The Enzyme Database

Displaying entries 1-50 of 577.

<< Previous | Next >>    printer_iconPrintable version

EC 1.1.1.206     
Accepted name: tropinone reductase I
Reaction: tropine + NADP+ = tropinone + NADPH + H+
For diagram of reaction, click here
Glossary: tropine = 3α-hydroxytropane = tropan-3-endo-ol
Other name(s): tropine dehydrogenase; tropinone reductase (ambiguous); TR-I
Systematic name: tropine:NADP+ 3α-oxidoreductase
Comments: Also oxidizes other tropan-3α-ols, but not the corresponding β-derivatives [1]. This enzyme along with EC 1.1.1.236, tropinone reductase II, represents a branch point in tropane alkaloid metabolism [4]. Tropine (the product of EC 1.1.1.206) is incorporated into hyoscyamine and scopolamine whereas pseudotropine (the product of EC 1.1.1.236) is the first specific metabolite on the pathway to the calystegines [4]. Both enzymes are always found together in any given tropane-alkaloid-producing species, have a common substrate, tropinone, and are strictly stereospecific [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 118390-87-7
References:
1.  Koelen, K.J. and Gross, G.G. Partial purification and properties of tropine dehydrogenase from root cultures of Datura stramonium. Planta Med. 44 (1982) 227–230. [PMID: 17402126]
2.  Couladis, M.M, Friesen, J.B., Landgrebe, M.E. and Leete, E. Enzymes catalysing the reduction of tropinone to tropine and &psi;-tropine isolated from the roots of Datura innoxia. Pytochemistry 30 (1991) 801–805.
3.  Nakajima, K., Hashimoto, T. and Yamada, Y. Two tropinone reductases with different stereospecificities are short-chain dehydrogenases evolved from a common ancestor. Proc. Natl. Acad. Sci. USA 90 (1993) 9591–9595. [DOI] [PMID: 8415746]
4.  Dräger, B. Tropinone reductases, enzymes at the branch point of tropane alkaloid metabolism. Phytochemistry 67 (2006) 327–337. [DOI] [PMID: 16426652]
[EC 1.1.1.206 created 1984, modified 2007]
 
 
EC 1.1.1.236     
Accepted name: tropinone reductase II
Reaction: pseudotropine + NADP+ = tropinone + NADPH + H+
For diagram of reaction, click here
Glossary: pseudotropine = &psi;-tropine = 3β-hydroxytropane = tropan-3-exo-ol
Other name(s): tropinone (&psi;-tropine-forming) reductase; pseudotropine forming tropinone reductase; tropinone reductase (ambiguous); TR-II
Systematic name: pseudotropine:NADP+ 3-oxidoreductase
Comments: This enzyme along with EC 1.1.1.206, tropine dehydrogenase, represents a branch point in tropane alkaloid metabolism [3]. Tropine (the product of EC 1.1.1.206) is incorporated into hyoscyamine and scopolamine whereas pseudotropine (the product of EC 1.1.1.236) is the first specific metabolite on the pathway to the calystegines [3]. Both enzymes are always found together in any given tropane-alkaloid-producing species, have a common substrate, tropinone, and are strictly stereospecific [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 136111-61-0
References:
1.  Dräger, B., Hashimoto, T. and Yamada, Y. Purification and characterization of pseudotropine forming tropinone reductase from Hyoscyamus niger root cultures. Agric. Biol. Chem. 52 (1988) 2663–2667.
2.  Couladis, M.M, Friesen, J.B., Landgrebe, M.E. and Leete, E. Enzymes catalysing the reduction of tropinone to tropine and &psi;-tropine isolated from the roots of Datura innoxia. Pytochemistry 30 (1991) 801–805.
3.  Nakajima, K., Hashimoto, T. and Yamada, Y. Two tropinone reductases with different stereospecificities are short-chain dehydrogenases evolved from a common ancestor. Proc. Natl. Acad. Sci. USA 90 (1993) 9591–9595. [DOI] [PMID: 8415746]
4.  Dräger, B. Tropinone reductases, enzymes at the branch point of tropane alkaloid metabolism. Phytochemistry 67 (2006) 327–337. [DOI] [PMID: 16426652]
[EC 1.1.1.236 created 1992, modified 2007]
 
 
EC 1.1.1.258     
Accepted name: 6-hydroxyhexanoate dehydrogenase
Reaction: 6-hydroxyhexanoate + NAD+ = 6-oxohexanoate + NADH + H+
Systematic name: 6-hydroxyhexanoate:NAD+ oxidoreductase
Comments: Involved in the cyclohexanol degradation pathway in Acinetobacter NCIB 9871.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 77000-03-4
References:
1.  Donoghue, N.A. and Trudgill, P.W. The metabolism of cyclohexanol by Acinetobacter NCIB 9871. Eur. J. Biochem. 60 (1975) 1–7. [DOI] [PMID: 1261]
2.  Hecker, L.I., Tondeur, Y. and Farrelly, J.G. Formation of &epsilon;-hydroxycaproate and &epsilon;-aminocaproate from N-nitrosohexamethyleneimine: evidence that microsomal α-hydroxylation of cyclic nitrosamines may not always involve the insertion of molecular oxygen into the substrate. Chem. Biol. Interact. 49 (1984) 235–248. [DOI] [PMID: 6722936]
[EC 1.1.1.258 created 2000]
 
 
EC 1.1.1.288     
Accepted name: xanthoxin dehydrogenase
Reaction: xanthoxin + NAD+ = abscisic aldehyde + NADH + H+
For diagram of abscisic-acid biosynthesis, click here and for carotenoid-epoxide rearrangements, click here
Other name(s): xanthoxin oxidase; ABA2
Systematic name: xanthoxin:NAD+ oxidoreductase
Comments: Requires a molybdenum cofactor for activity. NADP+ cannot replace NAD+ and short-chain alcohols such as ethanol, isopropanol, butanol and cyclohexanol cannot replace xanthoxin as substrate [3]. Involved in the abscisic-acid biosynthesis pathway in plants, along with EC 1.2.3.14 (abscisic-aldehyde oxidase), EC 1.13.11.51 (9-cis-epoxycarotenoid dioxygenase) and EC 1.14.13.93 [(+)-abscisic acid 8′-hydroxylase]. Abscisic acid is a sesquiterpenoid plant hormone that is involved in the control of a wide range of essential physiological processes, including seed development, germination and responses to stress [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 129204-37-1
References:
1.  Sindhu, R.K. and Walton, D.C. Xanthoxin metabolism in cell-free preparations from wild type and wilty mutants of tomato. Plant Physiol. 88 (1988) 178–182. [PMID: 16666262]
2.  Schwartz, S.H., Leon-Kloosterziel, K.M., Koornneef, M. and Zeevaart, J.A. Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana. Plant Physiol. 114 (1997) 161–166. [PMID: 9159947]
3.  González-Guzmán, M., Apostolova, N., Bellés, J.M., Barrero, J.M., Piqueras, P., Ponce, M.R., Micol, J.L., Serrano, R. and Rodríguez, P.L. The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell 14 (2002) 1833–1846. [DOI] [PMID: 12172025]
[EC 1.1.1.288 created 2005]
 
 
EC 1.1.1.293      
Deleted entry: tropinone reductase I. This enzyme was already in the Enzyme List as EC 1.1.1.206, tropine dehydrogenase so EC 1.1.1.293 has been withdrawn at the public-review stage
[EC 1.1.1.293 created 2007, withdrawn while undergoing public review]
 
 
EC 1.1.1.312     
Accepted name: 2-hydroxy-4-carboxymuconate semialdehyde hemiacetal dehydrogenase
Reaction: 4-carboxy-2-hydroxymuconate semialdehyde hemiacetal + NADP+ = 2-oxo-2H-pyran-4,6-dicarboxylate + NADPH + H+
For diagram of the protocatechuate 3,4-cleavage pathway, click here
Other name(s): 2-hydroxy-4-carboxymuconate 6-semialdehyde dehydrogenase; 4-carboxy-2-hydroxy-cis,cis-muconate-6-semialdehyde:NADP+ oxidoreductase; α-hydroxy-γ-carboxymuconic &epsilon;-semialdehyde dehydrogenase; 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase; LigC; ProD
Systematic name: 4-carboxy-2-hydroxymuconate semialdehyde hemiacetal:NADP+ 2-oxidoreductase
Comments: The enzyme does not act on unsubstituted aliphatic or aromatic aldehydes or glucose; NAD+ can replace NADP+, but with lower affinity. The enzyme was initially believed to act on 4-carboxy-2-hydroxy-cis,cis-muconate 6-semialdehyde and produce 4-carboxy-2-hydroxy-cis,cis-muconate [1]. However, later studies showed that the substrate is the hemiacetal form [3], and the product is 2-oxo-2H-pyran-4,6-dicarboxylate [2,4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Maruyama, K., Ariga, N., Tsuda, M. and Deguchi, K. Purification and properties of α-hydroxy-γ-carboxymuconic &epsilon;-semialdehyde dehydrogenase. J. Biochem. (Tokyo) 83 (1978) 1125–1134. [PMID: 26671]
2.  Maruyama, K. Isolation and identification of the reaction product of α-hydroxy-γ-carboxymuconic &epsilon;-semialdehyde dehydrogenase. J. Biochem. 86 (1979) 1671–1677. [PMID: 528534]
3.  Maruyama, K. Purification and properties of 2-pyrone-4,6-dicarboxylate hydrolase. J. Biochem. (Tokyo) 93 (1983) 557–565. [PMID: 6841353]
4.  Masai, E., Momose, K., Hara, H., Nishikawa, S., Katayama, Y. and Fukuda, M. Genetic and biochemical characterization of 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase and its role in the protocatechuate 4,5-cleavage pathway in Sphingomonas paucimobilis SYK-6. J. Bacteriol. 182 (2000) 6651–6658. [DOI] [PMID: 11073908]
[EC 1.1.1.312 created 1978 as EC 1.2.1.45, transferred 2011 to EC 1.1.1.312]
 
 
EC 1.1.1.315     
Accepted name: 11-cis-retinol dehydrogenase
Reaction: 11-cis-retinol—[retinal-binding-protein] + NAD+ = 11-cis-retinal—[retinol-binding-protein] + NADH + H+
Glossary: 11-cis-retinal = 11-cis-retinaldehyde
Other name(s): RDH5 (gene name)
Systematic name: 11-cis-retinol:NAD+ oxidoreductase
Comments: This enzyme, abundant in the retinal pigment epithelium, catalyses the reduction of 11-cis-retinol to 11-cis-retinal [1] while the substrate is bound to the retinal-binding protein [4]. This is a crucial step in the regeneration of 11-cis-retinal, the chromophore of rhodopsin. The enzyme can also accept other cis forms of retinol [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Simon, A., Hellman, U., Wernstedt, C. and Eriksson, U. The retinal pigment epithelial-specific 11-cis retinol dehydrogenase belongs to the family of short chain alcohol dehydrogenases. J. Biol. Chem. 270 (1995) 1107–1112. [DOI] [PMID: 7836368]
2.  Wang, J., Chai, X., Eriksson, U. and Napoli, J.L. Activity of human 11-cis-retinol dehydrogenase (Rdh5) with steroids and retinoids and expression of its mRNA in extra-ocular human tissue. Biochem. J. 338 (1999) 23–27. [PMID: 9931293]
3.  Liden, M., Romert, A., Tryggvason, K., Persson, B. and Eriksson, U. Biochemical defects in 11-cis-retinol dehydrogenase mutants associated with fundus albipunctatus. J. Biol. Chem. 276 (2001) 49251–49257. [DOI] [PMID: 11675386]
4.  Wu, Z., Yang, Y., Shaw, N., Bhattacharya, S., Yan, L., West, K., Roth, K., Noy, N., Qin, J. and Crabb, J.W. Mapping the ligand binding pocket in the cellular retinaldehyde binding protein. J. Biol. Chem. 278 (2003) 12390–12396. [DOI] [PMID: 12536149]
[EC 1.1.1.315 created 2011]
 
 
EC 1.1.1.316     
Accepted name: L-galactose 1-dehydrogenase
Reaction: L-galactose + NAD+ = L-galactono-1,4-lactone + NADH + H+
Other name(s): L-GalDH; L-galactose dehydrogenase
Systematic name: L-galactose:NAD+ 1-oxidoreductase
Comments: The enzyme catalyses a step in the ascorbate biosynthesis in higher plants (Smirnoff-Wheeler pathway). The activity with NADP+ is less than 10% of the activity with NAD+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Mieda, T., Yabuta, Y., Rapolu, M., Motoki, T., Takeda, T., Yoshimura, K., Ishikawa, T. and Shigeoka, S. Feedback inhibition of spinach L-galactose dehydrogenase by L-ascorbate. Plant Cell Physiol. 45 (2004) 1271–1279. [DOI] [PMID: 15509850]
2.  Gatzek, S., Wheeler, G.L. and Smirnoff, N. Antisense suppression of L-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated L-galactose synthesis. Plant J. 30 (2002) 541–553. [DOI] [PMID: 12047629]
3.  Wheeler, G.L., Jones, M.A. and Smirnoff, N. The biosynthetic pathway of vitamin C in higher plants. Nature 393 (1998) 365–369. [DOI] [PMID: 9620799]
4.  Oh, M.M., Carey, E.E. and Rajashekar, C.B. Environmental stresses induce health-promoting phytochemicals in lettuce. Plant Physiol. Biochem. 47 (2009) 578–583. [DOI] [PMID: 19297184]
[EC 1.1.1.316 created 2011]
 
 
EC 1.1.1.330     
Accepted name: very-long-chain 3-oxoacyl-CoA reductase
Reaction: a very-long-chain (3R)-3-hydroxyacyl-CoA + NADP+ = a very-long-chain 3-oxoacyl-CoA + NADPH + H+
Glossary: a very-long-chain acyl-CoA = an acyl-CoA thioester where the acyl chain contains 23 or more carbon atoms.
Other name(s): very-long-chain 3-ketoacyl-CoA reductase; very-long-chain β-ketoacyl-CoA reductase; KCR (gene name); IFA38 (gene name)
Systematic name: (3R)-3-hydroxyacyl-CoA:NADP+ oxidoreductase
Comments: The second component of the elongase, a microsomal protein complex responsible for extending palmitoyl-CoA and stearoyl-CoA (and modified forms thereof) to very-long-chain acyl CoAs. The enzyme is active with substrates with chain length of C16 to C34, depending on the species. cf. EC 2.3.1.199, very-long-chain 3-oxoacyl-CoA synthase, EC 4.2.1.134, very-long-chain (3R)-3-hydroxyacyl-[acyl-carrier protein] dehydratase, and EC 1.3.1.93, very-long-chain enoyl-CoA reductase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Beaudoin, F., Gable, K., Sayanova, O., Dunn, T. and Napier, J.A. A Saccharomyces cerevisiae gene required for heterologous fatty acid elongase activity encodes a microsomal β-keto-reductase. J. Biol. Chem. 277 (2002) 11481–11488. [DOI] [PMID: 11792704]
2.  Han, G., Gable, K., Kohlwein, S.D., Beaudoin, F., Napier, J.A. and Dunn, T.M. The Saccharomyces cerevisiae YBR159w gene encodes the 3-ketoreductase of the microsomal fatty acid elongase. J. Biol. Chem. 277 (2002) 35440–35449. [DOI] [PMID: 12087109]
3.  Beaudoin, F., Wu, X., Li, F., Haslam, R.P., Markham, J.E., Zheng, H., Napier, J.A. and Kunst, L. Functional characterization of the Arabidopsis β-ketoacyl-coenzyme A reductase candidates of the fatty acid elongase. Plant Physiol. 150 (2009) 1174–1191. [DOI] [PMID: 19439572]
[EC 1.1.1.330 created 2012]
 
 
EC 1.1.1.358     
Accepted name: 2-dehydropantolactone reductase
Reaction: (R)-pantolactone + NADP+ = 2-dehydropantolactone + NADPH + H+
Other name(s): 2-oxopantoyl lactone reductase; 2-ketopantoyl lactone reductase; ketopantoyl lactone reductase; 2-dehydropantoyl-lactone reductase
Systematic name: (R)-pantolactone:NADP+ oxidoreductase
Comments: The enzyme participates in an alternative pathway for biosynthesis of (R)-pantothenate (vitamin B5). This entry covers enzymes whose stereo specificity for NADP+ is not known. cf. EC 1.1.1.168 2-dehydropantolactone reductase (Re-specific) and EC 1.1.1.214, 2-dehydropantolactone reductase (Si-specific).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Hata, H., Shimizu, S., Hattori, S. and Yamada, H. Ketopantoyl-lactone reductase from Candida parapsilosis: purification and characterization as a conjugated polyketone reductase. Biochim. Biophys. Acta 990 (1989) 175–181. [DOI] [PMID: 2644973]
[EC 1.1.1.358 created 2013]
 
 
EC 1.1.1.385     
Accepted name: dihydroanticapsin dehydrogenase
Reaction: L-dihydroanticapsin + NAD+ = L-anticapsin + NADH + H+
For diagram of bacilysin biosynthesis, click here
Glossary: L-dihydroanticapsin = 3-[(1R,2S,5R,6S)-5-hydroxy-7-oxabicyclo[4.1.0]hept-2-yl]-L-alanine
L-anticapsin = 3-[(1R,2S,6R)-5-oxo-7-oxabicyclo[4.1.0]hept-2-yl]-L-alanine
Other name(s): BacC; ywfD (gene name)
Systematic name: L-dihydroanticapsin:NAD+ oxidoreductase
Comments: The enzyme, characterized from the bacterium Bacillus subtilis, is involved in the biosynthesis of the nonribosomally synthesized dipeptide antibiotic bacilysin, composed of L-alanine and L-anticapsin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Parker, J.B. and Walsh, C.T. Action and timing of BacC and BacD in the late stages of biosynthesis of the dipeptide antibiotic bacilysin. Biochemistry 52 (2013) 889–901. [DOI] [PMID: 23317005]
[EC 1.1.1.385 created 2015]
 
 
EC 1.1.1.418     
Accepted name: plant 3β-hydroxysteroid-4α-carboxylate 3-dehydrogenase (decarboxylating)
Reaction: a 3β-hydroxysteroid-4α-carboxylate + NAD+ = a 3-oxosteroid + CO2 + NADH
For diagram of sterol ring A modification, click here
Other name(s): 3β-HSD/D1 (gene name); 3β-HSD/D2 (gene name); 3β-hydroxysteroid dehydrogenases/C-4 decarboxylase (ambiguous)
Systematic name: 3β-hydroxysteroid-4α-carboxylate:NAD+ 3-oxidoreductase (decarboxylating)
Comments: The enzyme, found in plants, catalyses multiple reactions during plant sterol biosynthesis. Unlike the fungal/animal enzyme EC 1.1.1.170, 3β-hydroxysteroid-4α-carboxylate 3-dehydrogenase (decarboxylating), the plant enzyme is specific for NAD+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 71822-23-6
References:
1.  Rondet, S., Taton, M. and Rahier, A. Identification, characterization, and partial purification of 4 α-carboxysterol-C3-dehydrogenase/ C4-decarboxylase from Zea mays. Arch. Biochem. Biophys. 366 (1999) 249–260. [PMID: 10356290]
2.  Rahier, A., Darnet, S., Bouvier, F., Camara, B. and Bard, M. Molecular and enzymatic characterizations of novel bifunctional 3β-hydroxysteroid dehydrogenases/C-4 decarboxylases from Arabidopsis thaliana. J. Biol. Chem. 281 (2006) 27264–27277. [PMID: 16835224]
3.  Rahier, A., Bergdoll, M., Genot, G., Bouvier, F. and Camara, B. Homology modeling and site-directed mutagenesis reveal catalytic key amino acids of 3β-hydroxysteroid-dehydrogenase/C4-decarboxylase from Arabidopsis. Plant Physiol. 149 (2009) 1872–1886. [PMID: 19218365]
[EC 1.1.1.418 created 2019]
 
 
EC 1.1.1.430     
Accepted name: D-xylose reductase (NADH)
Reaction: xylitol + NAD+ = D-xylose + NADH + H+
Other name(s): XYL1 (gene name) (ambiguous)
Systematic name: xylitol:NAD+ oxidoreductase
Comments: Xylose reductases catalyse the reduction of xylose to xylitol, the initial reaction in the fungal D-xylose degradation pathway. Most of the enzymes exhibit a strict requirement for NADPH (cf. EC 1.1.1.431, D-xylose reductase (NADPH)). Some D-xylose reductases have dual cosubstrate specificity, though they still prefer NADPH to NADH (cf. EC 1.1.1.307, D-xylose reductase [NAD(P)H]). The enzyme from Candida parapsilosis is a rare example of a xylose reductase that significantly prefers NADH, with Km and Vmax values for NADH being 10-fold lower and 10-fold higher, respectively, than for NADPH.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lee, J.K., Koo, B.S. and Kim, S.Y. Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis. Appl. Environ. Microbiol. 69 (2003) 6179–6188. [DOI] [PMID: 14532079]
[EC 1.1.1.430 created 2022]
 
 
EC 1.1.3.20     
Accepted name: long-chain-alcohol oxidase
Reaction: a long-chain alcohol + O2 = a long-chain aldehyde + H2O2
Other name(s): long-chain fatty alcohol oxidase; fatty alcohol oxidase; fatty alcohol:oxygen oxidoreductase; long-chain fatty acid oxidase
Systematic name: long-chain-alcohol:oxygen oxidoreductase
Comments: Oxidizes long-chain fatty alcohols; best substrate is dodecyl alcohol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 129430-50-8
References:
1.  Moreau, R.A. and Huang, A.H.C. Oxidation of fatty alcohol in the cotyledons of jojoba seedlings. Arch. Biochem. Biophys. 194 (1979) 422–430. [DOI] [PMID: 36040]
2.  Moreau, R.A. and Huang, A.H.C. Enzymes of wax ester catabolism in jojoba. Methods Enzymol. 71 (1981) 804–813.
3.  Cheng, Q., Liu, H.T., Bombelli, P., Smith, A. and Slabas, A.R. Functional identification of AtFao3, a membrane bound long chain alcohol oxidase in Arabidopsis thaliana. FEBS Lett. 574 (2004) 62–68. [DOI] [PMID: 15358540]
4.  Zhao, S., Lin, Z., Ma, W., Luo, D. and Cheng, Q. Cloning and characterization of long-chain fatty alcohol oxidase LjFAO1 in Lotus japonicus. Biotechnol. Prog. 24 (2008) 773–779. [DOI] [PMID: 18396913]
5.  Cheng, Q., Sanglard, D., Vanhanen, S., Liu, H.T., Bombelli, P., Smith, A. and Slabas, A.R. Candida yeast long chain fatty alcohol oxidase is a c-type haemoprotein and plays an important role in long chain fatty acid metabolism. Biochim. Biophys. Acta 1735 (2005) 192–203. [DOI] [PMID: 16046182]
[EC 1.1.3.20 created 1984, modified 2010]
 
 
EC 1.1.3.46     
Accepted name: 4-hydroxymandelate oxidase
Reaction: (S)-4-hydroxymandelate + O2 = 2-(4-hydroxyphenyl)-2-oxoacetate + H2O2
Glossary: (S)-4-hydroxymandelate = (S)-2-hydroxy-2-(4-hydroxyphenyl)acetate
2-(4-hydroxyphenyl)-2-oxoacetate = 4-hydroxyphenylglyoxylate = (4-hydroxyphenyl)(oxo)acetate
L-(4-hydroxyphenyl)glycine = (S)-4-hydroxyphenylglycine
L-(3,5-dihydroxyphenyl)glycine = (S)-3,5-dihydroxyphenylglycine
Other name(s): 4HmO; HmO
Systematic name: (S)-4-hydroxymandelate:oxygen 1-oxidoreductase
Comments: A flavoprotein (FMN). The enzyme from the bacterium Amycolatopsis orientalis is involved in the biosynthesis of L-(4-hydroxyphenyl)glycine and L-(3,5-dihydroxyphenyl)glycine, two non-proteinogenic amino acids occurring in the vancomycin group of antibiotics.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Hubbard, B.K., Thomas, M.G. and Walsh, C.T. Biosynthesis of L-p-hydroxyphenylglycine, a non-proteinogenic amino acid constituent of peptide antibiotics. Chem. Biol. 7 (2000) 931–942. [DOI] [PMID: 11137816]
2.  Li, T.L., Choroba, O.W., Charles, E.H., Sandercock, A.M., Williams, D.H. and Spencer, J.B. Characterisation of a hydroxymandelate oxidase involved in the biosynthesis of two unusual amino acids occurring in the vancomycin group of antibiotics. Chem. Commun. (Camb.) (2001) 1752–1753. [PMID: 12240298]
[EC 1.1.3.46 created 2014]
 
 
EC 1.1.5.3     
Accepted name: glycerol-3-phosphate dehydrogenase
Reaction: sn-glycerol 3-phosphate + a quinone = glycerone phosphate + a quinol
Glossary: glycerone phosphate = dihydroxyacetone phosphate = 3-hydroxy-2-oxopropyl phosphate
Other name(s): α-glycerophosphate dehydrogenase; α-glycerophosphate dehydrogenase (acceptor); anaerobic glycerol-3-phosphate dehydrogenase; DL-glycerol 3-phosphate oxidase (misleading); FAD-dependent glycerol-3-phosphate dehydrogenase; FAD-dependent sn-glycerol-3-phosphate dehydrogenase; FAD-GPDH; FAD-linked glycerol 3-phosphate dehydrogenase; FAD-linked L-glycerol-3-phosphate dehydrogenase; flavin-linked glycerol-3-phosphate dehydrogenase; flavoprotein-linked L-glycerol 3-phosphate dehydrogenase; glycerol 3-phosphate cytochrome c reductase (misleading); glycerol phosphate dehydrogenase; glycerol phosphate dehydrogenase (acceptor); glycerol phosphate dehydrogenase (FAD); glycerol-3-phosphate CoQ reductase; glycerol-3-phosphate dehydrogenase (flavin-linked); glycerol-3-phosphate:CoQ reductase; glycerophosphate dehydrogenase; L-3-glycerophosphate-ubiquinone oxidoreductase; L-glycerol-3-phosphate dehydrogenase (ambiguous); L-glycerophosphate dehydrogenase; mGPD; mitochondrial glycerol phosphate dehydrogenase; NAD+-independent glycerol phosphate dehydrogenase; pyridine nucleotide-independent L-glycerol 3-phosphate dehydrogenase; sn-glycerol 3-phosphate oxidase (misleading); sn-glycerol-3-phosphate dehydrogenase; sn-glycerol-3-phosphate:(acceptor) 2-oxidoreductase; sn-glycerol-3-phosphate:acceptor 2-oxidoreductase
Systematic name: sn-glycerol 3-phosphate:quinone oxidoreductase
Comments: This flavin-dependent dehydrogenase is an essential membrane enzyme, functioning at the central junction of glycolysis, respiration and phospholipid biosynthesis. In bacteria, the enzyme is localized to the cytoplasmic membrane [6], while in eukaryotes it is tightly bound to the outer surface of the inner mitochondrial membrane [2]. In eukaryotes, this enzyme, together with the cytosolic enzyme EC 1.1.1.8, glycerol-3-phosphate dehydrogenase (NAD+), forms the glycerol-3-phosphate shuttle by which NADH produced in the cytosol, primarily from glycolysis, can be reoxidized to NAD+ by the mitochondrial electron-transport chain [3]. This shuttle plays a critical role in transferring reducing equivalents from cytosolic NADH into the mitochondrial matrix [7,8]. Insect flight muscle uses only CoQ10 as the physiological quinone whereas hamster and rat mitochondria use mainly CoQ9 [4]. The enzyme is activated by calcium [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9001-49-4
References:
1.  Ringler, R.L. Studies on the mitochondrial α-glycerophosphate dehydrogenase. II. Extraction and partial purification of the dehydrogenase from pig brain. J. Biol. Chem. 236 (1961) 1192–1198. [PMID: 13741763]
2.  Schryvers, A., Lohmeier, E. and Weiner, J.H. Chemical and functional properties of the native and reconstituted forms of the membrane-bound, aerobic glycerol-3-phosphate dehydrogenase of Escherichia coli. J. Biol. Chem. 253 (1978) 783–788. [PMID: 340460]
3.  MacDonald, M.J. and Brown, L.J. Calcium activation of mitochondrial glycerol phosphate dehydrogenase restudied. Arch. Biochem. Biophys. 326 (1996) 79–84. [DOI] [PMID: 8579375]
4.  Rauchová, H., Fato, R., Drahota, Z. and Lenaz, G. Steady-state kinetics of reduction of coenzyme Q analogs by glycerol-3-phosphate dehydrogenase in brown adipose tissue mitochondria. Arch. Biochem. Biophys. 344 (1997) 235–241. [DOI] [PMID: 9244403]
5.  Shen, W., Wei, Y., Dauk, M., Zheng, Z. and Zou, J. Identification of a mitochondrial glycerol-3-phosphate dehydrogenase from Arabidopsis thaliana: evidence for a mitochondrial glycerol-3-phosphate shuttle in plants. FEBS Lett. 536 (2003) 92–96. [DOI] [PMID: 12586344]
6.  Walz, A.C., Demel, R.A., de Kruijff, B. and Mutzel, R. Aerobic sn-glycerol-3-phosphate dehydrogenase from Escherichia coli binds to the cytoplasmic membrane through an amphipathic α-helix. Biochem. J. 365 (2002) 471–479. [DOI] [PMID: 11955283]
7.  Ansell, R., Granath, K., Hohmann, S., Thevelein, J.M. and Adler, L. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J. 16 (1997) 2179–2187. [DOI] [PMID: 9171333]
8.  Larsson, C., Påhlman, I.L., Ansell, R., Rigoulet, M., Adler, L. and Gustafsson, L. The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae. Yeast 14 (1998) 347–357. [DOI] [PMID: 9559543]
[EC 1.1.5.3 created 1961 as EC 1.1.2.1, transferred 1965 to EC 1.1.99.5, transferred 2009 to EC 1.1.5.3]
 
 
EC 1.1.99.36     
Accepted name: alcohol dehydrogenase (nicotinoprotein)
Reaction: ethanol + acceptor = acetaldehyde + reduced acceptor
Other name(s): NDMA-dependent alcohol dehydrogenase; nicotinoprotein alcohol dehydrogenase; np-ADH; ethanol:N,N-dimethyl-4-nitrosoaniline oxidoreductase
Systematic name: ethanol:acceptor oxidoreductase
Comments: Contains Zn2+. Nicotinoprotein alcohol dehydrogenases are unique medium-chain dehydrogenases/reductases (MDR) alcohol dehydrogenases that have a tightly bound NAD+/NADH cofactor that does not dissociate during the catalytic process. Instead, the cofactor is regenerated by a second substrate or electron carrier. While the in vivo electron acceptor is not known, N,N-dimethyl-4-nitrosoaniline (NDMA), which is reduced to 4-(hydroxylamino)-N,N-dimethylaniline, can serve this function in vitro. The enzyme from the Gram-positive bacterium Amycolatopsis methanolica can accept many primary alcohols as substrates, including benzylalcohol [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Van Ophem, P.W., Van Beeumen, J. and Duine, J.A. Nicotinoprotein [NAD(P)-containing] alcohol/aldehyde oxidoreductases. Purification and characterization of a novel type from Amycolatopsis methanolica. Eur. J. Biochem. 212 (1993) 819–826. [DOI] [PMID: 8385013]
2.  Piersma, S.R., Visser, A.J., de Vries, S. and Duine, J.A. Optical spectroscopy of nicotinoprotein alcohol dehydrogenase from Amycolatopsis methanolica: a comparison with horse liver alcohol dehydrogenase and UDP-galactose epimerase. Biochemistry 37 (1998) 3068–3077. [DOI] [PMID: 9485460]
3.  Schenkels, P. and Duine, J.A. Nicotinoprotein (NADH-containing) alcohol dehydrogenase from Rhodococcus erythropolis DSM 1069: an efficient catalyst for coenzyme-independent oxidation of a broad spectrum of alcohols and the interconversion of alcohols and aldehydes. Microbiology 146 (2000) 775–785. [DOI] [PMID: 10784035]
4.  Piersma, S.R., Norin, A., de Vries, S., Jornvall, H. and Duine, J.A. Inhibition of nicotinoprotein (NAD+-containing) alcohol dehydrogenase by trans-4-(N,N-dimethylamino)-cinnamaldehyde binding to the active site. J. Protein Chem. 22 (2003) 457–461. [PMID: 14690248]
5.  Norin, A., Piersma, S.R., Duine, J.A. and Jornvall, H. Nicotinoprotein (NAD+ -containing) alcohol dehydrogenase: structural relationships and functional interpretations. Cell. Mol. Life Sci. 60 (2003) 999–1006. [DOI] [PMID: 12827287]
[EC 1.1.99.36 created 2010]
 
 
EC 1.1.99.37     
Accepted name: methanol dehydrogenase (nicotinoprotein)
Reaction: methanol + acceptor = formaldehyde + reduced acceptor
Other name(s): NDMA-dependent methanol dehydrogenase; nicotinoprotein methanol dehydrogenase; methanol:N,N-dimethyl-4-nitrosoaniline oxidoreductase
Systematic name: methanol:acceptor oxidoreductase
Comments: Contains Zn2+ and Mg2+. Nicotinoprotein methanol dehydrogenases have a tightly bound NADP+/NADPH cofactor that does not dissociate during the catalytic process. Instead, the cofactor is regenerated by a second substrate or electron carrier. While the in vivo electron acceptor is not known, N,N-dimethyl-4-nitrosoaniline (NDMA), which is reduced to 4-(hydroxylamino)-N,N-dimethylaniline, can serve this function in vitro. The enzyme has been detected in several Gram-positive methylotrophic bacteria, including Amycolatopsis methanolica, Rhodococcus rhodochrous and Rhodococcus erythropolis [1-3]. These enzymes are decameric, and possess a 5-fold symmetry [4]. Some of the enzymes can also dismutate formaldehyde to methanol and formate [5].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Vonck, J., Arfman, N., De Vries, G.E., Van Beeumen, J., Van Bruggen, E.F. and Dijkhuizen, L. Electron microscopic analysis and biochemical characterization of a novel methanol dehydrogenase from the thermotolerant Bacillus sp. C1. J. Biol. Chem. 266 (1991) 3949–3954. [PMID: 1995642]
2.  Van Ophem, P.W., Van Beeumen, J. and Duine, J.A. Nicotinoprotein [NAD(P)-containing] alcohol/aldehyde oxidoreductases. Purification and characterization of a novel type from Amycolatopsis methanolica. Eur. J. Biochem. 212 (1993) 819–826. [DOI] [PMID: 8385013]
3.  Bystrykh, L.V., Vonck, J., van Bruggen, E.F., van Beeumen, J., Samyn, B., Govorukhina, N.I., Arfman, N., Duine, J.A. and Dijkhuizen, L. Electron microscopic analysis and structural characterization of novel NADP(H)-containing methanol: N,N′-dimethyl-4-nitrosoaniline oxidoreductases from the gram-positive methylotrophic bacteria Amycolatopsis methanolica and Mycobacterium gastri MB19. J. Bacteriol. 175 (1993) 1814–1822. [DOI] [PMID: 8449887]
4.  Hektor, H.J., Kloosterman, H. and Dijkhuizen, L. Identification of a magnesium-dependent NAD(P)(H)-binding domain in the nicotinoprotein methanol dehydrogenase from Bacillus methanolicus. J. Biol. Chem. 277 (2002) 46966–46973. [DOI] [PMID: 12351635]
5.  Park, H., Lee, H., Ro, Y.T. and Kim, Y.M. Identification and functional characterization of a gene for the methanol : N,N′-dimethyl-4-nitrosoaniline oxidoreductase from Mycobacterium sp. strain JC1 (DSM 3803). Microbiology 156 (2010) 463–471. [DOI] [PMID: 19875438]
[EC 1.1.99.37 created 2010]
 
 
EC 1.1.99.39     
Accepted name: D-2-hydroxyglutarate dehydrogenase
Reaction: (R)-2-hydroxyglutarate + acceptor = 2-oxoglutarate + reduced acceptor
Other name(s): D2HGDH (gene name)
Systematic name: (R)-2-hydroxyglutarate:acceptor 2-oxidoreductase
Comments: Contains FAD. The enzyme has no activity with NAD+ or NADP+, and was assayed in vitro using artificial electron acceptors. It has lower activity with (R)-lactate, (R)-2-hydroxybutyrate and meso-tartrate, and no activity with the (S) isomers. The mammalian enzyme is stimulated by Zn2+, Co2+ and Mn2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Engqvist, M., Drincovich, M.F., Flugge, U.I. and Maurino, V.G. Two D-2-hydroxy-acid dehydrogenases in Arabidopsis thaliana with catalytic capacities to participate in the last reactions of the methylglyoxal and β-oxidation pathways. J. Biol. Chem. 284 (2009) 25026–25037. [DOI] [PMID: 19586914]
2.  Achouri, Y., Noel, G., Vertommen, D., Rider, M.H., Veiga-Da-Cunha, M. and Van Schaftingen, E. Identification of a dehydrogenase acting on D-2-hydroxyglutarate. Biochem. J. 381 (2004) 35–42. [DOI] [PMID: 15070399]
[EC 1.1.99.39 created 2013]
 
 
EC 1.2.1.32     
Accepted name: aminomuconate-semialdehyde dehydrogenase
Reaction: 2-aminomuconate 6-semialdehyde + NAD+ + H2O = 2-aminomuconate + NADH + 2 H+
For diagram of the later stages of tryptophan catabolism, click here
Other name(s): 2-aminomuconate semialdehyde dehydrogenase; 2-hydroxymuconic acid semialdehyde dehydrogenase; 2-hydroxymuconate semialdehyde dehydrogenase; α-aminomuconic &epsilon;-semialdehyde dehydrogenase; α-hydroxymuconic &epsilon;-semialdehyde dehydrogenase; 2-hydroxymuconic semialdehyde dehydrogenase
Systematic name: 2-aminomuconate-6-semialdehyde:NAD+ 6-oxidoreductase
Comments: Also acts on 2-hydroxymuconate semialdehyde.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37250-95-6
References:
1.  Ichiyama, A., Nakamura, S., Kawai, H., Honjo, T., Nishizuka, Y., Hayaishi, O. and Senoh, S. Studies on the metabolism of the benzene ring of tryptophan in mammalian tissues. II. Enzymic formation of α-aminomuconic acid from 3-hydroxyanthranilic acid. J. Biol. Chem. 240 (1965) 740–749. [PMID: 14275130]
[EC 1.2.1.32 created 1972]
 
 
EC 1.2.1.45      
Transferred entry: 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase. Now EC 1.1.1.312, 2-hydroxy-4-carboxymuconate semialdehyde hemiacetal dehydrogenase.
[EC 1.2.1.45 created 1978, deleted 2011]
 
 
EC 1.2.1.82     
Accepted name: β-apo-4′-carotenal dehydrogenase
Reaction: 4′-apo-β,&psi;-caroten-4′-al + NAD+ + H2O = neurosporaxanthin + NADH + 2 H+
For diagram of reaction, click here
Glossary: neurosporaxanthin = 4′-apo-β,&psi;-caroten-4′-oic acid
Other name(s): β-apo-4′-carotenal oxygenase; YLO-1; carD (gene name)
Systematic name: 4′-apo-β,&psi;-carotenal:NAD+ oxidoreductase
Comments: Neurosporaxanthin is responsible for the orange color of of Neurospora.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Estrada, A.F., Youssar, L., Scherzinger, D., Al-Babili, S. and Avalos, J. The ylo-1 gene encodes an aldehyde dehydrogenase responsible for the last reaction in the Neurospora carotenoid pathway. Mol. Microbiol. 69 (2008) 1207–1220. [DOI] [PMID: 18627463]
2.  Diaz-Sanchez, V., Estrada, A.F., Trautmann, D., Al-Babili, S. and Avalos, J. The gene carD encodes the aldehyde dehydrogenase responsible for neurosporaxanthin biosynthesis in Fusarium fujikuroi. FEBS J. 278 (2011) 3164–3176. [DOI] [PMID: 21749649]
[EC 1.2.1.82 created 2011, modified 2023]
 
 
EC 1.2.3.7     
Accepted name: indole-3-acetaldehyde oxidase
Reaction: (indol-3-yl)acetaldehyde + H2O + O2 = (indol-3-yl)acetate + H2O2
Other name(s): indoleacetaldehyde oxidase; IAAld oxidase; AO1; indole-3-acetaldehyde:oxygen oxidoreductase
Systematic name: (indol-3-yl)acetaldehyde:oxygen oxidoreductase
Comments: A hemoprotein. This enzyme is an isoform of aldehyde oxidase (EC 1.2.3.1). It has a preference for aldehydes having an indole-ring structure as substrate [6,7]. It may play a role in plant hormone biosynthesis as its activity is higher in the auxin-overproducing mutant, super-root1, than in wild-type Arabidopsis thaliana [7]. While (indol-3-yl)acetaldehyde is the preferred substrate, it also oxidizes indole-3-carbaldehyde and acetaldehyde, but more slowly. The enzyme from maize contains FAD, iron and molybdenum [4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 66082-22-2
References:
1.  Bower, P.J., Brown, H.M. and Purves, W.K. Cucumber seedling indoleacetaldehyde oxidase. Plant Physiol. 61 (1978) 107–110. [PMID: 16660220]
2.  Miyata, S., Suzuki, Y., Kamisaka, S. and Masuda, Y. Indole-3-acetaldehyde oxidase of pea-seedlings. Physiol. Plant. 51 (1981) 402–406.
3.  Rajagopal, R. Metabolism of indole-3-acetaldehyde. III. Some characteristics of the aldehyde oxidase of Avena coleoptiles. Physiol. Plant. 24 (1971) 272–281.
4.  Koshiba, T., Saito, E., Ono, N., Yamamoto, N. and Sato, M. Purification and properties of flavin- and molybdenum-containing aldehyde oxidase from coleoptiles of maize. Plant Physiol. 110 (1996) 781–789. [PMID: 12226218]
5.  Koshiba, T. and Matsuyama, H. An in vitro system of indole-3-acetic acid formation from tryptophan in maize (Zea mays) coleoptile extracts. Plant Physiol. 102 (1993) 1319–1324. [PMID: 12231908]
6.  Sekimoto, H., Seo, M., Kawakami, N., Komano, T., Desloire, S., Liotenberg, S., Marion-Poll, A., Caboche, M., Kamiya, Y. and Koshiba, T. Molecular cloning and characterization of aldehyde oxidases in Arabidopsis thaliana. Plant Cell Physiol. 39 (1998) 433–442. [PMID: 9615466]
7.  Seo, M., Akaba, S., Oritani, T., Delarue, M., Bellini, C., Caboche, M. and Koshiba, T. Higher activity of an aldehyde oxidase in the auxin-overproducing superroot1 mutant of Arabidopsis thaliana. Plant Physiol. 116 (1998) 687–693. [PMID: 9489015]
[EC 1.2.3.7 created 1984, modified 2004, modified 2006]
 
 
EC 1.2.3.14     
Accepted name: abscisic-aldehyde oxidase
Reaction: abscisic aldehyde + H2O + O2 = abscisate + H2O2
For diagram of abscisic-acid biosynthesis, click here
Other name(s): abscisic aldehyde oxidase; AAO3; AOd; AOδ
Systematic name: abscisic-aldehyde:oxygen oxidoreductase
Comments: Acts on both (+)- and (-)-abscisic aldehyde. Involved in the abscisic-acid biosynthesis pathway in plants, along with EC 1.1.1.288, (xanthoxin dehydrogenase), EC 1.13.11.51 (9-cis-epoxycarotenoid dioxygenase) and EC 1.14.13.93 [(+)-abscisic acid 8′-hydroxylase]. While abscisic aldehyde is the best substrate, the enzyme also acts with indole-3-aldehyde, 1-naphthaldehyde and benzaldehyde as substrates, but more slowly [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 129204-36-0
References:
1.  Sagi, M., Fluhr, R. and Lips, S.H. Aldehyde oxidase and xanthin dehydrogenase in a flacca tomato mutant with deficient abscisic acid and wilty phenotype. Plant Physiol. 120 (1999) 571–577. [PMID: 10364409]
2.  Seo, M., Peeters, A.J., Koiwai, H., Oritani, T., Marion-Poll, A., Zeevaart, J.A., Koornneef, M., Kamiya, Y. and Koshiba, T. The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc. Natl. Acad. Sci. USA 97 (2000) 12908–12913. [DOI] [PMID: 11050171]
3.  Seo, M., Koiwai, H., Akaba, S., Komano, T., Oritani, T., Kamiya, Y. and Koshiba, T. Abscisic aldehyde oxidase in leaves of Arabidopsis thaliana. Plant J. 23 (2000) 481–488. [DOI] [PMID: 10972874]
[EC 1.2.3.14 created 2005]
 
 
EC 1.3.1.74     
Accepted name: 2-alkenal reductase [NAD(P)+]
Reaction: a n-alkanal + NAD(P)+ = an alk-2-enal + NAD(P)H + H+
Other name(s): NAD(P)H-dependent alkenal/one oxidoreductase; NADPH:2-alkenal α,β-hydrogenase; 2-alkenal reductase
Systematic name: n-alkanal:NAD(P)+ 2-oxidoreductase
Comments: Highly specific for 4-hydroxynon-2-enal and non-2-enal. Alk-2-enals of shorter chain have lower affinities. Exhibits high activities also for alk-2-enones such as but-3-en-2-one and pent-3-en-2-one. Inactive with cyclohex-2-en-1-one and 12-oxophytodienoic acid. Involved in the detoxication of α,β-unsaturated aldehydes and ketones [cf. EC 1.3.1.102, 2-alkenal reductase (NADP+)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 52227-95-9
References:
1.  Mano, J., Torii, Y., Hayashi, S., Takimoto, K., Matsui, K., Nakamura, K., Inzé, D., Babiychuk, E., Kushnir, S. and Asada, K. The NADPH:quinone oxidoreductase P1-ζ-crystallin in Arabidopsis catalyzes the α,β-hydrogenation of 2-alkenals: detoxication of the lipid peroxide-derived reactive aldehydes. Plant Cell Physiol. 43 (2002) 1445–1455. [PMID: 12514241]
2.  Dick, R.A., Kwak, M.K., Sutter, T.R. and Kensler, T.W. Antioxidative function and substrate specificity of NAD(P)H-dependent alkenal/one oxidoreductase. A new role for leukotriene B4 12-hydroxydehydrogenase/15-oxoprostaglandin 13-reductase. J. Biol. Chem. 276 (2001) 40803–40810. [DOI] [PMID: 11524419]
[EC 1.3.1.74 created 2003, modified 2014]
 
 
EC 1.3.1.75     
Accepted name: 3,8-divinyl protochlorophyllide a 8-vinyl-reductase (NADPH)
Reaction: protochlorophyllide a + NADP+ = 3,8-divinyl protochlorophyllide a + NADPH + H+
For diagram of chlorophyll biosynthesis (later stages), click here
Other name(s): DVR (gene name); bciA (gene name); [4-vinyl]chlorophyllide a reductase; 4VCR; chlorophyllide-a:NADP+ oxidoreductase; divinyl chlorophyllide a 8-vinyl-reductase; plant-type divinyl chlorophyllide a 8-vinyl-reductase
Systematic name: protochlorophyllide-a:NADP+ C-81-oxidoreductase
Comments: The enzyme, found in higher plants, green algae, and some phototrophic bacteria, is involved in the production of monovinyl versions of (bacterio)chlorophyll pigments from their divinyl precursors. It can also act on 3,8-divinyl chlorophyllide a. cf. EC 1.3.7.13, 3,8-divinyl protochlorophyllide a 8-vinyl-reductase (ferredoxin).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Tripathy, B.C. and Rebeiz, C.A. Chloroplast biogenesis 60. Conversion of divinyl protochlorophyllide to monovinyl protochlorophyllide in green(ing) barley, a dark monovinyl/light divinyl plant species. Plant Physiol. 87 (1988) 89–94. [PMID: 16666133]
2.  Parham, R. and Rebeiz, C.A. Chloroplast biogenesis: [4-vinyl] chlorophyllide a reductase is a divinyl chlorophyllide a-specific, NADPH-dependent enzyme. Biochemistry 31 (1992) 8460–8464. [PMID: 1390630]
3.  Parham, R. and Rebeiz, C.A. Chloroplast biogenesis 72: a [4-vinyl]chlorophyllide a reductase assay using divinyl chlorophyllide a as an exogenous substrate. Anal. Biochem. 231 (1995) 164–169. [DOI] [PMID: 8678296]
4.  Kolossov, V.L. and Rebeiz, C.A. Chloroplast biogenesis 84: solubilization and partial purification of membrane-bound [4-vinyl]chlorophyllide a reductase from etiolated barley leaves. Anal. Biochem. 295 (2001) 214–219. [DOI] [PMID: 11488624]
5.  Nagata, N., Tanaka, R., Satoh, S. and Tanaka, A. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell 17 (2005) 233–240. [DOI] [PMID: 15632054]
6.  Chew, A.G. and Bryant, D.A. Characterization of a plant-like protochlorophyllide a divinyl reductase in green sulfur bacteria. J. Biol. Chem. 282 (2007) 2967–2975. [DOI] [PMID: 17148453]
[EC 1.3.1.75 created 2003, modified 2016]
 
 
EC 1.3.1.77     
Accepted name: anthocyanidin reductase [(2R,3R)-flavan-3-ol-forming]
Reaction: a (2R,3R)-flavan-3-ol + 2 NAD(P)+ = an anthocyanidin with a 3-hydroxy group + 2 NAD(P)H + H+
For diagram of anthocyanin biosynthesis, click here
Other name(s): ANR (gene name) (ambiguous); flavan-3-ol:NAD(P)+ oxidoreductase; anthocyanidin reductase (ambiguous)
Systematic name: (2R,3R)-flavan-3-ol:NAD(P)+ 3,4-oxidoreductase
Comments: The enzyme participates in the flavonoid biosynthesis pathway found in plants. It catalyses the double reduction of anthocyanidins, producing (2R,3R)-flavan-3-ol monomers required for the formation of proanthocyanidins. While the enzyme from the legume Medicago truncatula (MtANR) can use both NADPH and NADH as reductant, that from the crucifer Arabidopsis thaliana (AtANR) uses only NADPH. Also, while the substrate preference of MtANR is cyanidin>pelargonidin>delphinidin, the reverse preference is found with AtANR. cf. EC 1.3.1.112, anthocyanidin reductase [(2S)-flavan-3-ol-forming].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 93389-48-1
References:
1.  Xie, D.Y., Sharma, S.B., Paiva, N.L., Ferreira, D. and Dixon, R.A. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299 (2003) 396–399. [DOI] [PMID: 12532018]
2.  Xie, D.Y., Sharma, S.B. and Dixon, R.A. Anthocyanidin reductases from Medicago truncatula and Arabidopsis thaliana. Arch. Biochem. Biophys. 422 (2004) 91–102. [DOI] [PMID: 14725861]
3.  Pang, Y., Abeysinghe, I.S., He, J., He, X., Huhman, D., Mewan, K.M., Sumner, L.W., Yun, J. and Dixon, R.A. Functional characterization of proanthocyanidin pathway enzymes from tea and their application for metabolic engineering. Plant Physiol. 161 (2013) 1103–1116. [DOI] [PMID: 23288883]
[EC 1.3.1.77 created 2004, modified 2016]
 
 
EC 1.3.1.78     
Accepted name: arogenate dehydrogenase (NADP+)
Reaction: L-arogenate + NADP+ = L-tyrosine + NADPH + CO2
For diagram of phenylalanine and tyrosine biosynthesis, click here
Glossary: L-arogenate = 1-[(2S)-2-amino-2-carboxyethyl]-4-hydroxycyclohexa-2,5-diene-1-carboxylate
Other name(s): arogenic dehydrogenase (ambiguous); pretyrosine dehydrogenase (ambiguous); TyrAAT1; TyrAAT2; TyrAa
Systematic name: L-arogenate:NADP+ oxidoreductase (decarboxylating)
Comments: Arogenate dehydrogenases may utilize NAD+ (EC 1.3.1.43), NADP+ (EC 1.3.1.78), or both (EC 1.3.1.79). NADP+-dependent enzymes usually predominate in higher plants.The enzyme from the cyanobacterium Synechocystis sp. PCC 6803 and the TyrAAT1 isoform of the plant Arabidopsis thaliana cannot use prephenate as a substrate, while the Arabidopsis isoform TyrAAT2 can use it very poorly [2,3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 64295-75-6
References:
1.  Gaines, C.G., Byng, G.S., Whitaker, R.J. and Jensen, R.A. L-Tyrosine regulation and biosynthesis via arogenate dehydrogenase in suspension-cultured cells of Nicotiana silvestris Speg. et Comes. Planta 156 (1982) 233–240. [PMID: 24272471]
2.  Rippert, P. and Matringe, M. Purification and kinetic analysis of the two recombinant arogenate dehydrogenase isoforms of Arabidopsis thaliana. Eur. J. Biochem. 269 (2002) 4753–4761. [DOI] [PMID: 12354106]
3.  Bonner, C.A., Jensen, R.A., Gander, J.E. and Keyhani, N.O. A core catalytic domain of the TyrA protein family: arogenate dehydrogenase from Synechocystis. Biochem. J. 382 (2004) 279–291. [DOI] [PMID: 15171683]
[EC 1.3.1.78 created 2005]
 
 
EC 1.3.1.93     
Accepted name: very-long-chain enoyl-CoA reductase
Reaction: a very-long-chain acyl-CoA + NADP+ = a very-long-chain trans-2,3-dehydroacyl-CoA + NADPH + H+
Glossary: a very-long-chain acyl-CoA = an acyl-CoA thioester where the acyl chain contains 23 or more carbon atoms.
Other name(s): TSC13 (gene name); CER10 (gene name)
Systematic name: very-long-chain acyl-CoA:NADP+ oxidoreductase
Comments: This is the fourth component of the elongase, a microsomal protein complex responsible for extending palmitoyl-CoA and stearoyl-CoA (and modified forms thereof) to very-long-chain acyl CoAs. cf. EC 2.3.1.199, very-long-chain 3-oxoacyl-CoA synthase, EC 1.1.1.330, very-long-chain 3-oxoacyl-CoA reductase, and EC 4.2.1.134, very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Kohlwein, S.D., Eder, S., Oh, C.S., Martin, C.E., Gable, K., Bacikova, D. and Dunn, T. Tsc13p is required for fatty acid elongation and localizes to a novel structure at the nuclear-vacuolar interface in Saccharomyces cerevisiae. Mol. Cell Biol. 21 (2001) 109–125. [DOI] [PMID: 11113186]
2.  Gable, K., Garton, S., Napier, J.A. and Dunn, T.M. Functional characterization of the Arabidopsis thaliana orthologue of Tsc13p, the enoyl reductase of the yeast microsomal fatty acid elongating system. J. Exp. Bot. 55 (2004) 543–545. [DOI] [PMID: 14673020]
3.  Kvam, E., Gable, K., Dunn, T.M. and Goldfarb, D.S. Targeting of Tsc13p to nucleus-vacuole junctions: a role for very-long-chain fatty acids in the biogenesis of microautophagic vesicles. Mol. Biol. Cell 16 (2005) 3987–3998. [DOI] [PMID: 15958487]
4.  Zheng, H., Rowland, O. and Kunst, L. Disruptions of the Arabidopsis enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell 17 (2005) 1467–1481. [DOI] [PMID: 15829606]
[EC 1.3.1.93 created 2012]
 
 
EC 1.3.5.1     
Accepted name: succinate dehydrogenase
Reaction: succinate + a quinone = fumarate + a quinol
For diagram of the citric acid cycle, click here
Other name(s): succinate dehydrogenase (quinone); succinate dehydrogenase (ubiquinone); succinic dehydrogenase; complex II (ambiguous); succinate dehydrogenase complex; SDH (ambiguous); succinate:ubiquinone oxidoreductase; fumarate reductase (quinol); FRD; menaquinol-fumarate oxidoreductase; succinate dehydrogenase (menaquinone); succinate:menaquinone oxidoreductase; fumarate reductase (menaquinone)
Systematic name: succinate:quinone oxidoreductase
Comments: A complex generally comprising an FAD-containing component that also binds the carboxylate substrate (A subunit), a component that contains three different iron-sulfur centers [2Fe-2S], [4Fe-4S], and [3Fe-4S] (B subunit), and a hydrophobic membrane-anchor component (C, or C and D subunits) that is also the site of the interaction with quinones. The enzyme is found in the inner mitochondrial membrane in eukaryotes and the plasma membrane of bacteria and archaea, with the hydrophilic domain extending into the mitochondrial matrix and the cytoplasm, respectively. Under aerobic conditions the enzyme catalyses succinate oxidation, a key step in the citric acid (TCA) cycle, transferring the electrons to quinones in the membrane, thus linking the TCA cycle with the aerobic respiratory chain (where it is known as complex II). Under anaerobic conditions the enzyme functions as a fumarate reductase, transferring electrons from the quinol pool to fumarate, and participating in anaerobic respiration with fumarate as the terminal electron acceptor. The enzyme interacts with the quinone produced by the organism, such as ubiquinone, menaquinone, caldariellaquinone, thermoplasmaquinone, rhodoquinone etc. Some of the enzymes contain two heme subunits in their membrane anchor subunit. These enzymes catalyse an electrogenic reaction and are thus classified as EC 7.1.1.12, succinate dehydrogenase (electrogenic, proton-motive force generating).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-11-9
References:
1.  Kita, K., Vibat, C.R., Meinhardt, S., Guest, J.R. and Gennis, R.B. One-step purification from Escherichia coli of complex II (succinate: ubiquinone oxidoreductase) associated with succinate-reducible cytochrome b556. J. Biol. Chem. 264 (1989) 2672–2677. [PMID: 2644269]
2.  Van Hellemond, J.J. and Tielens, A.G. Expression and functional properties of fumarate reductase. Biochem. J. 304 (1994) 321–331. [PMID: 7998964]
3.  Iverson, T.M., Luna-Chavez, C., Cecchini, G. and Rees, D.C. Structure of the Escherichia coli fumarate reductase respiratory complex. Science 284 (1999) 1961–1966. [DOI] [PMID: 10373108]
4.  Cecchini, G., Schroder, I., Gunsalus, R.P. and Maklashina, E. Succinate dehydrogenase and fumarate reductase from Escherichia coli. Biochim. Biophys. Acta 1553 (2002) 140–157. [DOI] [PMID: 11803023]
5.  Figueroa, P., Leon, G., Elorza, A., Holuigue, L., Araya, A. and Jordana, X. The four subunits of mitochondrial respiratory complex II are encoded by multiple nuclear genes and targeted to mitochondria in Arabidopsis thaliana. Plant Mol. Biol. 50 (2002) 725–734. [PMID: 12374303]
6.  Cecchini, G. Function and structure of complex II of the respiratory chain. Annu. Rev. Biochem. 72 (2003) 77–109. [DOI] [PMID: 14527321]
7.  Oyedotun, K.S. and Lemire, B.D. The quaternary structure of the Saccharomyces cerevisiae succinate dehydrogenase. Homology modeling, cofactor docking, and molecular dynamics simulation studies. J. Biol. Chem. 279 (2004) 9424–9431. [DOI] [PMID: 14672929]
8.  Kurokawa, T. and Sakamoto, J. Purification and characterization of succinate:menaquinone oxidoreductase from Corynebacterium glutamicum. Arch. Microbiol. 183 (2005) 317–324. [DOI] [PMID: 15883782]
9.  Iwata, F., Shinjyo, N., Amino, H., Sakamoto, K., Islam, M.K., Tsuji, N. and Kita, K. Change of subunit composition of mitochondrial complex II (succinate-ubiquinone reductase/quinol-fumarate reductase) in Ascaris suum during the migration in the experimental host. Parasitol Int 57 (2008) 54–61. [DOI] [PMID: 17933581]
[EC 1.3.5.1 created 1983 (EC 1.3.99.1 created 1961, incorporated 2014, EC 1.3.5.4 created 2010, incorporated 2022), modified 2022]
 
 
EC 1.3.5.6     
Accepted name: 9,9′-dicis-ζ-carotene desaturase
Reaction: 9,9′-dicis-ζ-carotene + 2 quinone = 7,9,7′,9′-tetracis-lycopene + 2 quinol (overall reaction)
(1a) 9,9′-dicis-ζ-carotene + a quinone = 7,9,9′-tricis-neurosporene + a quinol
(1b) 7,9,9′-tricis-neurosporene + a quinone = 7,9,7′,9′-tetracis-lycopene + a quinol
For diagram of plant and cyanobacteria carotenoid biosynthesis, click here
Glossary: prolycopene = 7,9,7′,9′-tetracis-lycopene
Other name(s): ζ-carotene desaturase; ZDS
Systematic name: 9,9′-dicis-ζ-corotene:quinone oxidoreductase
Comments: This enzyme is involved in carotenoid biosynthesis in plants and cyanobacteria.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Albrecht, M., Linden, H. and Sandmann, G. Biochemical characterization of purified ζ-carotene desaturase from Anabaena PCC 7120 after expression in E. coli. Eur. J. Biochem. 236 (1996) 115–120. [DOI] [PMID: 8617254]
2.  Josse, E.M., Simkin, A.J., Gaffe, J., Laboure, A.M., Kuntz, M. and Carol, P. A plastid terminal oxidase associated with carotenoid desaturation during chromoplast differentiation. Plant Physiol. 123 (2000) 1427–1436. [PMID: 10938359]
3.  Breitenbach, J., Kuntz, M., Takaichi, S. and Sandmann, G. Catalytic properties of an expressed and purified higher plant type ζ-carotene desaturase from Capsicum annuum. Eur. J. Biochem. 265 (1999) 376–383. [DOI] [PMID: 10491195]
4.  Breitenbach, J. and Sandmann, G. ζ-Carotene cis isomers as products and substrates in the plant poly-cis carotenoid biosynthetic pathway to lycopene. Planta 220 (2005) 785–793. [DOI] [PMID: 15503129]
[EC 1.3.5.6 created 1999 as EC 1.14.99.30, transferred 2011 to EC 1.3.5.6]
 
 
EC 1.3.99.37     
Accepted name: 1-hydroxy-2-isopentenylcarotenoid 3,4-desaturase
Reaction: (1) dihydroisopentenyldehydrorhodopin + acceptor = isopentenyldehydrorhodopin + reduced acceptor
(2) dihydrobisanhydrobacterioruberin + acceptor = bisanhydrobacterioruberin + reduced acceptor
For diagram of bacterioruberin biosynthesis, click here
Glossary: bisanhydrobacterioruberin = (2S,2S′)-2,2′-bis(3-methylbut-2-en-1-yl)-3,4-didehydro-1,1′,2,2′-tetrahydro-&psi;,&psi;-carotene-1,1′-diol
dihydrobisanhydrobacterioruberin = (2S,2S′)-2,2′-bis(3-methylbut-2-en-1-yl)-3,3′,4,4′-tetradehydro-1,1′,2,2′-tetrahydro-&psi;,&psi;-carotene-1,1′-diol
dihydroisopentenyldehydrorhodopin = (2S)-2-(3-methylbut-2-en-1-yl)-3,4-didehydro-1,2-dihydro-&psi;,&psi;-caroten-1-ol
isopentenyldehydrorhodopin = (2S)-2-(3-methylbut-2-en-1-yl)-1,2-dihydro-&psi;,&psi;-caroten-1-ol
Other name(s): crtD (gene name)
Systematic name: dihydroisopentenyldehydrorhodopin:acceptor 3,4-oxidoreductase
Comments: The enzyme, isolated from the archaeon Haloarcula japonica, is involved in the biosynthesis of the C50 carotenoid bacterioruberin. In this pathway it catalyses the desaturation of the C-3,4 double bond in dihydroisopentenyldehydrorhodopin and the desaturation of the C-3′,4′ double bond in dihydrobisanhydrobacterioruberin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yang, Y., Yatsunami, R., Ando, A., Miyoko, N., Fukui, T., Takaichi, S. and Nakamura, S. Complete biosynthetic pathway of the C50 carotenoid bacterioruberin from lycopene in the extremely halophilic archaeon Haloarcula japonica. J. Bacteriol. 197 (2015) 1614–1623. [DOI] [PMID: 25712483]
[EC 1.3.99.37 created 2015]
 
 
EC 1.3.99.39     
Accepted name: carotenoid φ-ring synthase
Reaction: carotenoid β-end group + 2 acceptor = carotenoid φ-end group + 2 reduced acceptor
For diagram of aromatic carotenoid biosynthesis, click here
Glossary: chlorobactene = φ,&psi;-carotene
β-isorenieratene = φ,β-carotene
isorenieratene = φ,φ-carotene
Other name(s): crtU (gene name) (ambiguous)
Systematic name: carotenoid β-ring:acceptor oxidoreductase/methyltranferase (φ-ring-forming)
Comments: The enzyme, found in green sulfur bacteria, some cyanobacteria and some actinobacteria, introduces additional double bonds to the carotenoid β-end group, leading to aromatization of the ionone ring. As a result, one of the methyl groups at C-1 is transferred to position C-2. It is involved in the biosynthesis of carotenoids with φ-type aromatic end groups such as chlorobactene, β-isorenieratene, and isorenieratene.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Moshier, S.E. and Chapman, D.J. Biosynthetic studies on aromatic carotenoids. Biosynthesis of chlorobactene. Biochem. J. 136 (1973) 395–404. [PMID: 4774401]
2.  Krugel, H., Krubasik, P., Weber, K., Saluz, H.P. and Sandmann, G. Functional analysis of genes from Streptomyces griseus involved in the synthesis of isorenieratene, a carotenoid with aromatic end groups, revealed a novel type of carotenoid desaturase. Biochim. Biophys. Acta 1439 (1999) 57–64. [PMID: 10395965]
3.  Frigaard, N.U., Maresca, J.A., Yunker, C.E., Jones, A.D. and Bryant, D.A. Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum. J. Bacteriol. 186 (2004) 5210–5220. [PMID: 15292122]
[EC 1.3.99.39 created 2018]
 
 
EC 1.3.99.40     
Accepted name: carotenoid χ-ring synthase
Reaction: carotenoid β-end group + 2 acceptor = carotenoid χ-end group + 2 reduced acceptor
For diagram of aromatic carotenoid biosynthesis, click here
Glossary: okenone = 1′-methoxy-1′,2′-dihydro-χ,&psi;-caroten-4′-one
renierapurpurin = χ,χ-carotene
synechoxanthin = χ,χ-caroten-18,18′-dioate
Other name(s): crtU (gene name) (ambiguous); cruE (gene name)
Systematic name: carotenoid β-ring:acceptor oxidoreductase/methyltranferase (χ-ring-forming)
Comments: The enzyme, found in purple sulfur bacteria (Chromatiaceae) and some cyanobacteria, is involved in the biosynthesis of carotenoids that contain χ-type end groups, such as okenone, renierapurpurin, and synechoxanthin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Graham, J.E. and Bryant, D.A. The Biosynthetic pathway for synechoxanthin, an aromatic carotenoid synthesized by the euryhaline, unicellular cyanobacterium Synechococcus sp. strain PCC 7002. J. Bacteriol. 190 (2008) 7966–7974. [DOI] [PMID: 18849428]
2.  Vogl, K. and Bryant, D.A. Biosynthesis of the biomarker okenone: χ-ring formation. Geobiology 10 (2012) 205–215. [DOI] [PMID: 22070388]
[EC 1.3.99.40 created 2018]
 
 
EC 1.4.1.16     
Accepted name: diaminopimelate dehydrogenase
Reaction: meso-2,6-diaminoheptanedioate + H2O + NADP+ = L-2-amino-6-oxoheptanedioate + NH3 + NADPH + H+
Other name(s): meso-α,&epsilon;-diaminopimelate dehydrogenase; meso-diaminopimelate dehydrogenase
Systematic name: meso-2,6-diaminoheptanedioate:NADP+ oxidoreductase (deaminating)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 60894-21-5
References:
1.  Misono, H., Togawa, H., Yamamoto, T. and Soda, K. Occurrence of meso-α,&epsilon;-diaminopimelate dehydrogenase in Bacillus sphaericus. Biochem. Biophys. Res. Commun. 72 (1976) 89–93. [DOI] [PMID: 10904]
2.  Misono, H., Togawa, H., Yamamoto, T. and Soda, K. meso-α,&epsilon;-Diaminopimelate D-dehydrogenase: distribution and the reaction product. J. Bacteriol. 137 (1979) 22–27. [PMID: 762012]
[EC 1.4.1.16 created 1981]
 
 
EC 1.4.1.18     
Accepted name: lysine 6-dehydrogenase
Reaction: L-lysine + NAD+ = (S)-2,3,4,5-tetrahydropyridine-2-carboxylate + NADH + H+ + NH3 (overall reaction)
(1a) L-lysine + NAD+ + H2O = (S)-2-amino-6-oxohexanoate + NADH + H+ + NH3
(1b) (S)-2-amino-6-oxohexanoate = (S)-2,3,4,5-tetrahydropyridine-2-carboxylate + H2O (spontaneous)
For diagram of reaction, click here and for diagram of L-lysine synthesis, click here
Glossary: (S)-2-amino-6-oxohexanoate = L-2-aminoadipate 6-semialdehyde = L-allysine
L-1-piperideine 6-carboxylate = (S)-2,3,4,5-tetrahydropyridine-2-carboxylate = (S)-1,6-didehydropiperidine-2-carboxylate
Other name(s): L-lysine &epsilon;-dehydrogenase; L-lysine 6-dehydrogenase; LysDH
Systematic name: L-lysine:NAD+ 6-oxidoreductase (deaminating)
Comments: The enzyme is highly specific for L-lysine as substrate, although S-(2-aminoethyl)-L-cysteine can act as a substrate, but more slowly. While the enzyme from Agrobacterium tumefaciens can use only NAD+, that from the thermophilic bacterium Geobacillus stearothermophilus can also use NADP+, but more slowly [1,4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 89400-30-6
References:
1.  Misono, H. and Nagasaki, S. Occurrence of L-lysine &epsilon;-dehydrogenase in Agrobacterium tumefaciens. J. Bacteriol. 150 (1982) 398–401. [PMID: 6801024]
2.  Misono, H., Uehigashi, H., Morimoto, E. and Nagasaki, S. Purification and properties of L-lysine &epsilon;-dehydrogenase from Agrobacterium tumefaciens. Agric. Biol. Chem. 49 (1985) 2253–2255.
3.  Misono, H., Hashimoto, H., Uehigashi, H., Nagata, S. and Nagasaki, S. Properties of L-lysine &epsilon;-dehydrogenase from Agrobacterium tumefaciens. J. Biochem. (Tokyo) 105 (1989) 1002–1008. [PMID: 2768207]
4.  Heydari, M., Ohshima, T., Nunoura-Kominato, N. and Sakuraba, H. Highly stable L-lysine 6-dehydrogenase from the thermophile Geobacillus stearothermophilus isolated from a Japanese hot spring: characterization, gene cloning and sequencing, and expression. Appl. Environ. Microbiol. 70 (2004) 937–942. [DOI] [PMID: 14766574]
[EC 1.4.1.18 created 1989, modified 2006, modified 2011]
 
 
EC 1.4.1.22      
Deleted entry: ornithine cyclodeaminase. It was pointed out during the public-review process that there is no overall consumption of NAD+ during the reaction. As a result, transfer of the enzyme from EC 4.3.1.12 was not necessary and EC 1.4.1.22 was withdrawn before being made official
[EC 1.4.1.22 created 2006, deleted 2006]
 
 
EC 1.4.3.16     
Accepted name: L-aspartate oxidase
Reaction: L-aspartate + O2 = iminosuccinate + H2O2
For diagram of quinolinate biosynthesis, click here
Other name(s): NadB; Laspo; AO
Systematic name: L-aspartate:oxygen oxidoreductase
Comments: A flavoprotein (FAD). L-Aspartate oxidase catalyses the first step in the de novo biosynthesis of NAD+ in some bacteria. O2 can be replaced by fumarate as electron acceptor, yielding succinate [5]. The ability of the enzyme to use both O2 and fumarate in cofactor reoxidation enables it to function under both aerobic and anaerobic conditions [5]. Iminosuccinate can either be hydrolysed to form oxaloacetate and NH3 or can be used by EC 2.5.1.72, quinolinate synthase, in the production of quinolinate. The enzyme is a member of the succinate dehydrogenase/fumarate-reductase family of enzymes [5].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 69106-47-4
References:
1.  Nasu, S., Wicks, F.D. and Gholson, R.K. L-Aspartate oxidase, a newly discovered enzyme of Escherichia coli, is the B protein of quinolinate synthetase. J. Biol. Chem. 257 (1982) 626–632. [PMID: 7033218]
2.  Mortarino, M., Negri, A., Tedeschi, G., Simonic, T., Duga, S., Gassen, H.G. and Ronchi, S. L-Aspartate oxidase from Escherichia coli. I. Characterization of coenzyme binding and product inhibition. Eur. J. Biochem. 239 (1996) 418–426. [DOI] [PMID: 8706749]
3.  Tedeschi, G., Negri, A., Mortarino, M., Ceciliani, F., Simonic, T., Faotto, L. and Ronchi, S. L-Aspartate oxidase from Escherichia coli. II. Interaction with C4 dicarboxylic acids and identification of a novel L-aspartate: fumarate oxidoreductase activity. Eur. J. Biochem. 239 (1996) 427–433. [DOI] [PMID: 8706750]
4.  Mattevi, A., Tedeschi, G., Bacchella, L., Coda, A., Negri, A. and Ronchi, S. Structure of L-aspartate oxidase: implications for the succinate dehydrogenase/fumarate reductase oxidoreductase family. Structure 7 (1999) 745–756. [DOI] [PMID: 10425677]
5.  Bossi, R.T., Negri, A., Tedeschi, G. and Mattevi, A. Structure of FAD-bound L-aspartate oxidase: insight into substrate specificity and catalysis. Biochemistry 41 (2002) 3018–3024. [DOI] [PMID: 11863440]
6.  Katoh, A., Uenohara, K., Akita, M. and Hashimoto, T. Early steps in the biosynthesis of NAD in Arabidopsis start with aspartate and occur in the plastid. Plant Physiol. 141 (2006) 851–857. [DOI] [PMID: 16698895]
[EC 1.4.3.16 created 1984, modified 2008]
 
 
EC 1.4.3.20     
Accepted name: L-lysine 6-oxidase
Reaction: L-lysine + O2 + H2O = (S)-2-amino-6-oxohexanoate + H2O2 + NH3
Glossary: (S)-2-amino-6-oxohexanoate = L-2-aminoadipate 6-semialdehyde = L-allysine
Other name(s): L-lysine-&epsilon;-oxidase; Lod; LodA; marinocine
Systematic name: L-lysine:oxygen 6-oxidoreductase (deaminating)
Comments: Differs from EC 1.4.3.13, protein-lysine 6-oxidase, by using free L-lysine rather than the protein-bound form. N2-Acetyl-L-lysine is also a substrate, but N6-acetyl-L-lysine, which has an acetyl group at position 6, is not a substrate. Also acts on L-ornithine, D-lysine and 4-hydroxy-L-lysine, but more slowly. The amines cadaverine and putrescine are not substrates [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 1116448-48-6
References:
1.  Lucas-Elío, P., Gómez, D., Solano, F. and Sanchez-Amat, A. The antimicrobial activity of marinocine, synthesized by Marinomonas mediterranea, is due to hydrogen peroxide generated by its lysine oxidase activity. J. Bacteriol. 188 (2006) 2493–2501. [DOI] [PMID: 16547036]
2.  Gómez, D., Lucas-Elío, P., Sanchez-Amat, A. and Solano, F. A novel type of lysine oxidase: L-lysine-&epsilon;-oxidase. Biochim. Biophys. Acta 1764 (2006) 1577–1585. [DOI] [PMID: 17030025]
[EC 1.4.3.20 created 2006, modified 2011]
 
 
EC 1.5.1.7     
Accepted name: saccharopine dehydrogenase (NAD+, L-lysine-forming)
Reaction: N6-(L-1,3-dicarboxypropyl)-L-lysine + NAD+ + H2O = L-lysine + 2-oxoglutarate + NADH + H+
For diagram of lysine catabolism, click here and for diagram of L-lysine synthesis, click here
Glossary: L-saccharopine = N6-(L-1,3-dicarboxypropyl)-L-lysine
Other name(s): lysine-2-oxoglutarate reductase; dehydrogenase, saccharopine (nicotinamide adenine dinucleotide, lysine forming); &epsilon;-N-(L-glutaryl-2)-L-lysine:NAD oxidoreductase (L-lysine forming); N6-(glutar-2-yl)-L-lysine:NAD oxidoreductase (L-lysine-forming); 6-N-(L-1,3-dicarboxypropyl)-L-lysine:NAD+ oxidoreductase (L-lysine-forming)
Systematic name: N6-(L-1,3-dicarboxypropyl)-L-lysine:NAD+ oxidoreductase (L-lysine-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9073-96-5
References:
1.  Fujioka, M. and Nakatani, Y. Saccharopine dehydrogenase. Interaction with substrate analogues. Eur. J. Biochem. 25 (1972) 301–307. [DOI] [PMID: 4339117]
2.  Saunders, P.P. and Broquist, H.P. Saccharopine, an intermediate of the aminoadipic acid pathway of lysine biosynthesis. IV. Saccharopine dehydrogenase. J. Biol. Chem. 241 (1966) 3435–3440. [PMID: 4287986]
[EC 1.5.1.7 created 1972]
 
 
EC 1.5.1.8     
Accepted name: saccharopine dehydrogenase (NADP+, L-lysine-forming)
Reaction: N6-(L-1,3-dicarboxypropyl)-L-lysine + NADP+ + H2O = L-lysine + 2-oxoglutarate + NADPH + H+
Glossary: L-saccharopine = N6-(L-1,3-dicarboxypropyl)-L-lysine
Other name(s): lysine-2-oxoglutarate reductase; lysine-ketoglutarate reductase; L-lysine-α-ketoglutarate reductase; lysine:α-ketoglutarate:TPNH oxidoreductase (&epsilon;-N-[gultaryl-2]-L-lysine forming); saccharopine (nicotinamide adenine dinucleotide phosphate, lysine-forming) dehydrogenase; 6-N-(L-1,3-dicarboxypropyl)-L-lysine:NADP+ oxidoreductase (L-lysine-forming)
Systematic name: N6-(L-1,3-dicarboxypropyl)-L-lysine:NADP+ oxidoreductase (L-lysine-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9031-19-0
References:
1.  Hutzler, J. and Dancis, J. Conversion of lysine to saccharopine by human tissues. Biochim. Biophys. Acta 158 (1968) 62–69. [DOI] [PMID: 4385118]
2.  Markovitz, P.J., Chuang, D.T. and Cox, R.P. Familial hyperlysinemias. Purification and characterization of the bifunctional aminoadipic semialdehyde synthase with lysine-ketoglutarate reductase and saccharopine dehydrogenase activities. J. Biol. Chem. 259 (1984) 11643–11646. [PMID: 6434529]
[EC 1.5.1.8 created 1972]
 
 
EC 1.5.1.10     
Accepted name: saccharopine dehydrogenase (NADP+, L-glutamate-forming)
Reaction: N6-(L-1,3-dicarboxypropyl)-L-lysine + NADP+ + H2O = L-glutamate + (S)-2-amino-6-oxohexanoate + NADPH + H+
Glossary: L-saccharopine = N6-(L-1,3-dicarboxypropyl)-L-lysine
(S)-2-amino-6-oxohexanoate = L-2-aminoadipate 6-semialdehyde = L-allysine
Other name(s): saccharopine (nicotinamide adenine dinucleotide phosphate, glutamate-forming) dehydrogenase; aminoadipic semialdehyde-glutamic reductase; aminoadipate semialdehyde-glutamate reductase; aminoadipic semialdehyde-glutamate reductase; &epsilon;-N-(L-glutaryl-2)-L-lysine:NAD+(P) oxidoreductase (L-2-aminoadipate-semialdehyde forming); saccharopine reductase; 6-N-(L-1,3-dicarboxypropyl)-L-lysine:NADP+ oxidoreductase (L-glutamate-forming)
Systematic name: N6-(L-1,3-dicarboxypropyl)-L-lysine:NADP+ oxidoreductase (L-glutamate-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9033-55-0
References:
1.  Jones, E.E. and Broquist, H.P. Saccharopine, an intermediate of the aminoadipic acid pathway of lysine biosynthesis. 3. Aminoadipic semialdehyde-glutamate reductase. J. Biol. Chem. 241 (1966) 3430–3434. [PMID: 4380448]
[EC 1.5.1.10 created 1972, modified 2011]
 
 
EC 1.5.3.4     
Accepted name: N6-methyl-lysine oxidase
Reaction: N6-methyl-L-lysine + H2O + O2 = L-lysine + formaldehyde + H2O2
Other name(s): &epsilon;-alkyl-L-lysine:oxygen oxidoreductase ; N6-methyllysine oxidase; &epsilon;-N-methyllysine demethylase; &epsilon;-alkyllysinase; 6-N-methyl-L-lysine:oxygen oxidoreductase (demethylating)
Systematic name: N6-methyl-L-lysine:oxygen oxidoreductase (demethylating)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37256-28-3
References:
1.  Kim, S., Benoiton, L. and Paik, W.K. α-Alkyllysinase. Purification and properties of the enzyme. J. Biol. Chem. 239 (1964) 3790–3796. [PMID: 14257609]
[EC 1.5.3.4 created 1972]
 
 
EC 1.5.3.16     
Accepted name: spermine oxidase
Reaction: spermine + O2 + H2O = spermidine + 3-aminopropanal + H2O2
Other name(s): PAOh1/SMO; PAOh1 (ambiguous); AtPAO1; AtPAO4; SMO; mSMO; SMO(PAOh1); SMO/PAOh1; SMO5; mSMOmu
Systematic name: spermidine:oxygen oxidoreductase (spermidine-forming)
Comments: The enzyme from Arabidopsis thaliana (AtPAO1) oxidizes norspermine to norspermidine with high efficiency [3]. The mammalian enzyme, encoded by the SMOX gene, is a cytosolic enzyme that catalyses the oxidation of spermine at the exo (three-carbon) side of the tertiary amine. No activity with spermidine. Weak activity with N1-acetylspermine. A flavoprotein (FAD). Differs in specificity from EC 1.5.3.13 (N1-acetylpolyamine oxidase), EC 1.5.3.14 (polyamine oxidase (propane-1,3-diamine-forming)), EC 1.5.3.15 (N8-acetylspermidine oxidase (propane-1,3-diamine-forming) and EC 1.5.3.17 (non-specific polyamine oxidase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Murray-Stewart, T., Wang, Y., Goodwin, A., Hacker, A., Meeker, A. and Casero, R.A., Jr. Nuclear localization of human spermine oxidase isoforms - possible implications in drug response and disease etiology. FEBS J. 275 (2008) 2795–2806. [DOI] [PMID: 18422650]
2.  Cervelli, M., Polticelli, F., Federico, R. and Mariottini, P. Heterologous expression and characterization of mouse spermine oxidase. J. Biol. Chem. 278 (2003) 5271–5276. [DOI] [PMID: 12458219]
3.  Tavladoraki, P., Rossi, M.N., Saccuti, G., Perez-Amador, M.A., Polticelli, F., Angelini, R. and Federico, R. Heterologous expression and biochemical characterization of a polyamine oxidase from Arabidopsis involved in polyamine back conversion. Plant Physiol. 141 (2006) 1519–1532. [DOI] [PMID: 16778015]
4.  Wang, Y., Murray-Stewart, T., Devereux, W., Hacker, A., Frydman, B., Woster, P.M. and Casero, R.A., Jr. Properties of purified recombinant human polyamine oxidase, PAOh1/SMO. Biochem. Biophys. Res. Commun. 304 (2003) 605–611. [DOI] [PMID: 12727196]
[EC 1.5.3.16 created 2009]
 
 
EC 1.5.3.17     
Accepted name: non-specific polyamine oxidase
Reaction: (1) spermine + O2 + H2O = spermidine + 3-aminopropanal + H2O2
(2) spermidine + O2 + H2O = putrescine + 3-aminopropanal + H2O2
(3) N1-acetylspermine + O2 + H2O = spermidine + 3-acetamidopropanal + H2O2
(4) N1-acetylspermidine + O2 + H2O = putrescine + 3-acetamidopropanal + H2O2
Other name(s): polyamine oxidase (ambiguous); Fms1; AtPAO3
Systematic name: polyamine:oxygen oxidoreductase (3-aminopropanal or 3-acetamidopropanal-forming)
Comments: A flavoprotein (FAD). The non-specific polyamine oxidases may differ from each other considerably. The enzyme from Saccharomyces cerevisiae shows a rather broad specificity and also oxidizes N8-acetylspermidine [3]. The enzyme from Ascaris suum shows high activity with spermine and spermidine, but also oxidizes norspermine [2]. The enzyme from Arabidopsis thaliana shows high activity with spermidine, but also oxidizes other polyamines [1]. The specific polyamine oxidases are classified as EC 1.5.3.13 (N1-acetylpolyamine oxidase), EC 1.5.3.14 (polyamine oxidase (propane-1,3-diamine-forming)), EC 1.5.3.15 (N8-acetylspermidine oxidase (propane-1,3-diamine-forming)) and EC 1.5.3.16 (spermine oxidase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Moschou, P.N., Sanmartin, M., Andriopoulou, A.H., Rojo, E., Sanchez-Serrano, J.J. and Roubelakis-Angelakis, K.A. Bridging the gap between plant and mammalian polyamine catabolism: a novel peroxisomal polyamine oxidase responsible for a full back-conversion pathway in Arabidopsis. Plant Physiol. 147 (2008) 1845–1857. [DOI] [PMID: 18583528]
2.  Muller, S. and Walter, R.D. Purification and characterization of polyamine oxidase from Ascaris suum. Biochem. J. 283 (1992) 75–80. [PMID: 1567380]
3.  Landry, J. and Sternglanz, R. Yeast Fms1 is a FAD-utilizing polyamine oxidase. Biochem. Biophys. Res. Commun. 303 (2003) 771–776. [DOI] [PMID: 12670477]
[EC 1.5.3.17 created 2009]
 
 
EC 1.6.5.12     
Accepted name: demethylphylloquinone reductase
Reaction: demethylphylloquinone + NADPH + H+ = demethylphylloquinol + NADP+
Glossary: demethylphylloquinone = 2-phytyl-1,4-naphthoquinone
Other name(s): ndbB (gene name); NDC1 (gene name); demethylphylloquinone:NADPH oxidoreductase
Systematic name: NADPH:demethylphylloquinone oxidoreductase
Comments: The enzyme, found in plants and cyanobacteria, is involved in the biosynthesis of phylloquinone (vitamin K1), an electron carrier associated with photosystem I. The enzyme is a type II NADPH dehydrogenase and requires a flavine adenine dinucleotide cofactor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Fatihi, A., Latimer, S., Schmollinger, S., Block, A., Dussault, P.H., Vermaas, W.F., Merchant, S.S. and Basset, G.J. A dedicated type II NADPH dehydrogenase performs the penultimate step in the biosynthesis of vitamin K1 in Synechocystis and Arabidopsis. Plant Cell 27 (2015) 1730–1741. [DOI] [PMID: 26023160]
[EC 1.6.5.12 created 2015]
 
 
EC 1.7.1.4     
Accepted name: nitrite reductase [NAD(P)H]
Reaction: NH3 + 3 NAD(P)+ + 2 H2O = nitrite + 3 NAD(P)H + 5 H+
Other name(s): nitrite reductase (reduced nicotinamide adenine dinucleotide (phosphate)); assimilatory nitrite reductase (ambiguous); nitrite reductase [NAD(P)H2]; NAD(P)H2:nitrite oxidoreductase; nit-6 (gene name)
Systematic name: ammonia:NAD(P)+ oxidoreductase
Comments: An iron-sulfur flavoprotein (FAD) containing siroheme. The enzymes from the fungi Neurospora crassa [1], Emericella nidulans [2] and Candida nitratophila [4] can use either NADPH or NADH as electron donor. cf. EC 1.7.1.15, nitrite reductase (NADH).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9029-29-2
References:
1.  Nicholas, D.J.D., Medina, A. and Jones, O.T.G. A nitrite reductase from Neurospora crassa. Biochim. Biophys. Acta 37 (1960) 468–476. [PMID: 14426899]
2.  Pateman, J.A., Rever, B.M. and Cove, D.J. Genetic and biochemical studies of nitrate reduction in Aspergillus nidulans. Biochem. J. 104 (1967) 103–111. [PMID: 4382427]
3.  Rivas, J., Guerrero, M. G., Paneque, A. and Losada, M. Characterization of the nitrate-reducing system of the yeast Torulopsis nitratophila. Plant Sci. Lett. 1 (1973) 105–113.
4.  Lafferty, M.A. and Garrett, R.H. Purification and properties of the Neurospora crassa assimilatory nitrite reductase. J. Biol. Chem. 249 (1974) 7555–7567. [PMID: 4154942]
5.  Vega, J.M. and Garrett, R.H. Siroheme: a prosthetic group of the Neurospora crassa assimilatory nitrite reductase. J. Biol. Chem. 250 (1975) 7980–7989. [PMID: 126995]
6.  Greenbaum, P., Prodouz, K.N. and Garrett, R.H. Preparation and some properties of homogeneous Neurospora crassa assimilatory NADPH-nitrite reductase. Biochim. Biophys. Acta 526 (1978) 52–64. [DOI] [PMID: 150863]
7.  Prodouz, K.N. and Garrett, R.H. Neurospora crassa NAD(P)H-nitrite reductase. Studies on its composition and structure. J. Biol. Chem. 256 (1981) 9711–9717. [PMID: 6457037]
8.  Exley, G.E., Colandene, J.D. and Garrett, R.H. Molecular cloning, characterization, and nucleotide sequence of nit-6, the structural gene for nitrite reductase in Neurospora crassa. J. Bacteriol. 175 (1993) 2379–2392. [DOI] [PMID: 8096840]
9.  Colandene, J.D. and Garrett, R.H. Functional dissection and site-directed mutagenesis of the structural gene for NAD(P)H-nitrite reductase in Neurospora crassa. J. Biol. Chem. 271 (1996) 24096–24104. [DOI] [PMID: 8798648]
[EC 1.7.1.4 created 1961 as EC 1.6.6.4, transferred 2002 to EC 1.7.1.4, modified 2013]
 
 
EC 1.8.3.6     
Accepted name: farnesylcysteine lyase
Reaction: S-(2E,6E)-farnesyl-L-cysteine + O2 + H2O = (2E,6E)-farnesal + L-cysteine + H2O2
Other name(s): FC lyase; FCLY
Systematic name: S-(2E,6E)-farnesyl-L-cysteine oxidase
Comments: A flavoprotein (FAD). In contrast to mammalian EC 1.8.3.5 (prenylcysteine oxidase) the farnesylcysteine lyase from Arabidopsis is specific for S-farnesyl-L-cysteine and shows no activity with S-geranylgeranyl-L-cysteine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Huizinga, D.H., Denton, R., Koehler, K.G., Tomasello, A., Wood, L., Sen, S.E. and Crowell, D.N. Farnesylcysteine lyase is involved in negative regulation of abscisic acid signaling in Arabidopsis. Mol Plant 3 (2010) 143–155. [DOI] [PMID: 19969520]
2.  Crowell, D.N., Huizinga, D.H., Deem, A.K., Trobaugh, C., Denton, R. and Sen, S.E. Arabidopsis thaliana plants possess a specific farnesylcysteine lyase that is involved in detoxification and recycling of farnesylcysteine. Plant J. 50 (2007) 839–847. [DOI] [PMID: 17425716]
[EC 1.8.3.6 created 2011]
 
 
EC 1.8.4.9     
Accepted name: adenylyl-sulfate reductase (glutathione)
Reaction: AMP + sulfite + glutathione disulfide = adenylyl sulfate + 2 glutathione
Other name(s): 5′-adenylylsulfate reductase (also used for EC 1.8.99.2); AMP,sulfite:oxidized-glutathione oxidoreductase (adenosine-5′-phosphosulfate-forming); plant-type 5′-adenylylsulfate reductase
Systematic name: AMP,sulfite:glutathione-disulfide oxidoreductase (adenosine-5′-phosphosulfate-forming)
Comments: This enzyme differs from EC 1.8.99.2, adenylyl-sulfate reductase, in using glutathione as the reductant. Glutathione can be replaced by γ-glutamylcysteine or dithiothreitol, but not by thioredoxin, glutaredoxin or 2-sulfanylethan-1-ol (2-mercaptoethanol). The enzyme from the mouseear cress, Arabidopsis thaliana, contains a glutaredoxin-like domain. The enzyme is also found in other photosynthetic eukaryotes, e.g., the Madagascar periwinkle, Catharanthus roseus and the hollow green seaweed, Ulva intestinalis.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 355840-27-6
References:
1.  Gutierrez-Marcos, J.F., Roberts, M.A., Campbell, E.I. and Wray, J.L. Three members of a novel small gene-family from Arabidopsis thaliana able to complement functionally an Escherichia coli mutant defective in PAPS reductase activity encode proteins with a thioredoxin-like domain and 'APS reductase' activity. Proc. Natl. Acad. Sci. USA 93 (1996) 13377–13382. [DOI] [PMID: 8917599]
2.  Setya, A., Murillo, M. and Leustek, T. Sulfate reduction in higher plants: Molecular evidence for a novel 5-adenylylphosphosulfate (APS) reductase. Proc. Natl. Acad. Sci. USA 93 (1996) 13383–13388. [DOI] [PMID: 8917600]
3.  Bick, J.A., Aslund, F., Cen, Y. and Leustek, T. Glutaredoxin function for the carboxyl-terminal domain of the plant-type 5′-adenylylsulfate reductase. Proc. Natl. Acad. Sci. USA 95 (1998) 8404–8409. [DOI] [PMID: 9653199]
[EC 1.8.4.9 created 2000, modified 2002]
 
 
EC 1.8.7.1     
Accepted name: assimilatory sulfite reductase (ferredoxin)
Reaction: hydrogen sulfide + 6 oxidized ferredoxin [iron-sulfur] cluster + 3 H2O = sulfite + 6 reduced ferredoxin [iron-sulfur] cluster + 6 H+
Other name(s): ferredoxin-sulfite reductase; SIR (gene name); sulfite reductase (ferredoxin)
Systematic name: hydrogen-sulfide:ferredoxin oxidoreductase
Comments: An iron protein. The enzyme participates in sulfate assimilation. While it is usually found in cyanobacteria, plants and algae, it has also been reported in bacteria [4]. Different from EC 1.8.99.5, dissimilatory sulfite reductase, which is involved in prokaryotic sulfur-based energy metabolism. cf. EC 1.8.1.2, assimilatory sulfite reductase (NADPH).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37256-50-1
References:
1.  Schmidt, A. and Trebst, A. The mechanism of photosynthetic sulfate reduction by isolated chloroplasts. Biochim. Biophys. Acta 180 (1969) 529–535. [DOI] [PMID: 4390248]
2.  Gisselmann, G., Klausmeier, P. and Schwenn, J.D. The ferredoxin:sulphite reductase gene from Synechococcus PCC7942. Biochim. Biophys. Acta 1144 (1993) 102–106. [DOI] [PMID: 8347657]
3.  Bork, C., Schwenn, J.D. and Hell, R. Isolation and characterization of a gene for assimilatory sulfite reductase from Arabidopsis thaliana. Gene 212 (1998) 147–153. [DOI] [PMID: 9661674]
4.  Neumann, S., Wynen, A., Truper, H.G. and Dahl, C. Characterization of the cys gene locus from Allochromatium vinosum indicates an unusual sulfate assimilation pathway. Mol. Biol. Rep. 27 (2000) 27–33. [PMID: 10939523]
[EC 1.8.7.1 created 1972, modified 2015]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald