The Enzyme Database

Displaying entries 51-72 of 72.

<< Previous | Next >>    printer_iconPrintable version

EC 3.1.1.24     
Accepted name: 3-oxoadipate enol-lactonase
Reaction: 3-oxoadipate enol-lactone + H2O = 3-oxoadipate
For diagram of benzoate metabolism, click here
Other name(s): carboxymethylbutenolide lactonase; β-ketoadipic enol-lactone hydrolase; 3-ketoadipate enol-lactonase; 3-oxoadipic enol-lactone hydrolase; β-ketoadipate enol-lactone hydrolase
Systematic name: 4-carboxymethylbut-3-en-4-olide enol-lactonohydrolase
Comments: The enzyme acts on the product of EC 4.1.1.44 4-carboxymuconolactone decarboxylase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9031-04-3
References:
1.  Ornston, L.N. The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. II. Enzymes of the protocatechuate pathway. J. Biol. Chem. 241 (1966) 3787–3794. [PMID: 5916392]
2.  Ornston, L.N. Conversion of catechol and protocatechuate to β-ketoadipate (Pseudomonas putida). Methods Enzymol. 17A (1970) 529–549.
[EC 3.1.1.24 created 1961 as EC 3.1.1.16, part transferred 1972 to EC 3.1.1.24]
 
 
EC 3.1.1.92     
Accepted name: 4-sulfomuconolactone hydrolase
Reaction: 4-sulfomuconolactone + H2O = maleylacetate + sulfite
Glossary: 4-sulfomuconolactone = 4-carboxymethylen-4-sulfobut-2-en-olide = 2-(5-oxo-2-sulfo-2,5-dihydrofuran-2-yl)acetic acid
maleylacetate = (2Z)-4-oxohex-2-enedioate
Systematic name: 4-sulfomuconolactone sulfohydrolase
Comments: The enzyme was isolated from the bacteria Hydrogenophaga intermedia and Agrobacterium radiobacter S2. It catalyses a step in the degradation of 4-sulfocatechol.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc
References:
1.  Halak, S., Basta, T., Burger, S., Contzen, M., Wray, V., Pieper, D.H. and Stolz, A. 4-sulfomuconolactone hydrolases from Hydrogenophaga intermedia S1 and Agrobacterium radiobacter S2. J. Bacteriol. 189 (2007) 6998–7006. [DOI] [PMID: 17660282]
[EC 3.1.1.92 created 2012]
 
 
EC 3.1.6.1     
Accepted name: arylsulfatase (type I)
Reaction: an aryl sulfate + H2O = a phenol + sulfate
Other name(s): sulfatase; nitrocatechol sulfatase; phenolsulfatase; phenylsulfatase; p-nitrophenyl sulfatase; arylsulfohydrolase; 4-methylumbelliferyl sulfatase; estrogen sulfatase; type I sulfatase; arylsulfatase
Systematic name: aryl-sulfate sulfohydrolase
Comments: Sulfatase enzymes are classified as type I, in which the key catalytic residue is 3-oxo-L-alanine, type II, which are non-heme iron-dependent dioxygenases, or type III, whose catalytic domain adopts a metallo-β-lactamase fold and binds two zinc ions as cofactors. Arylsulfatases are type I enzymes, found in both prokaryotes and eukaryotes, with rather similar specificities. The key catalytic residue 3-oxo-L-alanine initiates the reaction through a nucleophilic attack on the sulfur atom in the substrate. This residue is generated by posttranslational modification of a conserved cysteine or serine residue by EC 1.8.3.7, formylglycine-generating enzyme, EC 1.1.98.7, serine-type anaerobic sulfatase-maturating enzyme, or EC 1.8.98.7, cysteine-type anaerobic sulfatase-maturating enzyme.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9016-17-5
References:
1.  Dodgson, K.S., Spencer, B. and Williams, K. Studies on sulphatases. 13. The hydrolysis of substituted phenyl sulphates by the arylsulphatase of Alcaligenes metacaligenes. Biochem. J. 64 (1956) 216–221. [PMID: 13363831]
2.  Webb, E.C. and Morrow, P.F.W. The activation of an arysulphatase from ox liver by chloride and other anions. Biochem. J. 73 (1959) 7–15. [PMID: 13843260]
3.  Roy, A.B. The synthesis and hydrolysis of sulfate esters. Adv. Enzymol. Relat. Subj. Biochem. 22 (1960) 205–235. [PMID: 13744184]
4.  Roy, A.B. Sulphatases, lysosomes and disease. Aust. J. Exp. Biol. Med. Sci. 54 (1976) 111–135. [PMID: 13772]
5.  Schmidt, B., Selmer, T., Ingendoh, A. and von Figura, K. A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency. Cell 82 (1995) 271–278. [PMID: 7628016]
6.  Dierks, T., Miech, C., Hummerjohann, J., Schmidt, B., Kertesz, M.A. and von Figura, K. Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. J. Biol. Chem. 273 (1998) 25560–25564. [DOI] [PMID: 9748219]
[EC 3.1.6.1 created 1961, modified 2011, modified 2021]
 
 
EC 3.1.6.12     
Accepted name: N-acetylgalactosamine-4-sulfatase
Reaction: Hydrolysis of the 4-sulfate groups of the N-acetyl-D-galactosamine 4-sulfate units of chondroitin sulfate and dermatan sulfate
For diagram of the later stages of chondroitin biosynthesis, click here
Other name(s): chondroitinsulfatase; chondroitinase; arylsulfatase B; acetylgalactosamine 4-sulfatase; N-acetylgalactosamine 4-sulfate sulfohydrolase
Systematic name: N-acetyl-D-galactosamine-4-sulfate 4-sulfohydrolase
Comments: Acts also on N-acetylglucosamine 4-sulfate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 55354-43-3
References:
1.  Farooqui, A.A. The desulphation of hexosamine sulphates by arylsulphatase B. Experientia 32 (1976) 1242–1244. [PMID: 976430]
2.  Gorham, S.D. and Cantz, M. Arylsulphatase B, an exo-sulphatase for chondroitin 4-sulphate tetrasaccharide. Hoppe-Seyler's Z. Physiol. Chem. 359 (1978) 1811–1814. [PMID: 738706]
3.  Tsuji, M., Nakanishi, Y., Habuchi, H., Ishihara, K. and Suzuki, S. The common identity of UDP-N-acetylgalactosamine 4-sulfatase, nitrocatechol sulfatase (arylsulfatase), and chondroitin 4-sulfatase. Biochim. Biophys. Acta 612 (1980) 373–383. [DOI] [PMID: 7370276]
[EC 3.1.6.12 created 1984]
 
 
EC 3.5.99.12     
Accepted name: salsolinol synthase
Reaction: (R)-salsolinol + H2O = dopamine + acetaldehyde
Glossary: (R)-salsolinol = (+)-salsolinol = (1R)-1,2,3,4-tetrahydro-1-methylisoquinoline-6,7-diol
Other name(s): Sal synthase
Systematic name: (R)-salsolinol dopamine-hydrolase (acetaldehyde-forming)
Comments: The enzyme, present in mammalian brains, forms the catechol isoquinoline (R)-salsolinol. This compound can be metabolized to (R)-N-methylsalsolinol, a 1-methyl-4-phenylpyridinium-like neurotoxin that impairs the function of dopaminergic neurons, causing the clinical symptoms of Parkinson's disease.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Naoi, M., Maruyama, W., Dostert, P., Kohda, K. and Kaiya, T. A novel enzyme enantio-selectively synthesizes (R)-salsolinol, a precursor of a dopaminergic neurotoxin, N-methyl-(R)-salsolinol. Neurosci. Lett. 212 (1996) 183–186. [DOI] [PMID: 8843103]
2.  Naoi, M., Maruyama, W., Takahashi, T., Akao, Y. and Nakagawa, Y. Involvement of endogenous N-methyl-(R)-salsolinol in Parkinson’s disease: induction of apoptosis and protection by (–)deprenyl. J. Neural Transm. Suppl. (2000) 111–121. [DOI] [PMID: 11128601]
3.  Chen, X., Zheng, X., Ali, S., Guo, M., Zhong, R., Chen, Z., Zhang, Y., Qing, H. and Deng, Y. Isolation and sequencing of salsolinol synthase, an enzyme catalyzing salsolinol biosynthesis. ACS Chem Neurosci 9 (2018) 1388–1398. [DOI] [PMID: 29602279]
4.  Xiong, Q., Zheng, X., Wang, J., Chen, Z., Deng, Y., Zhong, R., Wang, J. and Chen, X. Sal synthase induced cytotoxicity of PC12 cells through production of the dopamine metabolites salsolinol and N-methyl-salsolinol. J Integr Neurosci 21:71 (2022). [DOI] [PMID: 35364659]
[EC 3.5.99.12 created 2024]
 
 
EC 3.7.1.8     
Accepted name: 2,6-dioxo-6-phenylhexa-3-enoate hydrolase
Reaction: 2,6-dioxo-6-phenylhexa-3-enoate + H2O = benzoate + 2-oxopent-4-enoate
Other name(s): HOHPDA hydrolase
Systematic name: 2,6-dioxo-6-phenylhexa-3-enoate benzoylhydrolase
Comments: Cleaves the products from biphenol, 3-isopropylcatechol and 3-methylcatechol produced by EC 1.13.11.39 biphenyl-2,3-diol 1,2-dioxygenase, by ring-fission at a -CO-C bond. Involved in the breakdown of biphenyl-related compounds by Pseudomonas sp.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 102925-38-2
References:
1.  Omori, T., Sugimura, K., Ishigooka, H. and Minoda, Y. Purification and some properties of a 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid hydrolyzing enzyme from Pseudomonas cruciviae S93 B1 involved in the degradation of biphenyl. Agric. Biol. Chem. 50 (1986) 931–937.
[EC 3.7.1.8 created 1989]
 
 
EC 3.7.1.9     
Accepted name: 2-hydroxymuconate-6-semialdehyde hydrolase
Reaction: 2-hydroxymuconate-6-semialdehyde + H2O = formate + 2-oxopent-4-enoate
For diagram of catechol catabolism (meta ring cleavage), click here
Glossary: 2-hydroxymuconate-6-semialdehyde = (2Z,4E)-2-hydroxy-6-oxohexa-2,4-dienoate
Other name(s): 2-hydroxy-6-oxohepta-2,4-dienoate hydrolase; 2-hydroxymuconic semialdehyde hydrolase; HMSH; HOD hydrolase; xylF (gene name); 2-hydroxymuconate-semialdehyde formylhydrolase; 2-hydroxymuconate-semialdehyde hydrolase
Systematic name: 2-hydroxymuconate-6-semialdehyde formylhydrolase
Comments: The enzyme is involved in the degradation of catechols.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 54004-61-4
References:
1.  Sala-Trepat, J.M. and Evans, W.C. The meta cleavage of catechol by Azotobacter species. 4-Oxalocrotonate pathway. Eur. J. Biochem. 20 (1971) 400–413. [DOI] [PMID: 4325686]
2.  Harayama, S., Rekik, M., Wasserfallen, A. and Bairoch, A. Evolutionary relationships between catabolic pathways for aromatics: conservtion of gene order and nucleotide sequences of catechol oxidation genes of pWW0 and NAH7 plasmids. MGG Mol. Gen. Genet. 210 (1987) 241–247. [PMID: 3481421]
3.  Diaz, E. and Timmis, K.N. Identification of functional residues in a 2-hydroxymuconic semialdehyde hydrolase. A new member of the α/β hydrolase-fold family of enzymes which cleaves carbon-carbon bonds. J. Biol. Chem. 270 (1995) 6403–6411. [DOI] [PMID: 7890778]
[EC 3.7.1.9 created 1990, modified 2013]
 
 
EC 3.7.1.25     
Accepted name: 2-hydroxy-6-oxohepta-2,4-dienoate hydrolase
Reaction: (2Z,4E)-2-hydroxy-6-oxohepta-2,4-dienoate + H2O = (2Z)-2-hydroxypenta-2,4-dienoate + acetate
Other name(s): todF (gene name)
Systematic name: (2Z,4E)-2-hydroxy-6-oxohepta-2,4-dienoate acetylhydrolase
Comments: A bacterial enzyme that participates in the degradation of toluene and 2-nitrotoluene.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kukor, J.J. and Olsen, R.H. Genetic organization and regulation of a meta cleavage pathway for catechols produced from catabolism of toluene, benzene, phenol, and cresols by Pseudomonas pickettii PKO1. J. Bacteriol. 173 (1991) 4587–4594. [PMID: 1856161]
2.  Menn, F.M., Zylstra, G.J. and Gibson, D.T. Location and sequence of the todF gene encoding 2-hydroxy-6-oxohepta-2,4-dienoate hydrolase in Pseudomonas putida F1. Gene 104 (1991) 91–94. [PMID: 1916282]
3.  Haigler, B.E., Wallace, W.H. and Spain, J.C. Biodegradation of 2-nitrotoluene by Pseudomonas sp. strain JS42. Appl. Environ. Microbiol. 60 (1994) 3466–3469. [PMID: 7944378]
[EC 3.7.1.25 created 2019]
 
 
EC 4.1.1.44     
Accepted name: 4-carboxymuconolactone decarboxylase
Reaction: (R)-2-carboxy-2,5-dihydro-5-oxofuran-2-acetate = 4,5-dihydro-5-oxofuran-2-acetate + CO2
For diagram of benzoate metabolism, click here
Glossary: 4-carboxymuconolactone = 2-carboxy-2,5-dihydro-5-oxofuran-2-acetate
Other name(s): γ-4-carboxymuconolactone decarboxylase; 4-carboxymuconolactone carboxy-lyase; 2-carboxy-2,5-dihydro-5-oxofuran-2-acetate carboxy-lyase (4,5-dihydro-5-oxofuran-2-acetate-forming)
Systematic name: (R)-2-carboxy-2,5-dihydro-5-oxofuran-2-acetate carboxy-lyase (4,5-dihydro-5-oxofuran-2-acetate-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37289-46-6
References:
1.  Ornston, L.N. The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. 3. Enzymes of the catechol pathway. J. Biol. Chem. 241 (1966) 3795–3799. [PMID: 5330966]
2.  Ornston, L.N. Conversion of catechol and protocatechuate to β-ketoadipate (Pseudomonas putida). Methods Enzymol. 17A (1970) 529–549.
[EC 4.1.1.44 created 1972]
 
 
EC 4.1.1.46     
Accepted name: o-pyrocatechuate decarboxylase
Reaction: 2,3-dihydroxybenzoate = catechol + CO2
For diagram of catechol biosynthesis, click here
Other name(s): 2,3-dihydroxybenzoate carboxy-lyase
Systematic name: 2,3-dihydroxybenzoate carboxy-lyase (catechol-forming)
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37289-48-8
References:
1.  Subba Rao, P.V., Moore, K., Towers, G.H.N. O-Pyrocatechiuc acid carboxy-lyase from Aspergillus niger. Arch. Biochem. Biophys. 122 (1967) 466–473. [DOI] [PMID: 6066253]
[EC 4.1.1.46 created 1972]
 
 
EC 4.1.1.63     
Accepted name: protocatechuate decarboxylase
Reaction: 3,4-dihydroxybenzoate = catechol + CO2
For diagram of catechol biosynthesis, click here
Glossary: protocatechuate = 3,4-dihydroxybenzoate
Other name(s): 3,4-dihydrobenzoate decarboxylase; protocatechuate carboxy-lyase
Systematic name: 3,4-dihydroxybenzoate carboxy-lyase (catechol-forming)
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37290-55-4
References:
1.  Grant, D.J.W. and Patel, J.C. Non-oxidative decarboxylation of p-hydroxybenzoic acid, gentisic acid, protocatechuic acid, and gallic acid by Klebsiella aerogenes (Aerobacter aerogenes). J. Microbiol. Serol. 35 (1969) 325–343. [PMID: 5309907]
[EC 4.1.1.63 created 1972]
 
 
EC 4.1.1.77     
Accepted name: 2-oxo-3-hexenedioate decarboxylase
Reaction: (3E)-2-oxohex-3-enedioate = 2-oxopent-4-enoate + CO2
For diagram of catechol catabolism (meta ring cleavage), click here
Other name(s): 4-oxalocrotonate carboxy-lyase (misleading); 4-oxalocrotonate decarboxylase (misleading); cnbF (gene name); praD (gene name); amnE (gene name); nbaG (gene name); xylI (gene name)
Systematic name: (3E)-2-oxohex-3-enedioate carboxy-lyase (2-oxopent-4-enoate-forming)
Comments: Involved in the meta-cleavage pathway for the degradation of phenols, modified phenols and catechols. The enzyme has been reported to accept multiple tautomeric forms [1-4]. However, careful analysis of the stability of the different tautomers, as well as characterization of the enzyme that produces its substrate, EC 5.3.2.6, 2-hydroxymuconate tautomerase, showed that the actual substrate for the enzyme is (3E)-2-oxohex-3-enedioate [4].
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37325-55-6
References:
1.  Shingler, V., Marklund, U., Powlowski, J. Nucleotide sequence and functional analysis of the complete phenol/3,4-dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600. J. Bacteriol. 174 (1992) 711–724. [DOI] [PMID: 1732207]
2.  Takenaka, S., Murakami, S., Shinke, R. and Aoki, K. Metabolism of 2-aminophenol by Pseudomonas sp. AP-3: modified meta-cleavage pathway. Arch. Microbiol. 170 (1998) 132–137. [PMID: 9683650]
3.  Stanley, T.M., Johnson, W.H., Jr., Burks, E.A., Whitman, C.P., Hwang, C.C. and Cook, P.F. Expression and stereochemical and isotope effect studies of active 4-oxalocrotonate decarboxylase. Biochemistry 39 (2000) 718–726. [DOI] [PMID: 10651637]
4.  Wang, S.C., Johnson, W.H., Jr., Czerwinski, R.M., Stamps, S.L. and Whitman, C.P. Kinetic and stereochemical analysis of YwhB, a 4-oxalocrotonate tautomerase homologue in Bacillus subtilis: mechanistic implications for the YwhB- and 4-oxalocrotonate tautomerase-catalyzed reactions. Biochemistry 46 (2007) 11919–11929. [DOI] [PMID: 17902707]
5.  Kasai, D., Fujinami, T., Abe, T., Mase, K., Katayama, Y., Fukuda, M. and Masai, E. Uncovering the protocatechuate 2,3-cleavage pathway genes. J. Bacteriol. 191 (2009) 6758–6768. [DOI] [PMID: 19717587]
[EC 4.1.1.77 created 1999, modified 2011, modified 2012]
 
 
EC 4.1.1.83     
Accepted name: 4-hydroxyphenylacetate decarboxylase
Reaction: (4-hydroxyphenyl)acetate + H+ = 4-methylphenol + CO2
Other name(s): p-hydroxyphenylacetate decarboxylase; p-Hpd; 4-Hpd; 4-hydroxyphenylacetate carboxy-lyase
Systematic name: (4-hydroxyphenyl)acetate carboxy-lyase (4-methylphenol-forming)
Comments: The enzyme, from the strict anaerobe Clostridium difficile, can also use (3,4-dihydroxyphenyl)acetate as a substrate, yielding 4-methylcatechol as a product. The enzyme is a glycyl radical enzyme.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 340137-18-0
References:
1.  D'Ari, L. and Barker, H.A. p-Cresol formation by cell-free extracts of Clostridium difficile. Arch. Microbiol. 143 (1985) 311–312. [PMID: 3938267]
2.  Selmer, T. and Andrei, P.I. p-Hydroxyphenylacetate decarboxylase from Clostridium difficile. A novel glycyl radical enzyme catalysing the formation of p-cresol. Eur. J. Biochem. 268 (2001) 1363–1372. [DOI] [PMID: 11231288]
3.  Andrei, P.I., Pierik, A.J., Zauner, S., Andrei-Selmer, L.C. and Selmer, T. Subunit composition of the glycyl radical enzyme p-hydroxyphenylacetate decarboxylase. A small subunit, HpdC, is essential for catalytic activity. Eur. J. Biochem. 271 (2004) 2225–2230. [DOI] [PMID: 15153112]
[EC 4.1.1.83 created 2005]
 
 
EC 4.1.3.39     
Accepted name: 4-hydroxy-2-oxovalerate aldolase
Reaction: (S)-4-hydroxy-2-oxopentanoate = acetaldehyde + pyruvate
For diagram of 3-phenylpropanoate catabolism, click here, for diagram of catechol catabolism (meta ring cleavage), click here and for diagram of cinnamate catabolism, click here
Glossary: (S)-4-hydroxy-2-oxopentanoate = (S)-4-hydroxy-2-oxovalerate
Other name(s): 4-hydroxy-2-ketovalerate aldolase; HOA; DmpG; 4-hydroxy-2-oxovalerate pyruvate-lyase; 4-hydroxy-2-oxopentanoate pyruvate-lyase; BphI; 4-hydroxy-2-oxopentanoate pyruvate-lyase (acetaldehyde-forming)
Systematic name: (S)-4-hydroxy-2-oxopentanoate pyruvate-lyase (acetaldehyde-forming)
Comments: Requires Mn2+ for maximal activity [1]. The enzyme from the bacterium Pseudomonas putida is also stimulated by NADH [1]. In some bacterial species the enzyme forms a bifunctional complex with EC 1.2.1.10, acetaldehyde dehydrogenase (acetylating). The enzymes from the bacteria Burkholderia xenovorans and Thermus thermophilus also perform the reaction of EC 4.1.3.43, 4-hydroxy-2-oxohexanoate aldolase [4,5].
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37325-52-3
References:
1.  Manjasetty, B.A., Powlowski, J. and Vrielink, A. Crystal structure of a bifunctional aldolase-dehydrogenase: sequestering a reactive and volatile intermediate. Proc. Natl. Acad. Sci. USA 100 (2003) 6992–6997. [DOI] [PMID: 12764229]
2.  Powlowski, J., Sahlman, L. and Shingler, V. Purification and properties of the physically associated meta-cleavage pathway enzymes 4-hydroxy-2-ketovalerate aldolase and aldehyde dehydrogenase (acylating) from Pseudomonas sp. strain CF600. J. Bacteriol. 175 (1993) 377–385. [DOI] [PMID: 8419288]
3.  Manjasetty, B.A., Croteau, N., Powlowski, J. and Vrielink, A. Crystallization and preliminary X-ray analysis of dmpFG-encoded 4-hydroxy-2-ketovalerate aldolase—aldehyde dehydrogenase (acylating) from Pseudomonas sp. strain CF600. Acta Crystallogr. D Biol. Crystallogr. 57 (2001) 582–585. [PMID: 11264589]
4.  Baker, P., Carere, J. and Seah, S.Y.K. Probing the molecular basis of substrate specificity, stereospecificity, and catalysis in the class II pyruvate aldolase, BphI. Biochemistry 50 (2011) 3559–3569. [DOI] [PMID: 21425833]
5.  Baker, P., Hillis, C., Carere, J. and Seah, S.Y.K. Protein-protein interactions and substrate channeling in orthologous and chimeric aldolase-dehydrogenase complexes. Biochemistry 51 (2012) 1942–1952. [DOI] [PMID: 22316175]
6.  Baker, P. and Seah, S.Y.K. Rational design of stereoselectivity in the class II pyruvate aldolase BphI. J. Am. Chem. Soc. 134 (2012) 507–513. [DOI] [PMID: 22081904]
[EC 4.1.3.39 created 2006, modified 2011]
 
 
EC 4.2.1.80     
Accepted name: 2-oxopent-4-enoate hydratase
Reaction: (S)-4-hydroxy-2-oxopentanoate = (2Z)-2-hydroxypenta-2,4-dienoate + H2O
For diagram of 3-phenylpropanoate catabolism, click here, for diagram of catechol catabolism (meta ring cleavage), click here and for diagram of cinnamate catabolism, click here
Other name(s): 2-keto-4-pentenoate hydratase; OEH; 2-keto-4-pentenoate (vinylpyruvate)hydratase; 4-hydroxy-2-oxopentanoate hydro-lyase; 4-hydroxy-2-oxopentanoate hydro-lyase (2-oxopent-4-enoate-forming); mhpD (gene name); ahdF (gene name); todG (gene name); cmtF (gene name); xylJ (gene name); cnbE (gene name)
Systematic name: (S)-4-hydroxy-2-oxopentanoate hydro-lyase ((2Z)-2-hydroxypenta-2,4-dienoate-forming)
Comments: The enzyme is involved in the catechol meta-cleavage pathway, a major mechanism for degradation of aromatic compounds. Also acts, more slowly, on cis-2-oxohex-4-enoate, but not on the trans-isomer. The enzyme was named when it was thought that the substrate is 2-oxopent-4-enoate. However, it was later found that the actual substrate is its tautomer (2Z)-2-hydroxypenta-2,4-dienoate. In some organisms the enzyme forms a complex with EC 4.1.1.77, 2-oxo-3-hexenedioate decarboxylase (previously named 4-oxalocrotonate decarboxylase).
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 64427-80-1
References:
1.  Kunz, D.A., Ribbons, D.W. and Chapman, P.J. Metabolism of allylglycine and cis-crotylglycine by Pseudomonas putida (arvilla) mt-2 harboring a TOL plasmid. J. Bacteriol. 148 (1981) 72–82. [PMID: 7287632]
2.  Harayama, S., Rekik, M., Ngai, K.L. and Ornston, L.N. Physically associated enzymes produce and metabolize 2-hydroxy-2,4-dienoate, a chemically unstable intermediate formed in catechol metabolism via meta cleavage in Pseudomonas putida. J. Bacteriol. 171 (1989) 6251–6258. [DOI] [PMID: 2681159]
3.  Pollard, J.R. and Bugg, T.D. Purification, characterisation and reaction mechanism of monofunctional 2-hydroxypentadienoic acid hydratase from Escherichia coli. Eur. J. Biochem. 251 (1998) 98–106. [PMID: 9492273]
[EC 4.2.1.80 created 1984]
 
 
EC 5.2.1.10     
Accepted name: 2-chloro-4-carboxymethylenebut-2-en-1,4-olide isomerase
Reaction: cis-2-chloro-4-carboxymethylenebut-2-en-1,4-olide = trans-2-chloro-4-carboxymethylenebut-2-en-1,4-olide
Other name(s): 2-chlorocarboxymethylenebutenolide isomerase; chlorodienelactone isomerase
Systematic name: 2-chloro-4-carboxymethylenebut-2-en-1,4-olide cis-trans-isomerase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 115629-29-3
References:
1.  Schwien, U., Schmidt, E., Knackmuss, H.-J. and Reinecke, W. Degradation of chlorosubstituted aromatic-compounds by Pseudomonas sp. strain-B13 - fate of 3,5-dichlorocatechol. Arch. Microbiol. 150 (1988) 78–84.
[EC 5.2.1.10 created 1992]
 
 
EC 5.3.2.6     
Accepted name: 2-hydroxymuconate tautomerase
Reaction: (2Z,4E)-2-hydroxyhexa-2,4-dienedioate = (3E)-2-oxohex-3-enedioate
For diagram of catechol catabolism (meta ring cleavage), click here
Glossary: (2Z,4E)-2-hydroxyhexa-2,4-dienedioate = (2Z,4E)-2-hydroxymuconate
Other name(s): 4-oxalocrotonate tautomerase (misleading); 4-oxalocrotonate isomerase (misleading); cnbG (gene name); praC (gene name); xylH (gene name)
Systematic name: (2Z,4E)-2-hydroxyhexa-2,4-dienedioate ketoenol isomerase
Comments: Involved in the meta-cleavage pathway for the degradation of phenols, modified phenols and catechols. The enol form (2Z,4E)-2-hydroxyhexa-2,4-dienedioate is produced as part of this pathway and is converted to the keto form (3E)-2-oxohex-3-enedioate by the enzyme [6]. Another keto form, (4E)-2-oxohex-4-enedioate (4-oxalocrotonate), was originally thought to be produced by the enzyme [1,2] but later shown to be produced non-enzymically [5].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Whitman, C.P., Aird, B.A., Gillespie, W.R. and Stolowich, N.J. Chemical and enzymatic ketonization of 2-hydroxymuconate, a conjugated enol. J. Am. Chem. Soc. 113 (1991) 3154–3162.
2.  Whitman, C.P., Hajipour, G., Watson, R.J., Johnson, W.H., Jr., Bembenek, M.E. and Stolowich, N.J. Stereospecific ketonization of 2-hydroxymuconate by 4-oxalocrotonate tautomerase and 5-(carboxymethyl)-2-hydroxymuconate isomerase. J. Am. Chem. Soc. 114 (1992) 10104–10110.
3.  Subramanya, H.S., Roper, D.I., Dauter, Z., Dodson, E.J., Davies, G.J., Wilson, K.S. and Wigley, D.B. Enzymatic ketonization of 2-hydroxymuconate: specificity and mechanism investigated by the crystal structures of two isomerases. Biochemistry 35 (1996) 792–802. [DOI] [PMID: 8547259]
4.  Stivers, J.T., Abeygunawardana, C., Mildvan, A.S., Hajipour, G., Whitman, C.P. and Chen, L.H. Catalytic role of the amino-terminal proline in 4-oxalocrotonate tautomerase: affinity labeling and heteronuclear NMR studies. Biochemistry 35 (1996) 803–813. [DOI] [PMID: 8547260]
5.  Wang, S.C., Johnson, W.H., Jr., Czerwinski, R.M., Stamps, S.L. and Whitman, C.P. Kinetic and stereochemical analysis of YwhB, a 4-oxalocrotonate tautomerase homologue in Bacillus subtilis: mechanistic implications for the YwhB- and 4-oxalocrotonate tautomerase-catalyzed reactions. Biochemistry 46 (2007) 11919–11929. [DOI] [PMID: 17902707]
6.  Kasai, D., Fujinami, T., Abe, T., Mase, K., Katayama, Y., Fukuda, M. and Masai, E. Uncovering the protocatechuate 2,3-cleavage pathway genes. J. Bacteriol. 191 (2009) 6758–6768. [DOI] [PMID: 19717587]
[EC 5.3.2.6 created 2012]
 
 
EC 5.3.3.4     
Accepted name: muconolactone Δ-isomerase
Reaction: (+)-muconolactone = (4,5-dihydro-5-oxofuran-2-yl)-acetate
For diagram of benzoate metabolism, click here
Glossary: (+)-muconolactone = (S)-(2,5-dihydro-5-oxofuran-2-yl)-acetate
Other name(s): muconolactone isomerase; 5-oxo-4,5-dihydrofuran-2-acetate Δ32-isomerase
Systematic name: (+)-muconolactone Δ32-isomerase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37318-46-0
References:
1.  Ornston, L.N. The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. 3. Enzymes of the catechol pathway. J. Biol. Chem. 241 (1966) 3795–3799. [PMID: 5330966]
2.  Ornston, L.N. Conversion of catechol and protocatechuate to β-ketoadipate (Pseudomonas putida). Methods Enzymol. 17A (1970) 529–549.
[EC 5.3.3.4 created 1961 as EC 3.1.1.16, part transferred 1972 to EC 5.3.3.4 rest to EC 5.3.3.4]
 
 
EC 5.5.1.1     
Accepted name: muconate cycloisomerase
Reaction: (+)-muconolactone = cis,cis-muconate
For diagram of benzoate metabolism, click here
Glossary: (+)-muconolactone = (S)-(2,5-dihydro-5-oxofuran-2-yl)-acetate
cis,cis-muconate = cis,cis-hexadienedioate = (2Z,4Z)-hexa-2,4-dienedioate
Other name(s): muconate cycloisomerase I; cis,cis-muconate-lactonizing enzyme; cis,cis-muconate cycloisomerase; muconate lactonizing enzyme; 4-carboxymethyl-4-hydroxyisocrotonolactone lyase (decyclizing); CatB; MCI; 2,5-dihydro-5-oxofuran-2-acetate lyase (decyclizing); 2,5-dihydro-5-oxofuran-2-acetate lyase (ring-opening)
Systematic name: (+)-muconolactone lyase (ring-opening)
Comments: Requires Mn2+. Also acts (in the reverse reaction) on 3-methyl-cis,cis-muconate and, very slowly, on cis,trans-muconate. Not identical with EC 5.5.1.7 (chloromuconate cycloisomerase) or EC 5.5.1.11 (dichloromuconate cycloisomerase).
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9023-72-7
References:
1.  Ornston, L.N. The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. 3. Enzymes of the catechol pathway. J. Biol. Chem. 241 (1966) 3795–3799. [PMID: 5330966]
2.  Ornston, L.N. Conversion of catechol and protocatechuate to β-ketoadipate (Pseudomonas putida). Methods Enzymol. 17A (1970) 529–549.
3.  Sistrom, W.R. and Stanier, R.Y. The mechanism of formation of β-ketoadipic acid by bacteria. J. Biol. Chem. 210 (1954) 821–836. [PMID: 13211620]
[EC 5.5.1.1 created 1961]
 
 
EC 5.5.1.2     
Accepted name: 3-carboxy-cis,cis-muconate cycloisomerase
Reaction: 2-carboxy-2,5-dihydro-5-oxofuran-2-acetate = cis,cis-butadiene-1,2,4-tricarboxylate
For diagram of benzoate metabolism, click here
Other name(s): β-carboxymuconate lactonizing enzyme; 3-carboxymuconolactone hydrolase; 2-carboxy-2,5-dihydro-5-oxofuran-2-acetate lyase (decyclizing)
Systematic name: 2-carboxy-2,5-dihydro-5-oxofuran-2-acetate lyase (ring-opening)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9075-77-8
References:
1.  Ornston, L.N. The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. II. Enzymes of the protocatechuate pathway. J. Biol. Chem. 241 (1966) 3787–3794. [PMID: 5916392]
2.  Ornston, L.N. Conversion of catechol and protocatechuate to β-ketoadipate (Pseudomonas putida). Methods Enzymol. 17A (1970) 529–549.
[EC 5.5.1.2 created 1972]
 
 
EC 6.2.1.66     
Accepted name: glyine—[glycyl-carrier protein] ligase
Reaction: ATP + glycine + holo-[glycyl-carrier protein] = AMP + diphosphate + glycyl-[glycyl-carrier protein] (overall reaction)
(1a) ATP + glycine = diphosphate + (glycyl)adenylate
(1b) (glycyl)adenylate + holo-[glycyl-carrier protein] = AMP + glycyl-[glycyl-carrier protein]
Other name(s): dhbF (gene name); sfmB (gene name)
Systematic name: glycine:[glycyl-carrier protein] ligase (AMP-forming)
Comments: The adenylation domain of the enzyme catalyses the activation of glycine to (glycyl)adenylate, followed by the transfer of the activated compound to the free thiol of a phosphopantetheine arm of a peptidyl-carrier protein domain. The peptidyl-carrier protein domain may be part of the same protein (as in the case of DhbF in bacillibactin biosynthesis), or of a different protein. This activity is often found as part of a larger non-ribosomal peptide synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  May, J.J., Wendrich, T.M. and Marahiel, M.A. The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. J. Biol. Chem. 276 (2001) 7209–7217. [DOI] [PMID: 11112781]
2.  Li, L., Deng, W., Song, J., Ding, W., Zhao, Q.F., Peng, C., Song, W.W., Tang, G.L. and Liu, W. Characterization of the saframycin A gene cluster from Streptomyces lavendulae NRRL 11002 revealing a nonribosomal peptide synthetase system for assembling the unusual tetrapeptidyl skeleton in an iterative manner. J. Bacteriol. 190 (2008) 251–263. [DOI] [PMID: 17981978]
[EC 6.2.1.66 created 2021]
 
 
EC 6.2.1.71     
Accepted name: 2,3-dihydroxybenzoate—[aryl-carrier protein] ligase
Reaction: ATP + 2,3-dihydroxybenzoate + holo-[aryl-carrier protein] = AMP + diphosphate + 2,3-dihydroxybenzoyl-[aryl-carrier protein] (overall reaction)
(1a) ATP + 2,3-dihydroxybenzoate = diphosphate + (2,3-dihydroxybenzoyl)adenylate
(1b) (2,3-dihydroxybenzoyl)adenylate + holo-[aryl-carrier protein] = AMP + 2,3-dihydroxybenzoyl-[aryl-carrier protein]
Other name(s): entE (gene name); vibE (gene name); dhbE (gene name); angE (gene name)
Systematic name: 2,3-dihydroxybenzoate:[aryl-carrier protein] ligase (AMP-forming)
Comments: The adenylation domain of the enzyme catalyses the activation of 2,3-dihydroxybenzoate to (2,3-dihydroxybenzoyl)adenylate, followed by the transfer the activated compound to the free thiol of a phosphopantetheine arm of an aryl-carrier protein domain of a specific non-ribosomal peptide synthase. For example, the EntE enzyme of Escherichia coli is part of the enterobactin synthase complex, the VibE enzyme of Vibrio cholerae is part of the vibriobactin synthase complex, and the DhbE enzyme of Bacillus subtilis is part of the bacillibactin synthase complex.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Gehring, A.M., Bradley, K.A. and Walsh, C.T. Enterobactin biosynthesis in Escherichia coli: isochorismate lyase (EntB) is a bifunctional enzyme that is phosphopantetheinylated by EntD and then acylated by EntE using ATP and 2,3-dihydroxybenzoate. Biochemistry 36 (1997) 8495–8503. [DOI] [PMID: 9214294]
2.  Wyckoff, E.E., Stoebner, J.A., Reed, K.E. and Payne, S.M. Cloning of a Vibrio cholerae vibriobactin gene cluster: identification of genes required for early steps in siderophore biosynthesis. J. Bacteriol. 179 (1997) 7055–7062. [PMID: 9371453]
3.  Ehmann, D.E., Shaw-Reid, C.A., Losey, H.C. and Walsh, C.T. The EntF and EntE adenylation domains of Escherichia coli enterobactin synthetase: sequestration and selectivity in acyl-AMP transfers to thiolation domain cosubstrates. Proc. Natl. Acad. Sci. USA 97 (2000) 2509–2514. [DOI] [PMID: 10688898]
4.  Keating, T.A., Marshall, C.G. and Walsh, C.T. Vibriobactin biosynthesis in Vibrio cholerae: VibH is an amide synthase homologous to nonribosomal peptide synthetase condensation domains. Biochemistry 39 (2000) 15513–15521. [PMID: 11112537]
5.  May, J.J., Wendrich, T.M. and Marahiel, M.A. The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. J. Biol. Chem. 276 (2001) 7209–7217. [DOI] [PMID: 11112781]
6.  Sikora, A.L., Wilson, D.J., Aldrich, C.C. and Blanchard, J.S. Kinetic and inhibition studies of dihydroxybenzoate-AMP ligase from Escherichia coli. Biochemistry 49 (2010) 3648–3657. [DOI] [PMID: 20359185]
7.  Khalil, S. and Pawelek, P.D. Enzymatic adenylation of 2,3-dihydroxybenzoate is enhanced by a protein-protein interaction between Escherichia coli 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase (EntA) and 2,3-dihydroxybenzoate-AMP ligase (EntE). Biochemistry 50 (2011) 533–545. [DOI] [PMID: 21166461]
[EC 6.2.1.71 created 2021 (EC 2.7.7.58 created 1992, incorporated 2021)]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald