [1,2]. The SerA enzyme from the bacterium Escherichia coli can also accept (S)-2-hydroxyglutarate with a much higher Km, and also catalyses the activity of EC 1.1.1.95, phosphoglycerate dehydrogenase [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Lerud, R.F. and Whiteley, H.R. Purification and properties of α-ketoglutarate reductase from Micrococcus aerogenes. J. Bacteriol. 106 (1971) 571–577. [PMID: 4396793]
2.  Johnson, W.M. and Westlake, D.W. Purification and characterization of glutamic acid dehydrogenase and α-ketoglutaric acid reductase from Peptococcus aerogenes. Can. J. Microbiol. 18 (1972) 881–892. [PMID: 4338318]
3.  Zhao, G. and Winkler, M.E. A novel α-ketoglutarate reductase activity of the serA-encoded 3-phosphoglycerate dehydrogenase of Escherichia coli K-12 and its possible implications for human 2-hydroxyglutaric aciduria. J. Bacteriol. 178 (1996) 232–239. [DOI] [PMID: 8550422]
[EC 1.1.1.399 created 2016]
 
 
EC 1.1.1.401     
Accepted name: 2-dehydro-3-deoxy-L-rhamnonate dehydrogenase (NAD+)
Reaction: 2-dehydro-3-deoxy-L-rhamnonate + NAD+ = 2,4-didehydro-3-deoxy-L-rhamnonate + NADH + H+
For diagram of L-rhamnose metabolism, click here
Other name(s): 2-keto-3-deoxy-L-rhamnonate dehydrogenase
Systematic name: 2-dehydro-3-deoxy-L-rhamnonate:NAD+ 4-oxidoreductase
Comments: The enzyme, characterized from the bacteria Sphingomonas sp. SKA58 and Sulfobacillus thermosulfidooxidans, is involved in the non-phosphorylative degradation pathway for L-rhamnose. It does not show any detectable activity with NADP+ or with other aldoses.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Watanabe, S. and Makino, K. Novel modified version of nonphosphorylated sugar metabolism - an alternative L-rhamnose pathway of Sphingomonas sp. FEBS J. 276 (2009) 1554–1567. [DOI] [PMID: 19187228]
2.  Bae, J., Kim, S.M. and Lee, S.B. Identification and characterization of 2-keto-3-deoxy-L-rhamnonate dehydrogenase belonging to the MDR superfamily from the thermoacidophilic bacterium Sulfobacillus thermosulfidooxidans: implications to L-rhamnose metabolism in archaea. Extremophiles 19 (2015) 469–478. [DOI] [PMID: 25617114]
[EC 1.1.1.401 created 2016]
 
 
EC 1.1.1.425     
Accepted name: levoglucosan dehydrogenase
Reaction: levoglucosan + NAD+ = 3-dehydrolevoglucosan + NADH + H+
Glossary: levoglucosan = 1,6-anhydro-β-D-glucopyranose
Other name(s): 1,6-anhydro-β-D-glucose dehydrogenase
Systematic name: 1,6-anhydro-β-D-glucopyranose:NAD+ 3-oxidoreductase
Comments: Levoglucosan is formed from the pyrolysis of carbohydrates such as starch and cellulose and is an important molecular marker for pollution from biomass burning. This enzyme is present only in bacteria, and has been characterized from Arthrobacter sp. I-552 and Pseudarthrobacter phenanthrenivorans. cf. EC 2.7.1.232, levoglucosan kinase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Nakahara, K., Kitamura, Y., Yamagishi, Y., Shoun, H. and Yasui, T. Levoglucosan dehydrogenase involved in the assimilation of levoglucosan in Arthrobacter sp. I-552. Biosci. Biotechnol. Biochem. 58 (1994) 2193–2196. [DOI] [PMID: 7765713]
2.  Sugiura, M., Nakahara, M., Yamada, C., Arakawa, T., Kitaoka, M. and Fushinobu, S. Identification, functional characterization, and crystal structure determination of bacterial levoglucosan dehydrogenase. J. Biol. Chem. 293 (2018) 17375–17386. [DOI] [PMID: 30224354]
[EC 1.1.1.425 created 2021]
 
 
EC 1.1.1.431     
Accepted name: D-xylose reductase (NADPH)
Reaction: xylitol + NADP+ = D-xylose + NADPH + H+
Other name(s): XYL1 (gene name, ambiguous); xyl1 (gene name, ambiguous); xyrA (gene name); xyrB (gene name)
Systematic name: xylitol:NADP+ oxidoreductase
Comments: Xylose reductases catalyse the reduction of xylose to xylitol, the initial reaction in the fungal D-xylose degradation pathway. Most of the enzymes exhibit a strict requirement for NADPH (e.g. the enzymes from Saccharomyces cerevisiae, Aspergillus niger, Trichoderma reesei, Candida tropicalis, Saitozyma flava, and Candida intermedia). Some D-xylose reductases have dual cosubstrate specificity, though they still prefer NADPH to NADH (cf. EC 1.1.1.307, D-xylose reductase [NAD(P)H]). Very rarely the enzyme prefers NADH (cf. EC 1.1.1.430, D-xylose reductase (NADH)).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Bolen, P.L. and Detroy, R.W. Induction of NADPH-linked D-xylose reductase and NAD-linked xylitol dehydrogenase activities in Pachysolen tannophilus by D-xylose, L-arabinose, or D-galactose. Biotechnol. Bioeng. 27 (1985) 302–307. [DOI] [PMID: 18553673]
2.  Suzuki, T., Yokoyama, S., Kinoshita, Y., Yamada, H., Hatsu, M., Takamizawa, K. and Kawai, K. Expression of xyrA gene encoding for D-xylose reductase of Candida tropicalis and production of xylitol in Escherichia coli. J. Biosci. Bioeng. 87 (1999) 280–284. [DOI] [PMID: 16232468]
3.  Nidetzky, B., Mayr, P., Hadwiger, P. and Stutz, A.E. Binding energy and specificity in the catalytic mechanism of yeast aldose reductases. Biochem. J. 344 Pt 1 (1999) 101–107. [PMID: 10548539]
4.  Mayr, P., Bruggler, K., Kulbe, K.D. and Nidetzky, B. D-Xylose metabolism by Candida intermedia: isolation and characterisation of two forms of aldose reductase with different coenzyme specificities. J. Chromatogr. B Biomed. Sci. Appl. 737 (2000) 195–202. [DOI] [PMID: 10681056]
5.  Sene, L., Felipe, M.G., Silva, S.S. and Vitolo, M. Preliminary kinetic characterization of xylose reductase and xylitol dehydrogenase extracted from Candida guilliermondii FTI 20037 cultivated in sugarcane bagasse hydrolysate for xylitol production. Appl. Biochem. Biotechnol. 91-93 (2001) 671–680. [DOI] [PMID: 11963895]
6.  Jeong, E.Y., Sopher, C., Kim, I.S. and Lee, H. Mutational study of the role of tyrosine-49 in the Saccharomyces cerevisiae xylose reductase. Yeast 18 (2001) 1081–1089. [DOI] [PMID: 11481678]
7.  Chroumpi, T., Peng, M., Aguilar-Pontes, M.V., Muller, A., Wang, M., Yan, J., Lipzen, A., Ng, V., Grigoriev, I.V., Makela, M.R. and de Vries, R.P. Revisiting a ‘simple’ fungal metabolic pathway reveals redundancy, complexity and diversity. Microb. Biotechnol. 14 (2021) 2525–2537. [DOI] [PMID: 33666344]
8.  Terebieniec, A., Chroumpi, T., Dilokpimol, A., Aguilar-Pontes, M.V., Makela, M.R. and de Vries, R.P. Characterization of D-xylose reductase, XyrB, from Aspergillus niger. Biotechnol Rep (Amst) 30:e00610 (2021). [DOI] [PMID: 33842213]
[EC 1.1.1.431 created 2022]
 
 
EC 1.1.2.6     
Accepted name: polyvinyl alcohol dehydrogenase (cytochrome)
Reaction: polyvinyl alcohol + ferricytochrome c = oxidized polyvinyl alcohol + ferrocytochrome c + H+
Other name(s): PVA dehydrogenase; PVADH
Systematic name: polyvinyl alcohol:ferricytochrome-c oxidoreductase
Comments: A quinoprotein. The enzyme is involved in bacterial polyvinyl alcohol degradation. Some Gram-negative bacteria degrade polyvinyl alcohol by importing it into the periplasmic space, where it is oxidized by polyvinyl alcohol dehydrogenase, an enzyme that is coupled to the respiratory chain via cytochrome c. The enzyme contains a pyrroloquinoline quinone cofactor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Shimao, M., Ninomiya, K., Kuno, O., Kato, N. and Sakazawa, C. Existence of a novel enzyme, pyrroloquinoline quinone-dependent polyvinyl alcohol dehydrogenase, in a bacterial symbiont, Pseudomonas sp. strain VM15C. Appl. Environ. Microbiol. 51 (1986) 268. [PMID: 3513704]
2.  Shimao, M., Onishi, S., Kato, N. and Sakazawa, C. Pyrroloquinoline quinone-dependent cytochrome reduction in polyvinyl alcohol-degrading Pseudomonas sp strain VM15C. Appl. Environ. Microbiol. 55 (1989) 275–278. [PMID: 16347841]
3.  Mamoto, R., Hu, X., Chiue, H., Fujioka, Y. and Kawai, F. Cloning and expression of soluble cytochrome c and its role in polyvinyl alcohol degradation by polyvinyl alcohol-utilizing Sphingopyxis sp. strain 113P3. J. Biosci. Bioeng. 105 (2008) 147–151. [DOI] [PMID: 18343342]
4.  Hirota-Mamoto, R., Nagai, R., Tachibana, S., Yasuda, M., Tani, A., Kimbara, K. and Kawai, F. Cloning and expression of the gene for periplasmic poly(vinyl alcohol) dehydrogenase from Sphingomonas sp. strain 113P3, a novel-type quinohaemoprotein alcohol dehydrogenase. Microbiology 152 (2006) 1941–1949. [DOI] [PMID: 16804170]
5.  Hu, X., Mamoto, R., Fujioka, Y., Tani, A., Kimbara, K. and Kawai, F. The pva operon is located on the megaplasmid of Sphingopyxis sp. strain 113P3 and is constitutively expressed, although expression is enhanced by PVA. Appl. Microbiol. Biotechnol. 78 (2008) 685–693. [DOI] [PMID: 18214469]
6.  Kawai, F. and Hu, X. Biochemistry of microbial polyvinyl alcohol degradation. Appl. Microbiol. Biotechnol. 84 (2009) 227–237. [DOI] [PMID: 19590867]
[EC 1.1.2.6 created 1989 as EC 1.1.99.23, transferred 2010 to EC 1.1.2.6]
 
 
EC 1.1.3.20     
Accepted name: long-chain-alcohol oxidase
Reaction: a long-chain alcohol + O2 = a long-chain aldehyde + H2O2
Other name(s): long-chain fatty alcohol oxidase; fatty alcohol oxidase; fatty alcohol:oxygen oxidoreductase; long-chain fatty acid oxidase
Systematic name: long-chain-alcohol:oxygen oxidoreductase
Comments: Oxidizes long-chain fatty alcohols; best substrate is dodecyl alcohol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 129430-50-8
References:
1.  Moreau, R.A. and Huang, A.H.C. Oxidation of fatty alcohol in the cotyledons of jojoba seedlings. Arch. Biochem. Biophys. 194 (1979) 422–430. [DOI] [PMID: 36040]
2.  Moreau, R.A. and Huang, A.H.C. Enzymes of wax ester catabolism in jojoba. Methods Enzymol. 71 (1981) 804–813.
3.  Cheng, Q., Liu, H.T., Bombelli, P., Smith, A. and Slabas, A.R. Functional identification of AtFao3, a membrane bound long chain alcohol oxidase in Arabidopsis thaliana. FEBS Lett. 574 (2004) 62–68. [DOI] [PMID: 15358540]
4.  Zhao, S., Lin, Z., Ma, W., Luo, D. and Cheng, Q. Cloning and characterization of long-chain fatty alcohol oxidase LjFAO1 in Lotus japonicus. Biotechnol. Prog. 24 (2008) 773–779. [DOI] [PMID: 18396913]
5.  Cheng, Q., Sanglard, D., Vanhanen, S., Liu, H.T., Bombelli, P., Smith, A. and Slabas, A.R. Candida yeast long chain fatty alcohol oxidase is a c-type haemoprotein and plays an important role in long chain fatty acid metabolism. Biochim. Biophys. Acta 1735 (2005) 192–203. [DOI] [PMID: 16046182]
[EC 1.1.3.20 created 1984, modified 2010]
 
 
EC 1.1.3.37     
Accepted name: D-arabinono-1,4-lactone oxidase
Reaction: D-arabinono-1,4-lactone + O2 = dehydro-D-arabinono-1,4-lactone + H2O2
For diagram of reaction, click here
Glossary: dehydro-D-arabinono-1,4-lactone = (5R)-3,4-dihydroxy-5-(hydroxymethyl)furan-2(5H)-one
Other name(s): D-arabinono-γ-lactone oxidase; ALO
Systematic name: D-arabinono-1,4-lactone:oxygen oxidoreductase
Comments: A flavoprotein (FAD). L-Galactono-1,4-lactone, L-gulono-1,4-lactone and L-xylono-1,4-lactone can also act as substrates but D-glucono-1,5-lactone, L-arabinono-1,4-lactone, D-galactono-1,4-lactone and D-gulono-1,4-lactone cannot [1]. With L-galactono-1,4-lactone as substrate, the product is L-ascorbate [3]. The product dehydro-D-arabinono-1,4-lactone had previously been referred to erroneously as D-erythroascorbate (CAS no.: 5776-48-7; formula: C6H8O6), although it was referred to as a five-carbon compound [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 182372-12-9
References:
1.  Huh, W.K., Kim, S.T., Yang, K.S., Seok, Y.J., Hah, Y.C. and Kang, S.O. Characterisation of D-arabinono-1,4-lactone oxidase from Candida albicans ATCC 10231. Eur. J. Biochem. 225 (1994) 1073–1079. [DOI] [PMID: 7957197]
2.  Huh, W.K., Lee, B.H., Kim, S.T., Kim, Y.R., Rhie, G.E., Baek, Y.W., Hwang, C.S., Lee, J.S. and Kang, S.O. D-Erythroascorbic acid is an important antioxidant molecule in Saccharomyces cerevisiae. Mol. Microbiol. 30 (1998) 895–903. [DOI] [PMID: 10094636]
3.  Lee, B.H., Huh, W.K., Kim, S.T., Lee, J.S. and Kang, S.O. Bacterial production of D-erythroascorbic acid and L-ascorbic acid through functional expression of Saccharomyces cerevisiae D-arabinono-1,4-lactone oxidase in Escherichia coli. Appl. Environ. Microbiol. 65 (1999) 4685–4687. [PMID: 10508108]
[EC 1.1.3.37 created 1999]
 
 
EC 1.1.3.38     
Accepted name: vanillyl-alcohol oxidase
Reaction: vanillyl alcohol + O2 = vanillin + H2O2
Other name(s): 4-hydroxy-2-methoxybenzyl alcohol oxidase
Systematic name: vanillyl alcohol:oxygen oxidoreductase
Comments: Vanillyl-alcohol oxidase from Penicillium simplicissimum contains covalently bound FAD. It converts a wide range of 4-hydroxybenzyl alcohols and 4-hydroxybenzylamines into the corresponding aldehydes. The allyl group of 4-allylphenols is also converted into the -CH=CH-CH2OH group.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 143929-24-2
References:
1.  de Jong, E., van Berkel, W.J.H., van der Zwan, R.P. and de Bont, J.A.M. Purification and characterization of vanillyl-alcohol oxidase from Penicillium simplicissimum, a novel aromatic alcohol oxidase containing covalently bound FAD. Eur. J. Biochem. 208 (1992) 651–657. [DOI] [PMID: 1396672]
2.  Fraaije, M.W., Veeger, C. and van Berkel, W.J.H. Substrate specificity of flavin-dependent vanillyl-alcohol oxidase from Penicillium simplicissimum. Evidence for the production of 4-hydroxycinnamyl alcohols from 4-allylphenols. Eur. J. Biochem. 234 (1995) 271–277. [DOI] [PMID: 8529652]
[EC 1.1.3.38 created 1999]
 
 
EC 1.1.3.43     
Accepted name: paromamine 6′-oxidase
Reaction: paromamine + O2 = 6′-dehydroparomamine + H2O2
Other name(s): btrQ (gene name); neoG (gene name); kanI (gene name); tacB (gene name); neoQ (obsolete gene name)
Systematic name: paromamine:oxygen 6′-oxidoreductase
Comments: Contains FAD. Involved in the biosynthetic pathways of several clinically important aminocyclitol antibiotics, including kanamycin, butirosin, neomycin and ribostamycin. Works in combination with EC 2.6.1.93, neamine transaminase, to replace the 6′-hydroxy group of paromamine with an amino group. The enzyme from the bacterium Streptomyces fradiae also catalyses EC 1.1.3.44, 6′′′-hydroxyneomycin C oxidase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Huang, F., Spiteller, D., Koorbanally, N.A., Li, Y., Llewellyn, N.M. and Spencer, J.B. Elaboration of neosamine rings in the biosynthesis of neomycin and butirosin. ChemBioChem 8 (2007) 283–288. [DOI] [PMID: 17206729]
2.  Yu, Y., Hou, X., Ni, X. and Xia, H. Biosynthesis of 3′-deoxy-carbamoylkanamycin C in a Streptomyces tenebrarius mutant strain by tacB gene disruption. J. Antibiot. (Tokyo) 61 (2008) 63–69. [DOI] [PMID: 18408324]
3.  Clausnitzer, D., Piepersberg, W. and Wehmeier, U.F. The oxidoreductases LivQ and NeoQ are responsible for the different 6′-modifications in the aminoglycosides lividomycin and neomycin. J. Appl. Microbiol. 111 (2011) 642–651. [DOI] [PMID: 21689223]
[EC 1.1.3.43 created 2012]
 
 
EC 1.1.5.3     
Accepted name: glycerol-3-phosphate dehydrogenase
Reaction: sn-glycerol 3-phosphate + a quinone = glycerone phosphate + a quinol
Glossary: glycerone phosphate = dihydroxyacetone phosphate = 3-hydroxy-2-oxopropyl phosphate
Other name(s): α-glycerophosphate dehydrogenase; α-glycerophosphate dehydrogenase (acceptor); anaerobic glycerol-3-phosphate dehydrogenase; DL-glycerol 3-phosphate oxidase (misleading); FAD-dependent glycerol-3-phosphate dehydrogenase; FAD-dependent sn-glycerol-3-phosphate dehydrogenase; FAD-GPDH; FAD-linked glycerol 3-phosphate dehydrogenase; FAD-linked L-glycerol-3-phosphate dehydrogenase; flavin-linked glycerol-3-phosphate dehydrogenase; flavoprotein-linked L-glycerol 3-phosphate dehydrogenase; glycerol 3-phosphate cytochrome c reductase (misleading); glycerol phosphate dehydrogenase; glycerol phosphate dehydrogenase (acceptor); glycerol phosphate dehydrogenase (FAD); glycerol-3-phosphate CoQ reductase; glycerol-3-phosphate dehydrogenase (flavin-linked); glycerol-3-phosphate:CoQ reductase; glycerophosphate dehydrogenase; L-3-glycerophosphate-ubiquinone oxidoreductase; L-glycerol-3-phosphate dehydrogenase (ambiguous); L-glycerophosphate dehydrogenase; mGPD; mitochondrial glycerol phosphate dehydrogenase; NAD+-independent glycerol phosphate dehydrogenase; pyridine nucleotide-independent L-glycerol 3-phosphate dehydrogenase; sn-glycerol 3-phosphate oxidase (misleading); sn-glycerol-3-phosphate dehydrogenase; sn-glycerol-3-phosphate:(acceptor) 2-oxidoreductase; sn-glycerol-3-phosphate:acceptor 2-oxidoreductase
Systematic name: sn-glycerol 3-phosphate:quinone oxidoreductase
Comments: This flavin-dependent dehydrogenase is an essential membrane enzyme, functioning at the central junction of glycolysis, respiration and phospholipid biosynthesis. In bacteria, the enzyme is localized to the cytoplasmic membrane [6], while in eukaryotes it is tightly bound to the outer surface of the inner mitochondrial membrane [2]. In eukaryotes, this enzyme, together with the cytosolic enzyme EC 1.1.1.8, glycerol-3-phosphate dehydrogenase (NAD+), forms the glycerol-3-phosphate shuttle by which NADH produced in the cytosol, primarily from glycolysis, can be reoxidized to NAD+ by the mitochondrial electron-transport chain [3]. This shuttle plays a critical role in transferring reducing equivalents from cytosolic NADH into the mitochondrial matrix [7,8]. Insect flight muscle uses only CoQ10 as the physiological quinone whereas hamster and rat mitochondria use mainly CoQ9 [4]. The enzyme is activated by calcium [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9001-49-4
References:
1.  Ringler, R.L. Studies on the mitochondrial α-glycerophosphate dehydrogenase. II. Extraction and partial purification of the dehydrogenase from pig brain. J. Biol. Chem. 236 (1961) 1192–1198. [PMID: 13741763]
2.  Schryvers, A., Lohmeier, E. and Weiner, J.H. Chemical and functional properties of the native and reconstituted forms of the membrane-bound, aerobic glycerol-3-phosphate dehydrogenase of Escherichia coli. J. Biol. Chem. 253 (1978) 783–788. [PMID: 340460]
3.  MacDonald, M.J. and Brown, L.J. Calcium activation of mitochondrial glycerol phosphate dehydrogenase restudied. Arch. Biochem. Biophys. 326 (1996) 79–84. [DOI] [PMID: 8579375]
4.  Rauchová, H., Fato, R., Drahota, Z. and Lenaz, G. Steady-state kinetics of reduction of coenzyme Q analogs by glycerol-3-phosphate dehydrogenase in brown adipose tissue mitochondria. Arch. Biochem. Biophys. 344 (1997) 235–241. [DOI] [PMID: 9244403]
5.  Shen, W., Wei, Y., Dauk, M., Zheng, Z. and Zou, J. Identification of a mitochondrial glycerol-3-phosphate dehydrogenase from Arabidopsis thaliana: evidence for a mitochondrial glycerol-3-phosphate shuttle in plants. FEBS Lett. 536 (2003) 92–96. [DOI] [PMID: 12586344]
6.  Walz, A.C., Demel, R.A., de Kruijff, B. and Mutzel, R. Aerobic sn-glycerol-3-phosphate dehydrogenase from Escherichia coli binds to the cytoplasmic membrane through an amphipathic α-helix. Biochem. J. 365 (2002) 471–479. [DOI] [PMID: 11955283]
7.  Ansell, R., Granath, K., Hohmann, S., Thevelein, J.M. and Adler, L. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J. 16 (1997) 2179–2187. [DOI] [PMID: 9171333]
8.  Larsson, C., Påhlman, I.L., Ansell, R., Rigoulet, M., Adler, L. and Gustafsson, L. The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae. Yeast 14 (1998) 347–357. [DOI] [PMID: 9559543]
[EC 1.1.5.3 created 1961 as EC 1.1.2.1, transferred 1965 to EC 1.1.99.5, transferred 2009 to EC 1.1.5.3]
 
 
EC 1.1.99.31     
Accepted name: (S)-mandelate dehydrogenase
Reaction: (S)-mandelate + acceptor = phenylglyoxylate + reduced acceptor
For diagram of reaction, click here
Glossary: (S)-mandelate = (S)-2-hydroxy-2-phenylacetate
phenylglyoxylate = benzoylformate = 2-oxo-2-phenylacetate
Other name(s): MDH (ambiguous)
Systematic name: (S)-mandelate:acceptor 2-oxidoreductase
Comments: This enzyme is a member of the FMN-dependent α-hydroxy-acid oxidase/dehydrogenase family [1]. While all enzymes of this family oxidize the (S)-enantiomer of an α-hydroxy acid to an α-oxo acid, the ultimate oxidant (oxygen, intramolecular heme or some other acceptor) depends on the particular enzyme. This enzyme transfers the electron pair from FMNH2 to a component of the electron transport chain, most probably ubiquinone [1,2]. It is part of a metabolic pathway in Pseudomonads that allows these organisms to utilize mandelic acid, derivatized from the common soil metabolite amygdalin, as the sole source of carbon and energy [2]. The enzyme has a large active-site pocket and preferentially binds substrates with longer sidechains, e.g. 2-hydroxyoctanoate rather than 2-hydroxybutyrate [1]. It also prefers substrates that, like (S)-mandelate, have β unsaturation, e.g. (indol-3-yl)glycolate compared with (indol-3-yl)lactate [1]. Esters of mandelate, such as methyl (S)-mandelate, are also substrates [3].
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9067-95-2
References:
1.  Lehoux, I.E. and Mitra, B. (S)-Mandelate dehydrogenase from Pseudomonas putida: mechanistic studies with alternate substrates and pH and kinetic isotope effects. Biochemistry 38 (1999) 5836–5848. [DOI] [PMID: 10231535]
2.  Dewanti, A.R., Xu, Y. and Mitra, B. Role of glycine 81 in (S)-mandelate dehydrogenase from Pseudomonas putida in substrate specificity and oxidase activity. Biochemistry 43 (2004) 10692–10700. [DOI] [PMID: 15311930]
3.  Dewanti, A.R., Xu, Y. and Mitra, B. Esters of mandelic acid as substrates for (S)-mandelate dehydrogenase from Pseudomonas putida: implications for the reaction mechanism. Biochemistry 43 (2004) 1883–1890. [DOI] [PMID: 14967029]
[EC 1.1.99.31 created 2006]
 
 
EC 1.2.1.14      
Transferred entry: IMP dehydrogenase. Now EC 1.1.1.205, IMP dehydrogenase
[EC 1.2.1.14 created 1961, deleted 1984]
 
 
EC 1.2.3.5     
Accepted name: glyoxylate oxidase
Reaction: glyoxylate + H2O + O2 = oxalate + H2O2
Systematic name: glyoxylate:oxygen oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37251-03-9
References:
1.  Kasai, T., Suzuki, I. and Asai, T. [Glyoxylic oxidase system in Acetobacter.] Koso Kagaku Shimpojiumu 17 (1962) 77–81. (in Japanese)
[EC 1.2.3.5 created 1972]
 
 
EC 1.3.1.75     
Accepted name: 3,8-divinyl protochlorophyllide a 8-vinyl-reductase (NADPH)
Reaction: protochlorophyllide a + NADP+ = 3,8-divinyl protochlorophyllide a + NADPH + H+
For diagram of chlorophyll biosynthesis (later stages), click here
Other name(s): DVR (gene name); bciA (gene name); [4-vinyl]chlorophyllide a reductase; 4VCR; chlorophyllide-a:NADP+ oxidoreductase; divinyl chlorophyllide a 8-vinyl-reductase; plant-type divinyl chlorophyllide a 8-vinyl-reductase
Systematic name: protochlorophyllide-a:NADP+ C-81-oxidoreductase
Comments: The enzyme, found in higher plants, green algae, and some phototrophic bacteria, is involved in the production of monovinyl versions of (bacterio)chlorophyll pigments from their divinyl precursors. It can also act on 3,8-divinyl chlorophyllide a. cf. EC 1.3.7.13, 3,8-divinyl protochlorophyllide a 8-vinyl-reductase (ferredoxin).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Tripathy, B.C. and Rebeiz, C.A. Chloroplast biogenesis 60. Conversion of divinyl protochlorophyllide to monovinyl protochlorophyllide in green(ing) barley, a dark monovinyl/light divinyl plant species. Plant Physiol. 87 (1988) 89–94. [PMID: 16666133]
2.  Parham, R. and Rebeiz, C.A. Chloroplast biogenesis: [4-vinyl] chlorophyllide a reductase is a divinyl chlorophyllide a-specific, NADPH-dependent enzyme. Biochemistry 31 (1992) 8460–8464. [PMID: 1390630]
3.  Parham, R. and Rebeiz, C.A. Chloroplast biogenesis 72: a [4-vinyl]chlorophyllide a reductase assay using divinyl chlorophyllide a as an exogenous substrate. Anal. Biochem. 231 (1995) 164–169. [DOI] [PMID: 8678296]
4.  Kolossov, V.L. and Rebeiz, C.A. Chloroplast biogenesis 84: solubilization and partial purification of membrane-bound [4-vinyl]chlorophyllide a reductase from etiolated barley leaves. Anal. Biochem. 295 (2001) 214–219. [DOI] [PMID: 11488624]
5.  Nagata, N., Tanaka, R., Satoh, S. and Tanaka, A. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell 17 (2005) 233–240. [DOI] [PMID: 15632054]
6.  Chew, A.G. and Bryant, D.A. Characterization of a plant-like protochlorophyllide a divinyl reductase in green sulfur bacteria. J. Biol. Chem. 282 (2007) 2967–2975. [DOI] [PMID: 17148453]
[EC 1.3.1.75 created 2003, modified 2016]
 
 
EC 1.3.1.80      
Transferred entry: red chlorophyll catabolite reductase. Now classified as EC 1.3.7.12, red chlorophyll catabolite reductase
[EC 1.3.1.80 created 2007, deleted 2016]
 
 
EC 1.3.1.91     
Accepted name: tRNA-dihydrouridine20 synthase [NAD(P)+]
Reaction: 5,6-dihydrouracil20 in tRNA + NAD(P)+ = uracil20 in tRNA + NAD(P)H + H+
Other name(s): Dus2p; tRNA-dihydrouridine synthase 2
Systematic name: tRNA-5,6-dihydrouracil20:NAD(P)+ oxidoreductase
Comments: A flavoenzyme [3]. The enzyme specifically modifies uracil20 in tRNA.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Xing, F., Hiley, S.L., Hughes, T.R. and Phizicky, E.M. The specificities of four yeast dihydrouridine synthases for cytoplasmic tRNAs. J. Biol. Chem. 279 (2004) 17850–17860. [DOI] [PMID: 14970222]
2.  Xing, F., Martzen, M.R. and Phizicky, E.M. A conserved family of Saccharomyces cerevisiae synthases effects dihydrouridine modification of tRNA. RNA 8 (2002) 370–381. [PMID: 12003496]
3.  Rider, L.W., Ottosen, M.B., Gattis, S.G. and Palfey, B.A. Mechanism of dihydrouridine synthase 2 from yeast and the importance of modifications for efficient tRNA reduction. J. Biol. Chem. 284 (2009) 10324–10333. [DOI] [PMID: 19139092]
4.  Kato, T., Daigo, Y., Hayama, S., Ishikawa, N., Yamabuki, T., Ito, T., Miyamoto, M., Kondo, S. and Nakamura, Y. A novel human tRNA-dihydrouridine synthase involved in pulmonary carcinogenesis. Cancer Res. 65 (2005) 5638–5646. [DOI] [PMID: 15994936]
[EC 1.3.1.91 created 2011]
 
 
EC 1.3.1.95     
Accepted name: acrylyl-CoA reductase (NADH)
Reaction: propanoyl-CoA + NAD+ = acryloyl-CoA + NADH + H+
For diagram of 3-(dimethylsulfonio)propanoate metabolism, click here
Glossary: propanoyl-CoA = propionyl-CoA
Systematic name: propanoyl-CoA:NAD+ oxidoreductase
Comments: Contains FAD. The reaction is catalysed in the opposite direction to that shown. The enzyme from the bacterium Clostridium propionicum is a complex that includes an electron-transfer flavoprotein (ETF). The ETF is reduced by NADH and transfers the electrons to the active site. Catalyses a step in a pathway for L-alanine fermentation to propanoate [1]. cf. EC 1.3.1.84, acrylyl-CoA reductase (NADPH).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hetzel, M., Brock, M., Selmer, T., Pierik, A.J., Golding, B.T. and Buckel, W. Acryloyl-CoA reductase from Clostridium propionicum. An enzyme complex of propionyl-CoA dehydrogenase and electron-transferring flavoprotein. Eur. J. Biochem. 270 (2003) 902–910. [DOI] [PMID: 12603323]
2.  Kandasamy, V., Vaidyanathan, H., Djurdjevic, I., Jayamani, E., Ramachandran, K.B., Buckel, W., Jayaraman, G. and Ramalingam, S. Engineering Escherichia coli with acrylate pathway genes for propionic acid synthesis and its impact on mixed-acid fermentation. Appl. Microbiol. Biotechnol. 97 (2013) 1191–1200. [DOI] [PMID: 22810300]
[EC 1.3.1.95 created 2012]
 
 
EC 1.3.1.105     
Accepted name: 2-methylene-furan-3-one reductase
Reaction: 4-hydroxy-2,5-dimethylfuran-3(2H)-one + NADP+ = 4-hydroxy-5-methyl-2-methylenefuran-3(2H)-one + NADPH + H+
Glossary: furaneol = 4-hydroxy-2,5-dimethylfuran-3(2H)-one
homofuraneol = 2-ethyl-4-hydroxy-5-methylfuran-3(2H)-one
Other name(s): FaEO; SIEO; enone oxidoreductase; 4-hydroxy-2,5-dimethylfuran-3(2H)-one:NAD(P)+ oxidoreductase
Systematic name: 4-hydroxy-2,5-dimethylfuran-3(2H)-one:NADP+ oxidoreductase
Comments: The enzyme was dicovered in strawberry (Fragaria x ananassa), where it produces furaneol, one of the major aroma compounds in the fruits. It has also been detected in tomato (Solanum lycopersicum) and pineapple (Ananas comosus). The enzyme can also act on derivatives substituted at the methylene functional group. The enzyme from the yeast Saccharomyces cerevisiae acts on (2E)-2-ethylidene-4-hydroxy-5-methylfuran-3(2H)-one and produces homofuraneol, an important aroma compound in soy sauce and miso. NADPH is the preferred cofactor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Raab, T., Lopez-Raez, J.A., Klein, D., Caballero, J.L., Moyano, E., Schwab, W. and Munoz-Blanco, J. FaQR, required for the biosynthesis of the strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone, encodes an enone oxidoreductase. Plant Cell 18 (2006) 1023–1037. [DOI] [PMID: 16517758]
2.  Klein, D., Fink, B., Arold, B., Eisenreich, W. and Schwab, W. Functional characterization of enone oxidoreductases from strawberry and tomato fruit. J. Agric. Food Chem. 55 (2007) 6705–6711. [DOI] [PMID: 17636940]
3.  Schiefner, A., Sinz, Q., Neumaier, I., Schwab, W. and Skerra, A. Structural basis for the enzymatic formation of the key strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone. J. Biol. Chem. 288 (2013) 16815–16826. [DOI] [PMID: 23589283]
4.  Uehara, K., Watanabe, J., Mogi, Y. and Tsukioka, Y. Identification and characterization of an enzyme involved in the biosynthesis of the 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone in yeast. J. Biosci. Bioeng. 123 (2017) 333–341. [DOI] [PMID: 27865643]
[EC 1.3.1.105 created 2013]
 
 
EC 1.3.3.10     
Accepted name: tryptophan α,β-oxidase
Reaction: L-tryptophan + O2 = α,β-didehydrotryptophan + H2O2
Other name(s): L-tryptophan 2′,3′-oxidase; L-tryptophan α,β-dehydrogenase
Systematic name: L-tryptophan:oxygen α,β-oxidoreductase
Comments: Requires heme. The enzyme from Chromobacterium violaceum is specific for tryptophan derivatives possessing its carboxyl group free or as an amide or ester, and an unsubstituted indole ring. Also catalyses the α,β dehydrogenation of L-tryptophan side chains in peptides. The product of the reaction can hydrolyse spontaneously to form (indol-3-yl)pyruvate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 156859-19-7
References:
1.  Genet, R., Denoyelle, C. and Menez, A. Purification and partial characterization of an amino acid α,β-dehydrogenase, L-tryptophan 2′,3′-oxidase from Chromobacterium violaceum. J. Biol. Chem. 269 (1994) 18177–18184. [PMID: 8027079]
2.  Genet, R., Benetti, P.H., Hammadi, A. and Menez, A. L-Tryptophan 2′,3′-oxidase from Chromobacterium violaceum. Substrate specificity and mechanistic implications. J. Biol. Chem. 270 (1995) 23540–23545. [DOI] [PMID: 7559518]
[EC 1.3.3.10 created 2000 as EC 1.4.3.17, transferred 2003 to EC 1.3.3.10]
 
 
EC 1.3.5.2     
Accepted name: dihydroorotate dehydrogenase (quinone)
Reaction: (S)-dihydroorotate + a quinone = orotate + a quinol
Other name(s): dihydroorotate:ubiquinone oxidoreductase; (S)-dihydroorotate:(acceptor) oxidoreductase; (S)-dihydroorotate:acceptor oxidoreductase; DHOdehase (ambiguous); DHOD (ambiguous); DHODase (ambiguous); DHODH
Systematic name: (S)-dihydroorotate:quinone oxidoreductase
Comments: This Class 2 dihydroorotate dehydrogenase enzyme contains FMN [4]. The enzyme is found in eukaryotes in the mitochondrial membrane, in cyanobacteria, and in some Gram-negative and Gram-positive bacteria associated with the cytoplasmic membrane [2,5,6]. The reaction is the only redox reaction in the de-novo biosynthesis of pyrimidine nucleotides [2,4]. The best quinone electron acceptors for the enzyme from bovine liver are ubiquinone-6 and ubiquinone-7, although simple quinones, such as benzoquinone, can also act as acceptor at lower rates [2]. Methyl-, ethyl-, tert-butyl and benzyl (S)-dihydroorotates are also substrates, but methyl esters of (S)-1-methyl and (S)-3-methyl and (S)-1,3-dimethyldihydroorotates are not [2]. Class 1 dihydroorotate dehydrogenases use either fumarate (EC 1.3.98.1), NAD+ (EC 1.3.1.14) or NADP+ (EC 1.3.1.15) as electron acceptor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 59088-23-2
References:
1.  Forman, H.J. and Kennedy, J. Mammalian dihydroorotate dehydrogenase: physical and catalytic properties of the primary enzyme. Arch. Biochem. Biophys. 191 (1978) 23–31. [DOI] [PMID: 216313]
2.  Hines, V., Keys, L.D., III and Johnston, M. Purification and properties of the bovine liver mitochondrial dihydroorotate dehydrogenase. J. Biol. Chem. 261 (1986) 11386–11392. [PMID: 3733756]
3.  Bader, B., Knecht, W., Fries, M. and Löffler, M. Expression, purification, and characterization of histidine-tagged rat and human flavoenzyme dihydroorotate dehydrogenase. Protein Expr. Purif. 13 (1998) 414–422. [DOI] [PMID: 9693067]
4.  Fagan, R.L., Nelson, M.N., Pagano, P.M. and Palfey, B.A. Mechanism of flavin reduction in Class 2 dihydroorotate dehydrogenases. Biochemistry 45 (2006) 14926–14932. [DOI] [PMID: 17154530]
5.  Björnberg, O., Grüner, A.C., Roepstorff, P. and Jensen, K.F. The activity of Escherichia coli dihydroorotate dehydrogenase is dependent on a conserved loop identified by sequence homology, mutagenesis, and limited proteolysis. Biochemistry 38 (1999) 2899–2908. [DOI] [PMID: 10074342]
6.  Nara, T., Hshimoto, T. and Aoki, T. Evolutionary implications of the mosaic pyrimidine-biosynthetic pathway in eukaryotes. Gene 257 (2000) 209–222. [DOI] [PMID: 11080587]
[EC 1.3.5.2 created 1983 as EC 1.3.99.11, transferred 2009 to EC 1.3.5.2, modified 2011]
 
 
EC 1.3.7.12     
Accepted name: red chlorophyll catabolite reductase
Reaction: primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster = red chlorophyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
For diagram of chlorophyll catabolism, click here
Glossary: red chlorophyll catabolite = RCC = (7S,8S,101R)-8-(2-carboxyethyl)-17-ethyl-19-formyl-101-(methoxycarbonyl)-3,7,13,18-tetramethyl-2-vinyl-8,23-dihydro-7H-10,12-ethanobiladiene-ab-1,102(21H)-dione
primary fluorescent chlorophyll catabolite = pFCC = (82R,12S,13S)-12-(2-carboxyethyl)-3-ethyl-1-formyl-82-(methoxycarbonyl)-2,7,13,17-tetramethyl-18-vinyl-12,13-dihydro-8,10-ethanobilene-b-81,19(16H)-dione
Other name(s): RCCR; RCC reductase; red Chl catabolite reductase
Systematic name: primary fluorescent chlorophyll catabolite:ferredoxin oxidoreductase
Comments: The enzyme participates in chlorophyll degradation, which occurs during leaf senescence and fruit ripening in higher plants. The reaction requires reduced ferredoxin, which is generated from NADPH produced either through the pentose-phosphate pathway or by the action of photosystem I [1,2]. This reaction takes place while red chlorophyll catabolite is still bound to EC 1.14.15.17, pheophorbide a oxygenase [3]. Depending on the plant species used as the source of enzyme, one of two possible C-1 epimers of primary fluorescent chlorophyll catabolite (pFCC), pFCC-1 or pFCC-2, is normally formed, with all genera or species within a family producing the same isomer [3,4]. After modification and export, pFCCs are eventually imported into the vacuole, where the acidic environment causes their non-enzymic conversion into colourless breakdown products called non-fluorescent chlorophyll catabolites (NCCs) [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Rodoni, S., Mühlecker, W., Anderl, M., Kräutler, B., Moser, D., Thomas, H., Matile, P. and Hörtensteiner, S. Chlorophyll breakdown in senescent chloroplasts. Cleavage of pheophorbide a in two enzymic steps. Plant Physiol. 115 (1997) 669–676. [PMID: 12223835]
2.  Wüthrich, K.L., Bovet, L., Hunziker, P.E., Donnison, I.S. and Hörtensteiner, S. Molecular cloning, functional expression and characterisation of RCC reductase involved in chlorophyll catabolism. Plant J. 21 (2000) 189–198. [DOI] [PMID: 10743659]
3.  Pružinská, A., Anders, I., Aubry, S., Schenk, N., Tapernoux-Lüthi, E., Müller, T., Kräutler, B. and Hörtensteiner, S. In vivo participation of red chlorophyll catabolite reductase in chlorophyll breakdown. Plant Cell 19 (2007) 369–387. [DOI] [PMID: 17237353]
4.  Hörtensteiner, S. Chlorophyll degradation during senescence. Annu. Rev. Plant Biol. 57 (2006) 55–77. [DOI] [PMID: 16669755]
5.  Rodoni, S., Vicentini, F., Schellenberg, M., Matile, P. and Hörtensteiner, S. Partial purification and characterization of red chlorophyll catabolite reductase, a stroma protein involved in chlorophyll breakdown. Plant Physiol. 115 (1997) 677–682. [PMID: 12223836]
[EC 1.3.7.12 created 2007 as EC 1.3.1.80, transferred 2016 to EC 1.3.7.12]
 
 
EC 1.3.98.1     
Accepted name: dihydroorotate dehydrogenase (fumarate)
Reaction: (S)-dihydroorotate + fumarate = orotate + succinate
Other name(s): DHOdehase (ambiguous); dihydroorotate dehydrogenase (ambiguous); dihydoorotic acid dehydrogenase (ambiguous); DHOD (ambiguous); DHODase (ambiguous); dihydroorotate oxidase; pyr4 (gene name)
Systematic name: (S)-dihydroorotate:fumarate oxidoreductase
Comments: Binds FMN. The reaction, which takes place in the cytosol, is the only redox reaction in the de novo biosynthesis of pyrimidine nucleotides. Molecular oxygen can replace fumarate in vitro. Other class 1 dihydroorotate dehydrogenases use either NAD+ (EC 1.3.1.14) or NADP+ (EC 1.3.1.15) as electron acceptor. The membrane bound class 2 dihydroorotate dehydrogenase (EC 1.3.5.2) uses quinone as electron acceptor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9029-03-2
References:
1.  Björnberg, O., Rowland, P., Larsen, S. and Jensen, K.F. Active site of dihydroorotate dehydrogenase A from Lactococcus lactis investigated by chemical modification and mutagenesis. Biochemistry 36 (1997) 16197–16205. [DOI] [PMID: 9405053]
2.  Rowland, P., Björnberg, O., Nielsen, F.S., Jensen, K.F. and Larsen, S. The crystal structure of Lactococcus lactis dihydroorotate dehydrogenase A complexed with the enzyme reaction product throws light on its enzymatic function. Protein Sci. 7 (1998) 1269–1279. [DOI] [PMID: 9655329]
3.  Nørager, S., Arent, S., Björnberg, O., Ottosen, M., Lo Leggio, L., Jensen, K.F. and Larsen, S. Lactococcus lactis dihydroorotate dehydrogenase A mutants reveal important facets of the enzymatic function. J. Biol. Chem. 278 (2003) 28812–28822. [DOI] [PMID: 12732650]
4.  Zameitat, E., Pierik, A.J., Zocher, K. and Löffler, M. Dihydroorotate dehydrogenase from Saccharomyces cerevisiae: spectroscopic investigations with the recombinant enzyme throw light on catalytic properties and metabolism of fumarate analogues. FEMS Yeast Res. 7 (2007) 897–904. [DOI] [PMID: 17617217]
5.  Inaoka, D.K., Sakamoto, K., Shimizu, H., Shiba, T., Kurisu, G., Nara, T., Aoki, T., Kita, K. and Harada, S. Structures of Trypanosoma cruzi dihydroorotate dehydrogenase complexed with substrates and products: atomic resolution insights into mechanisms of dihydroorotate oxidation and fumarate reduction. Biochemistry 47 (2008) 10881–10891. [DOI] [PMID: 18808149]
6.  Cheleski, J., Wiggers, H.J., Citadini, A.P., da Costa Filho, A.J., Nonato, M.C. and Montanari, C.A. Kinetic mechanism and catalysis of Trypanosoma cruzi dihydroorotate dehydrogenase enzyme evaluated by isothermal titration calorimetry. Anal. Biochem. 399 (2010) 13–22. [DOI] [PMID: 19932077]
[EC 1.3.98.1 created 1961 as EC 1.3.3.1, transferred 2011 to EC 1.3.98.1]
 
 
EC 1.3.99.17     
Accepted name: quinoline 2-oxidoreductase
Reaction: quinoline + acceptor + H2O = quinolin-2(1H)-one + reduced acceptor
Systematic name: quinoline:acceptor 2-oxidoreductase (hydroxylating)
Comments: Quinolin-2-ol, quinolin-7-ol, quinolin-8-ol, 3-, 4- and 8-methylquinolines and 8-chloroquinoline are substrates. Iodonitrotetrazolium chloride can act as an electron acceptor.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 132264-32-5
References:
1.  Bauder, R., Tshisuaka, B. and Lingens, F. Microbial metabolism of quinoline and related compounds. VII. Quinoline oxidoreductase from Pseudomonas putida: a molybdenum-containing enzyme. Biol. Chem. Hoppe-Seyler 371 (1990) 1137–1144. [PMID: 2090161]
2.  Tshisuaka, B., Kappl, R., Huttermann, J. and Lingens, F. Quinoline oxidoreductase from Pseudomonas putida 86: an improved purification procedure and electron paramagnetic resonance spectroscopy. Biochemistry 32 (1993) 12928–12934. [PMID: 8251516]
3.  Peschke, B. and Lingens, F. Microbial metabolism of quinoline and related compounds. XII. Isolation and characterization of the quinoline oxidoreductase from Rhodococcus sp. B1 compared with the quinoline oxidoreductase from Pseudomonas putida 86. Biol. Chem. Hoppe-Seyler 372 (1991) 1081–1088. [PMID: 1789933]
4.  Schach, S., Tshisuaka, B., Fetzner, S. and Lingens, F. Quinoline 2-oxidoreductase and 2-oxo-1,2-dihydroquinoline 5,6-dioxygenase from Comamonas testosteroni 63. The first two enzymes in quinoline and 3-methylquinoline degradation. Eur. J. Biochem. 232 (1995) 536–544. [DOI] [PMID: 7556204]
[EC 1.3.99.17 created 1999]
 
 
EC 1.3.99.30     
Accepted name: phytoene desaturase (3,4-didehydrolycopene-forming)
Reaction: 15-cis-phytoene + 5 acceptor = all-trans-3,4-didehydrolycopene + 5 reduced acceptor (overall reaction)
(1a) 15-cis-phytoene + acceptor = all-trans-phytofluene + reduced acceptor
(1b) all-trans-phytofluene + acceptor = all-trans-ζ-carotene + reduced acceptor
(1c) all-trans-ζ-carotene + acceptor = all-trans-neurosporene + reduced acceptor
(1d) all-trans-neurosporene + acceptor = all-trans-lycopene + reduced acceptor
(1e) all-trans-lycopene + acceptor = all-trans-3,4-didehydrolycopene + reduced acceptor
For diagram of carotenoid biosynthesis, click here
Other name(s): 5-step phytoene desaturase; five-step phytoene desaturase; phytoene desaturase (ambiguous); Al-1
Systematic name: 15-cis-phytoene:acceptor oxidoreductase (3,4-didehydrolycopene-forming)
Comments: This enzyme is involved in carotenoid biosynthesis and catalyses up to five desaturation steps (cf. EC 1.3.99.28 [phytoene desaturase (neurosporene-forming)], EC 1.3.99.29 [phytoene desaturase (ζ-carotene-forming)] and EC 1.3.99.31 [phytoene desaturase (lycopene-forming)]).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hausmann, A. and Sandmann, G. A single five-step desaturase is involved in the carotenoid biosynthesis pathway to β-carotene and torulene in Neurospora crassa. Fungal Genet. Biol. 30 (2000) 147–153. [DOI] [PMID: 11017770]
2.  Estrada, A.F., Maier, D., Scherzinger, D., Avalos, J. and Al-Babili, S. Novel apocarotenoid intermediates in Neurospora crassa mutants imply a new biosynthetic reaction sequence leading to neurosporaxanthin formation. Fungal Genet. Biol. 45 (2008) 1497–1505. [DOI] [PMID: 18812228]
[EC 1.3.99.30 created 2011]
 
 
EC 1.3.99.36     
Accepted name: cypemycin cysteine dehydrogenase (decarboxylating)
Reaction: cypemycin(1-18)-L-Cys-L-Leu-L-Val-L-Cys + acceptor = C3.19,S21-cyclocypemycin(1-18)-L-Ala-L-Leu-N-thioethenyl-L-valinamide + CO2 + H2S + reduced acceptor
For diagram of reaction, click here
Other name(s): cypemycin decarboxylase; CypD
Systematic name: cypemycin(1-18)-L-Cys-L-Leu-L-Val-L-Cys:acceptor oxidoreductase (decarboxylating, cyclizing)
Comments: Cypemycin, isolated from the bacterium Streptomyces sp. OH-4156, is a peptide antibiotic, member of the linaridins, a class of posttranslationally modified ribosomally synthesized peptides. The enzyme decarboxylates and reduces the C-terminal L-cysteine residue, producing a reactive ethenethiol group that reacts with a dethiolated cysteine upstream to form an aminovinyl-methyl-cysteine loop that is important for the antibiotic activity of the mature peptide.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Claesen, J. and Bibb, M. Genome mining and genetic analysis of cypemycin biosynthesis reveal an unusual class of posttranslationally modified peptides. Proc. Natl. Acad. Sci. USA 107 (2010) 16297–16302. [DOI] [PMID: 20805503]
[EC 1.3.99.36 created 2014]
 
 
EC 1.4.1.22      
Deleted entry: ornithine cyclodeaminase. It was pointed out during the public-review process that there is no overall consumption of NAD+ during the reaction. As a result, transfer of the enzyme from EC 4.3.1.12 was not necessary and EC 1.4.1.22 was withdrawn before being made official
[EC 1.4.1.22 created 2006, deleted 2006]
 
 
EC 1.4.3.12     
Accepted name: cyclohexylamine oxidase
Reaction: cyclohexylamine + O2 + H2O = cyclohexanone + NH3 + H2O2
Systematic name: cyclohexylamine:oxygen oxidoreductase (deaminating)
Comments: A flavoprotein (FAD). Some other cyclic amines can act instead of cyclohexylamine, but not simple aliphatic and aromatic amides.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 63116-97-2
References:
1.  Tokieda, T., Niimura, T., Takamura, F. and Yamaha, T. Purification and some properties of cyclohexylamine oxidase from a Pseudomonas sp. J. Biochem. (Tokyo) 81 (1977) 851–858. [PMID: 18451]
[EC 1.4.3.12 created 1978]
 
 
EC 1.4.3.13     
Accepted name: protein-lysine 6-oxidase
Reaction: [protein]-L-lysine + O2 + H2O = [protein]-(S)-2-amino-6-oxohexanoate + NH3 + H2O2
Glossary: (S)-2-amino-6-oxohexanoate = L-allysine
Other name(s): lysyl oxidase
Systematic name: protein-L-lysine:oxygen 6-oxidoreductase (deaminating)
Comments: Also acts on protein 5-hydroxylysine. This enzyme catalyses the final known enzymic step required for collagen and elastin cross-linking in the biosynthesis of normal mature extracellular matrices [4]. These reactions play an important role for the development, elasticity and extensibility of connective tissue. The enzyme is also active on free amines, such as cadaverine or benzylamine [4,5]. Some isoforms can also use [protein]-N(6)-acetyl-L-lysine as substrate deacetamidating the substrate [6].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 99676-44-5
References:
1.  Harris, E.D., Gonnerman, W.A., Savage, J.E. and O'Dell, B.L. Connective tissue amine oxidase. II. Purification and partial characterization of lysyl oxidase from chick aorta. Biochim. Biophys. Acta 341 (1974) 332–344. [DOI] [PMID: 4838158]
2.  Rayton, J.K. and Harris, E.D. Induction of lysyl oxidase with copper. Properties of an in vitro system. J. Biol. Chem. 254 (1979) 621–626. [PMID: 33171]
3.  Stassen, F.L.H. Properties of highly purified lysyl oxidase from embryonic chick cartilage. Biochim. Biophys. Acta 438 (1976) 49–60. [DOI] [PMID: 7318]
4.  Palamakumbura, A.H. and Trackman, P.C. A fluorometric assay for detection of lysyl oxidase enzyme activity in biological samples. Anal. Biochem. 300 (2002) 245–251. [DOI] [PMID: 11779117]
5.  Kagan, H.M., Williams, M.A., Williamson, P.R. and Anderson, J.M. Influence of sequence and charge on the specificity of lysyl oxidase toward protein and synthetic peptide substrates. J. Biol. Chem. 259 (1984) 11203–11207. [PMID: 6147351]
6.  Rodriguez, H.M., Vaysberg, M., Mikels, A., McCauley, S., Velayo, A.C., Garcia, C. and Smith, V. Modulation of lysyl oxidase-like 2 enzymatic activity by an allosteric antibody inhibitor. J. Biol. Chem. 285 (2010) 20964–20974. [DOI] [PMID: 20439985]
7.  Kim, Y.M., Kim, E.C. and Kim, Y. The human lysyl oxidase-like 2 protein functions as an amine oxidase toward collagen and elastin. Mol. Biol. Rep. 38 (2011) 145–149. [DOI] [PMID: 20306300]
8.  Xu, L., Go, E.P., Finney, J., Moon, H., Lantz, M., Rebecchi, K., Desaire, H. and Mure, M. Post-translational modifications of recombinant human lysyl oxidase-like 2 (rhLOXL2) secreted from Drosophila S2 cells. J. Biol. Chem. 288 (2013) 5357–5363. [DOI] [PMID: 23319596]
9.  Ma, L., Huang, C., Wang, X.J., Xin, D.E., Wang, L.S., Zou, Q.C., Zhang, Y.S., Tan, M.D., Wang, Y.M., Zhao, T.C., Chatterjee, D., Altura, R.A., Wang, C., Xu, Y.S., Yang, J.H., Fan, Y.S., Han, B.H., Si, J., Zhang, X., Cheng, J., Chang, Z. and Chin, Y.E. Lysyl oxidase 3 is a dual-specificity enzyme involved in STAT3 deacetylation and deacetylimination modulation. Mol. Cell 65 (2017) 296–309. [PMID: 28065600]
[EC 1.4.3.13 created 1980, modified 1983]
 
 
EC 1.4.3.16     
Accepted name: L-aspartate oxidase
Reaction: L-aspartate + O2 = iminosuccinate + H2O2
For diagram of quinolinate biosynthesis, click here
Other name(s): NadB; Laspo; AO
Systematic name: L-aspartate:oxygen oxidoreductase
Comments: A flavoprotein (FAD). L-Aspartate oxidase catalyses the first step in the de novo biosynthesis of NAD+ in some bacteria. O2 can be replaced by fumarate as electron acceptor, yielding succinate [5]. The ability of the enzyme to use both O2 and fumarate in cofactor reoxidation enables it to function under both aerobic and anaerobic conditions [5]. Iminosuccinate can either be hydrolysed to form oxaloacetate and NH3 or can be used by EC 2.5.1.72, quinolinate synthase, in the production of quinolinate. The enzyme is a member of the succinate dehydrogenase/fumarate-reductase family of enzymes [5].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 69106-47-4
References:
1.  Nasu, S., Wicks, F.D. and Gholson, R.K. L-Aspartate oxidase, a newly discovered enzyme of Escherichia coli, is the B protein of quinolinate synthetase. J. Biol. Chem. 257 (1982) 626–632. [PMID: 7033218]
2.  Mortarino, M., Negri, A., Tedeschi, G., Simonic, T., Duga, S., Gassen, H.G. and Ronchi, S. L-Aspartate oxidase from Escherichia coli. I. Characterization of coenzyme binding and product inhibition. Eur. J. Biochem. 239 (1996) 418–426. [DOI] [PMID: 8706749]
3.  Tedeschi, G., Negri, A., Mortarino, M., Ceciliani, F., Simonic, T., Faotto, L. and Ronchi, S. L-Aspartate oxidase from Escherichia coli. II. Interaction with C4 dicarboxylic acids and identification of a novel L-aspartate: fumarate oxidoreductase activity. Eur. J. Biochem. 239 (1996) 427–433. [DOI] [PMID: 8706750]
4.  Mattevi, A., Tedeschi, G., Bacchella, L., Coda, A., Negri, A. and Ronchi, S. Structure of L-aspartate oxidase: implications for the succinate dehydrogenase/fumarate reductase oxidoreductase family. Structure 7 (1999) 745–756. [DOI] [PMID: 10425677]
5.  Bossi, R.T., Negri, A., Tedeschi, G. and Mattevi, A. Structure of FAD-bound L-aspartate oxidase: insight into substrate specificity and catalysis. Biochemistry 41 (2002) 3018–3024. [DOI] [PMID: 11863440]
6.  Katoh, A., Uenohara, K., Akita, M. and Hashimoto, T. Early steps in the biosynthesis of NAD in Arabidopsis start with aspartate and occur in the plastid. Plant Physiol. 141 (2006) 851–857. [DOI] [PMID: 16698895]
[EC 1.4.3.16 created 1984, modified 2008]
 
 
EC 1.4.3.21     
Accepted name: primary-amine oxidase
Reaction: RCH2NH2 + H2O + O2 = RCHO + NH3 + H2O2
Other name(s): amine oxidase (ambiguous); amine oxidase (copper-containing); amine oxidase (pyridoxal containing) (incorrect); benzylamine oxidase (incorrect); CAO (ambiguous); copper amine oxidase (ambiguous); Cu-amine oxidase (ambiguous); Cu-containing amine oxidase (ambiguous); diamine oxidase (incorrect); diamino oxhydrase (incorrect); histamine deaminase (ambiguous); histamine oxidase (ambiguous); monoamine oxidase (ambiguous); plasma monoamine oxidase (ambiguous); polyamine oxidase (ambiguous); semicarbazide-sensitive amine oxidase (ambiguous); SSAO (ambiguous)
Systematic name: primary-amine:oxygen oxidoreductase (deaminating)
Comments: A group of enzymes that oxidize primary monoamines but have little or no activity towards diamines, such as histamine, or towards secondary and tertiary amines. They are copper quinoproteins (2,4,5-trihydroxyphenylalanine quinone) and, unlike EC 1.4.3.4, monoamine oxidase, are sensitive to inhibition by carbonyl-group reagents, such as semicarbazide. In some mammalian tissues the enzyme also functions as a vascular-adhesion protein (VAP-1).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Haywood, G.W. and Large, P.J. Microbial oxidation of amines. Distribution, purification and properties of two primary-amine oxidases from the yeast Candida boidinii grown on amines as sole nitrogen source. Biochem. J. 199 (1981) 187–201. [PMID: 7337701]
2.  Tipping, A.J. and McPherson, M.J. Cloning and molecular analysis of the pea seedling copper amine oxidase. J. Biol. Chem. 270 (1995) 16939–16946. [DOI] [PMID: 7622512]
3.  Lyles, G.A. Mammalian plasma and tissue-bound semicarbazide-sensitive amine oxidases: biochemical, pharmacological and toxicological aspects. Int. J. Biochem. Cell Biol. 28 (1996) 259–274. [DOI] [PMID: 8920635]
4.  Wilce, M.C., Dooley, D.M., Freeman, H.C., Guss, J.M., Matsunami, H., McIntire, W.S., Ruggiero, C.E., Tanizawa, K. and Yamaguchi, H. Crystal structures of the copper-containing amine oxidase from Arthrobacter globiformis in the holo and apo forms: implications for the biogenesis of topaquinone. Biochemistry 36 (1997) 16116–16133. [DOI] [PMID: 9405045]
5.  Lee, Y. and Sayre, L.M. Reaffirmation that metabolism of polyamines by bovine plasma amine oxidase occurs strictly at the primary amino termini. J. Biol. Chem. 273 (1998) 19490–19494. [DOI] [PMID: 9677370]
6.  Houen, G. Mammalian Cu-containing amine oxidases (CAOs): new methods of analysis, structural relationships, and possible functions. APMIS Suppl. 96 (1999) 1–46. [PMID: 10668504]
7.  Andrés, N., Lizcano, J.M., Rodríguez, M.J., Romera, M., Unzeta, M. and Mahy, N. Tissue activity and cellular localization of human semicarbazide-sensitive amine oxidase. J. Histochem. Cytochem. 49 (2001) 209–217. [DOI] [PMID: 11156689]
8.  Saysell, C.G., Tambyrajah, W.S., Murray, J.M., Wilmot, C.M., Phillips, S.E., McPherson, M.J. and Knowles, P.F. Probing the catalytic mechanism of Escherichia coli amine oxidase using mutational variants and a reversible inhibitor as a substrate analogue. Biochem. J. 365 (2002) 809–816. [DOI] [PMID: 11985492]
9.  O'Sullivan, J., Unzeta, M., Healy, J., O'Sullivan, M.I., Davey, G. and Tipton, K.F. Semicarbazide-sensitive amine oxidases: enzymes with quite a lot to do. Neurotoxicology 25 (2004) 303–315. [DOI] [PMID: 14697905]
10.  Airenne, T.T., Nymalm, Y., Kidron, H., Smith, D.J., Pihlavisto, M., Salmi, M., Jalkanen, S., Johnson, M.S. and Salminen, T.A. Crystal structure of the human vascular adhesion protein-1: unique structural features with functional implications. Protein Sci. 14 (2005) 1964–1974. [DOI] [PMID: 16046623]
[EC 1.4.3.21 created 2007 (EC 1.4.3.6 created 1961, part-incorporated 2008)]
 
 
EC 1.4.3.22     
Accepted name: diamine oxidase
Reaction: histamine + H2O + O2 = (imidazol-4-yl)acetaldehyde + NH3 + H2O2
Other name(s): amine oxidase (ambiguous); amine oxidase (copper-containing) (ambiguous); CAO (ambiguous); Cu-containing amine oxidase (ambiguous); copper amine oxidase (ambiguous); diamine oxidase (ambiguous); diamino oxhydrase (ambiguous); histaminase; histamine deaminase (incorrect); semicarbazide-sensitive amine oxidase (incorrect); SSAO (incorrect)
Systematic name: histamine:oxygen oxidoreductase (deaminating)
Comments: A group of enzymes that oxidize diamines, such as histamine, and also some primary monoamines but have little or no activity towards secondary and tertiary amines. They are copper quinoproteins (2,4,5-trihydroxyphenylalanine quinone) and, like EC 1.4.3.21 (primary-amine oxidase) but unlike EC 1.4.3.4 (monoamine oxidase), they are sensitive to inhibition by carbonyl-group reagents, such as semicarbazide.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Zeller, E.A. Diamine oxidases. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 8, Academic Press, New York, 1963, pp. 313–335.
2.  Crabbe, M.J., Waight, R.D., Bardsley, W.G., Barker, R.W., Kelly, I.D. and Knowles, P.F. Human placental diamine oxidase. Improved purification and characterization of a copper- and manganese-containing amine oxidase with novel substrate specificity. Biochem. J. 155 (1976) 679–687. [PMID: 182134]
3.  Chassande, O., Renard, S., Barbry, P. and Lazdunski, M. The human gene for diamine oxidase, an amiloride binding protein. Molecular cloning, sequencing, and characterization of the promoter. J. Biol. Chem. 269 (1994) 14484–14489. [PMID: 8182053]
4.  Houen, G. Mammalian Cu-containing amine oxidases (CAOs): new methods of analysis, structural relationships, and possible functions. APMIS Suppl. 96 (1999) 1–46. [PMID: 10668504]
5.  Elmore, B.O., Bollinger, J.A. and Dooley, D.M. Human kidney diamine oxidase: heterologous expression, purification, and characterization. J. Biol. Inorg. Chem. 7 (2002) 565–579. [DOI] [PMID: 12072962]
[EC 1.4.3.22 created 2007 (EC 1.4.3.6 created 1961, part-incorporated 2008)]
 
 
EC 1.5.1.20     
Accepted name: methylenetetrahydrofolate reductase [NAD(P)H]
Reaction: 5-methyltetrahydrofolate + NAD(P)+ = 5,10-methylenetetrahydrofolate + NAD(P)H + H+
For diagram of folate cofactor, click here and for diagram of C1 metabolism, click here
Other name(s): MTHFR (gene name)
Systematic name: 5-methyltetrahydrofolate:NAD(P)+ oxidoreductase
Comments: A flavoprotein (FAD). The enzyme catalyses the reversible conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, playing an important role in folate metabolism by regulating the distribution of one-carbon moieties between cellular methylation reactions and nucleic acid synthesis. This enzyme, characterized from Protozoan parasites of the genus Leishmania, is unique among similar characterized eukaryotic enzymes in that it lacks the C-terminal allosteric regulatory domain (allowing it to catalyse a reversible reaction) and uses NADH and NADPH with equal efficiency under physiological conditions. cf. EC 1.5.1.53, methylenetetrahydrofolate reductase (NADPH); EC 1.5.1.54, methylenetetrahydrofolate reductase (NADH); and EC 1.5.7.1, methylenetetrahydrofolate reductase (ferredoxin).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 71822-25-8
References:
1.  Vickers, T.J., Orsomando, G., de la Garza, R.D., Scott, D.A., Kang, S.O., Hanson, A.D. and Beverley, S.M. Biochemical and genetic analysis of methylenetetrahydrofolate reductase in Leishmania metabolism and virulence. J. Biol. Chem. 281 (2006) 38150–38158. [DOI] [PMID: 17032644]
[EC 1.5.1.20 created 1978 as EC 1.1.1.171, transferred 1984 to EC 1.5.1.20 (EC 1.7.99.5 incorporated 2005), modified 2005., modified 2021, modified 2023]
 
 
EC 1.5.1.53     
Accepted name: methylenetetrahydrofolate reductase (NADPH)
Reaction: 5-methyltetrahydrofolate + NADP+ = 5,10-methylenetetrahydrofolate + NADPH + H+
For diagram of reaction, click here and for its place in C1 metabolism, click here
Other name(s): MTHFR (gene name); methylenetetrahydrofolate (reduced nicotinamide adenine dinucleotide phosphate) reductase; 5,10-methylenetetrahydrofolate reductase (NADPH); 5,10-methylenetetrahydrofolic acid reductase (ambiguous); 5,10-CH2-H4folate reductase (ambiguous); methylenetetrahydrofolate reductase (NADPH2); 5,10-methylenetetrahydrofolate reductase (ambiguous); methylenetetrahydrofolate reductase (ambiguous); N5,10-methylenetetrahydrofolate reductase (ambiguous); 5,10-methylenetetrahydropteroylglutamate reductase (ambiguous); N5,N10-methylenetetrahydrofolate reductase (ambiguous); methylenetetrahydrofolic acid reductase (ambiguous); 5-methyltetrahydrofolate:(acceptor) oxidoreductase (incorrect); 5,10-methylenetetrahydrofolate reductase (FADH2) (ambiguous)
Systematic name: 5-methyltetrahydrofolate:NADP+ oxidoreductase
Comments: A flavoprotein (FAD). The enzyme from yeast and mammals catalyses a physiologically irreversible reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate using NADPH as the electron donor. It plays an important role in folate metabolism by regulating the distribution of one-carbon moieties between cellular methylation reactions and nucleic acid synthesis. The enzyme contains an N-terminal catalytic domain and a C-terminal allosteric regulatory domain that binds S-adenosyl-L-methionine, which acts as an inhibitor. cf. EC 1.5.1.54, methylenetetrahydrofolate reductase (NADH); EC 1.5.1.20, methylenetetrahydrofolate reductase [NAD(P)H]; and EC 1.5.7.1, methylenetetrahydrofolate reductase (ferredoxin).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 71822-25-8
References:
1.  Donaldson, K.O. and Keresztesy, J.C. Naturally occurring forms of folic acid. I. J. Biol. Chem. 234 (1959) 3235–3240. [PMID: 13817476]
2.  Kutzbach, C. and Stokstad, E.L.R. Mammalian methylenetetrahydrofolate reductase. Partial purification, properties, and inhibition by S-adenosylmethionine. Biochim. Biophys. Acta 250 (1971) 459–477. [DOI] [PMID: 4399897]
3.  Daubner, S.C. and Matthews, R.T. Purification and properties of methylenetetrahydrofolate reductase from pig liver. J. Biol. Chem. 257 (1982) 140–145. [PMID: 6975779]
4.  Zhou, J., Kang, S.S., Wong, P.W., Fournier, B. and Rozen, R. Purification and characterization of methylenetetrahydrofolate reductase from human cadaver liver. Biochem Med Metab Biol 43 (1990) 234–242. [DOI] [PMID: 2383427]
5.  Roje, S., Chan, S.Y., Kaplan, F., Raymond, R.K., Horne, D.W., Appling, D.R. and Hanson, A.D. Metabolic engineering in yeast demonstrates that S-adenosylmethionine controls flux through the methylenetetrahydrofolate reductase reaction in vivo. J. Biol. Chem. 277 (2002) 4056–4061. [DOI] [PMID: 11729203]
6.  Froese, D.S., Kopec, J., Rembeza, E., Bezerra, G.A., Oberholzer, A.E., Suormala, T., Lutz, S., Chalk, R., Borkowska, O., Baumgartner, M.R. and Yue, W.W. Structural basis for the regulation of human 5,10-methylenetetrahydrofolate reductase by phosphorylation and S-adenosylmethionine inhibition. Nat. Commun. 9:2261 (2018). [DOI] [PMID: 29891918]
[EC 1.5.1.53 created 2021]
 
 
EC 1.5.1.54     
Accepted name: methylenetetrahydrofolate reductase (NADH)
Reaction: 5-methyltetrahydrofolate + NAD+ = 5,10-methylenetetrahydrofolate + NADH + H+
For diagram of reaction, click here and for its place in C1 metabolism, click here
Other name(s): metF (gene name); 5,10-methylenetetrahydrofolic acid reductase (ambiguous); 5,10-CH2-H4folate reductase (ambiguous); methylenetetrahydrofolate (reduced riboflavin adenine dinucleotide) reductase; 5,10-methylenetetrahydrofolate reductase (ambiguous); methylenetetrahydrofolate reductase (ambiguous); N5,10-methylenetetrahydrofolate reductase (ambiguous); 5,10-methylenetetrahydropteroylglutamate reductase (ambiguous); N5,N10-methylenetetrahydrofolate reductase (ambiguous); methylenetetrahydrofolic acid reductase (ambiguous); 5-methyltetrahydrofolate:(acceptor) oxidoreductase (incorrect); 5,10-methylenetetrahydrofolate reductase (FADH2) (ambiguous)
Systematic name: 5-methyltetrahydrofolate:NAD+ oxidoreductase
Comments: A flavoprotein (FAD). The enzyme, found in plants and some bacteria, catalyses the reversible conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate using NADH as the electron donor. It play an important role in folate metabolism by regulating the distribution of one-carbon moieties between cellular methylation reactions and nucleic acid synthesis. These proteins either contain a C-terminal domain that does not mediate allosteric regulation (as in plants) or lack this domain entirely (as in Escherichia coli). As a result, the plant enzymes are not inhibited by S-adenosyl-L-methionine, unlike other eukaryotic enzymes, and catalyse a reversible reaction. cf. EC 1.5.1.53, methylenetetrahydrofolate reductase (NADPH); EC 1.5.1.20, methylenetetrahydrofolate reductase [NAD(P)H]; and EC 1.5.7.1, methylenetetrahydrofolate reductase (ferredoxin).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 71822-25-8
References:
1.  Wohlfarth, G., Geerligs, G. and Diekert, G. Purification and properties of a NADH-dependent 5,10-methylenetetrahydrofolate reductase from Peptostreptococcus productus. Eur. J. Biochem. 192 (1990) 411–417. [DOI] [PMID: 2209595]
2.  Sheppard, C.A., Trimmer, E.E. and Matthews, R.G. Purification and properties of NADH-dependent 5,10-methylenetetrahydrofolate reductase (MetF) from Escherichia coli. J. Bacteriol. 181 (1999) 718–725. [PMID: 9922232]
3.  Guenther, B.D., Sheppard, C.A., Tran, P., Rozen, R., Matthews, R.G. and Ludwig, M.L. The structure and properties of methylenetetrahydrofolate reductase from Escherichia coli suggest how folate ameliorates human hyperhomocysteinemia. Nat. Struct. Biol. 6 (1999) 359–365. [DOI] [PMID: 10201405]
4.  Roje, S., Wang, H., McNeil, S.D., Raymond, R.K., Appling, D.R., Shachar-Hill, Y., Bohnert, H.J. and Hanson, A.D. Isolation, characterization, and functional expression of cDNAs encoding NADH-dependent methylenetetrahydrofolate reductase from higher plants. J. Biol. Chem. 274 (1999) 36089–36096. [DOI] [PMID: 10593891]
5.  Bertsch, J., Oppinger, C., Hess, V., Langer, J.D. and Muller, V. Heterotrimeric NADH-oxidizing methylenetetrahydrofolate reductase from the acetogenic bacterium Acetobacterium woodii. J. Bacteriol. 197 (2015) 1681–1689. [DOI] [PMID: 25733614]
[EC 1.5.1.54 created 2021]
 
 
EC 1.5.3.10     
Accepted name: dimethylglycine oxidase
Reaction: N,N-dimethylglycine + 5,6,7,8-tetrahydrofolate + O2 = sarcosine + 5,10-methylenetetrahydrofolate + H2O2
Other name(s): dmg (gene name); N,N-dimethylglycine:oxygen oxidoreductase (demethylating)
Systematic name: N,N-dimethylglycine,5,6,7,8-tetrahydrofolate:oxygen oxidoreductase (demethylating,5,10-methylenetetrahydrofolate-forming)
Comments: A flavoprotein (FAD). The enzyme, characterized from the bacterium Arthrobacter globiformis, contains two active sites connected by a large "reaction chamber". An imine intermediate is transferred between the sites, eliminating the production of toxic formaldehyde. In the absence of folate the enzyme does form formaldehyde. Does not oxidize sarcosine. cf. EC 1.5.8.4, dimethylglycine dehydrogenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37256-30-7
References:
1.  Mori, N., Kawakami, B., Tani, Y. and Yamada, H. Purification and properties of dimethylglycine oxidase from Cylindrocarpon didymum M-1. Agric. Biol. Chem. 44 (1980) 1383–1389.
2.  Meskys, R., Harris, R.J., Casaite, V., Basran, J. and Scrutton, N.S. Organization of the genes involved in dimethylglycine and sarcosine degradation in Arthrobacter spp.: implications for glycine betaine catabolism. Eur. J. Biochem. 268 (2001) 3390–3398. [DOI] [PMID: 11422368]
3.  Basran, J., Bhanji, N., Basran, A., Nietlispach, D., Mistry, S., Meskys, R. and Scrutton, N.S. Mechanistic aspects of the covalent flavoprotein dimethylglycine oxidase of Arthrobacter globiformis studied by stopped-flow spectrophotometry. Biochemistry 41 (2002) 4733–4743. [DOI] [PMID: 11926836]
4.  Leys, D., Basran, J. and Scrutton, N.S. Channelling and formation of ‘active’ formaldehyde in dimethylglycine oxidase. EMBO J. 22 (2003) 4038–4048. [DOI] [PMID: 12912903]
5.  Basran, J., Fullerton, S., Leys, D. and Scrutton, N.S. Mechanism of FAD reduction and role of active site residues His-225 and Tyr-259 in Arthrobacter globiformis dimethylglycine oxidase: analysis of mutant structure and catalytic function. Biochemistry 45 (2006) 11151–11161. [DOI] [PMID: 16964976]
6.  Tralau, T., Lafite, P., Levy, C., Combe, J.P., Scrutton, N.S. and Leys, D. An internal reaction chamber in dimethylglycine oxidase provides efficient protection from exposure to toxic formaldehyde. J. Biol. Chem. 284 (2009) 17826–17834. [DOI] [PMID: 19369258]
7.  Casaite, V., Poviloniene, S., Meskiene, R., Rutkiene, R. and Meskys, R. Studies of dimethylglycine oxidase isoenzymes in Arthrobacter globiformis cells. Curr. Microbiol. 62 (2011) 1267–1273. [DOI] [PMID: 21188587]
[EC 1.5.3.10 created 1992, modified 2022]
 
 
EC 1.5.3.16     
Accepted name: spermine oxidase
Reaction: spermine + O2 + H2O = spermidine + 3-aminopropanal + H2O2
Other name(s): PAOh1/SMO; PAOh1 (ambiguous); AtPAO1; AtPAO4; SMO; mSMO; SMO(PAOh1); SMO/PAOh1; SMO5; mSMOmu
Systematic name: spermidine:oxygen oxidoreductase (spermidine-forming)
Comments: The enzyme from Arabidopsis thaliana (AtPAO1) oxidizes norspermine to norspermidine with high efficiency [3]. The mammalian enzyme, encoded by the SMOX gene, is a cytosolic enzyme that catalyses the oxidation of spermine at the exo (three-carbon) side of the tertiary amine. No activity with spermidine. Weak activity with N1-acetylspermine. A flavoprotein (FAD). Differs in specificity from EC 1.5.3.13 (N1-acetylpolyamine oxidase), EC 1.5.3.14 (polyamine oxidase (propane-1,3-diamine-forming)), EC 1.5.3.15 (N8-acetylspermidine oxidase (propane-1,3-diamine-forming) and EC 1.5.3.17 (non-specific polyamine oxidase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Murray-Stewart, T., Wang, Y., Goodwin, A., Hacker, A., Meeker, A. and Casero, R.A., Jr. Nuclear localization of human spermine oxidase isoforms - possible implications in drug response and disease etiology. FEBS J. 275 (2008) 2795–2806. [DOI] [PMID: 18422650]
2.  Cervelli, M., Polticelli, F., Federico, R. and Mariottini, P. Heterologous expression and characterization of mouse spermine oxidase. J. Biol. Chem. 278 (2003) 5271–5276. [DOI] [PMID: 12458219]
3.  Tavladoraki, P., Rossi, M.N., Saccuti, G., Perez-Amador, M.A., Polticelli, F., Angelini, R. and Federico, R. Heterologous expression and biochemical characterization of a polyamine oxidase from Arabidopsis involved in polyamine back conversion. Plant Physiol. 141 (2006) 1519–1532. [DOI] [PMID: 16778015]
4.  Wang, Y., Murray-Stewart, T., Devereux, W., Hacker, A., Frydman, B., Woster, P.M. and Casero, R.A., Jr. Properties of purified recombinant human polyamine oxidase, PAOh1/SMO. Biochem. Biophys. Res. Commun. 304 (2003) 605–611. [DOI] [PMID: 12727196]
[EC 1.5.3.16 created 2009]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald