The Enzyme Database

Your query returned 12 entries.    printer_iconPrintable version

Accepted name: cytochrome-c peroxidase
Reaction: 2 ferrocytochrome c + H2O2 = 2 ferricytochrome c + 2 H2O
Other name(s): cytochrome peroxidase; cytochrome c-551 peroxidase; apocytochrome c peroxidase; mesocytochrome c peroxidase azide; mesocytochrome c peroxidase cyanide; mesocytochrome c peroxidase cyanate; cytochrome c-H2O oxidoreductase; cytochrome c peroxidase
Systematic name: ferrocytochrome-c:hydrogen-peroxide oxidoreductase
Comments: A hemoprotein.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9029-53-2
1.  Altschul, A.M., Abrams, R. and Hogness, T.R. Cytochrome c peroxidase. J. Biol. Chem. 136 (1940) 777–794.
2.  Yamanaka, T. and Okunuki, K. Isolation of a cytochrome peroxidase from Thiobacillus novellus. Biochim. Biophys. Acta 220 (1970) 354–356. [DOI] [PMID: 5487887]
3.  Yonetani, T. Cytochrome c peroxidase. Adv. Enzymol. Relat. Areas Mol. Biol. 33 (1970) 309–335. [PMID: 4318313]
[EC created 1961]
Accepted name: peroxidase
Reaction: 2 phenolic donor + H2O2 = 2 phenoxyl radical of the donor + 2 H2O
Other name(s): lactoperoxidase; guaiacol peroxidase; plant peroxidase; Japanese radish peroxidase; horseradish peroxidase (HRP); soybean peroxidase (SBP); extensin peroxidase; heme peroxidase; oxyperoxidase; protoheme peroxidase; pyrocatechol peroxidase; scopoletin peroxidase; Coprinus cinereus peroxidase; Arthromyces ramosus peroxidase
Systematic name: phenolic donor:hydrogen-peroxide oxidoreductase
Comments: Heme proteins with histidine as proximal ligand. The iron in the resting enzyme is Fe(III). They also peroxidize non-phenolic substrates such as 3,3′,5,5′-tetramethylbenzidine (TMB) and 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS). Certain peroxidases (e.g. lactoperoxidase, SBP) oxidize bromide, iodide and thiocyanate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9003-99-0
1.  Kenten, R.H. and Mann, P.J.G. Simple method for the preparation of horseradish peroxidase. Biochem. J. 57 (1954) 347–348. [PMID: 13172193]
2.  Morrison, M., Hamilton, H.B. and Stotz, E. The isolation and purification of lactoperoxidase by ion exchange chromatography. J. Biol. Chem. 228 (1957) 767–776. [PMID: 13475358]
3.  Paul, K.G. Peroxidases. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 8, Academic Press, New York, 1963, pp. 227–274.
4.  Tagawa, K., Shin, M. and Okunuki, K. Peroxidases from wheat germ. Nature (Lond.) 183 (1959) 111. [PMID: 13622706]
5.  Theorell, H. The preparation and some properties of crystalline horse-radish peroxidase. Ark. Kemi Mineral. Geol. 16A No. 2 (1943) 1–11.
6.  Farhangrazi, Z.S., Copeland, B.R., Nakayama, T., Amachi, T., Yamazaki, I. and Powers, L.S. Oxidation-reduction properties of compounds I and II of Arthromyces ramosus peroxidase. Biochemistry 33 (1994) 5647–5652. [PMID: 8180190]
7.  Aitken, M.D. and Heck, P.E. Turnover capacity of coprinus cinereus peroxidase for phenol and monosubstituted phenol. Biotechnol. Prog. 14 (1998) 487–492. [DOI] [PMID: 9622531]
8.  Dunford, H.B. Heme peroxidases, Wiley-VCH, New York, 1999, pp. 33–218.
9.  Torres, E and Ayala, M. Biocatalysis based on heme peroxidases, Springer, Berlin, 2010, pp. 7–110.
[EC created 1961, modified 2011]
Accepted name: myeloperoxidase
Reaction: Cl- + H2O2 + H+ = HClO + H2O
Other name(s): MPO; verdoperoxidase
Systematic name: chloride:hydrogen-peroxide oxidoreductase (hypochlorite-forming)
Comments: Contains calcium and covalently bound heme (proximal ligand histidine). It is present in phagosomes of neutrophils and monocytes, where the hypochlorite produced is strongly bactericidal. It differs from EC chloride peroxidase in its preference for formation of hypochlorite over the chlorination of organic substrates under physiological conditions (pH 5-8). Hypochlorite in turn forms a number of antimicrobial products (Cl2, chloramines, hydroxyl radical, singlet oxygen). MPO also oxidizes bromide, iodide and thiocyanate. In the absence of halides, it oxidizes phenols and has a moderate peroxygenase activity toward styrene.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Agner, K. Myeloperoxidase. Adv. Enzymol. 3 (1943) 137–148.
2.  Harrison, J.E. and Schultz, J. Studies on the chlorinating activity of myeloperoxidase. J. Biol. Chem. 251 (1976) 1371–1374. [PMID: 176150]
3.  Furtmuller, P.G., Burner, U. and Obinger, C. Reaction of myeloperoxidase compound I with chloride, bromide, iodide, and thiocyanate. Biochemistry 37 (1998) 17923–17930. [PMID: 9922160]
4.  Tuynman, A., Spelberg, J.L., Kooter, I.M., Schoemaker, H.E. and Wever, R. Enantioselective epoxidation and carbon-carbon bond cleavage catalyzed by Coprinus cinereus peroxidase and myeloperoxidase. J. Biol. Chem. 275 (2000) 3025–3030. [DOI] [PMID: 10652281]
5.  Klebanoff, S.J. Myeloperoxidase: friend and foe. J. Leukoc. Biol. 77 (2005) 598–625. [DOI] [PMID: 15689384]
6.  Fiedler, T.J., Davey, C.A. and Fenna, R.E. X-ray crystal structure and characterization of halide-binding sites of human myeloperoxidase at 1.8 Å resolution. J. Biol. Chem. 275 (2000) 11964–11971. [DOI] [PMID: 10766826]
7.  Gaut, J.P., Yeh, G.C., Tran, H.D., Byun, J., Henderson, J.P., Richter, G.M., Brennan, M.L., Lusis, A.J., Belaaouaj, A., Hotchkiss, R.S. and Heinecke, J.W. Neutrophils employ the myeloperoxidase system to generate antimicrobial brominating and chlorinating oxidants during sepsis. Proc. Natl. Acad. Sci. USA 98 (2001) 11961–11966. [DOI] [PMID: 11593004]
[EC created 2011]
Accepted name: N-hydroxythioamide S-β-glucosyltransferase
Reaction: (1) UDP-α-D-glucose + (Z)-2-phenyl-1-thioacetohydroximate = UDP + desulfoglucotropeolin
(2) UDP-α-D-glucose + an (E)-ω-(methylsulfanyl)alkyl-thiohydroximate = UDP + an aliphatic desulfoglucosinolate
(3) UDP-α-D-glucose + (E)-2-(1H-indol-3-yl)-1-thioacetohydroximate = UDP + desulfoglucobrassicin
For diagram of glucotropeolin biosynthesis, click here
Glossary: an aliphatic desulfoglucosinolate = an ω-(methylsulfanyl)alkylhydroximate S-glucoside
Other name(s): UGT74B1 (gene name); desulfoglucosinolate-uridine diphosphate glucosyltransferase; uridine diphosphoglucose-thiohydroximate glucosyltransferase; thiohydroximate β-D-glucosyltransferase; UDPG:thiohydroximate glucosyltransferase; thiohydroximate S-glucosyltransferase; thiohydroximate glucosyltransferase; UDP-glucose:thiohydroximate S-β-D-glucosyltransferase; UDP-glucose:N-hydroxy-2-phenylethanethioamide S-β-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:N-hydroxy-2-phenylethanethioamide S-β-D-glucosyltransferase
Comments: The enzyme specifically glucosylates the thiohydroximate functional group. It is involved in the biosynthesis of glucosinolates in cruciferous plants, and acts on aliphatic, aromatic, and indolic substrates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9068-14-8
1.  Jain, J.C., Reed, D.W., Groot Wassink, J.W.D. and Underhill, E.W. A radioassay of enzymes catalyzing the glucosylation and sulfation steps of glucosinolate biosynthesis in Brassica species. Anal. Biochem. 178 (1989) 137–140. [DOI] [PMID: 2524977]
2.  Reed, D.W., Davin, L., Jain, J.C., Deluca, V., Nelson, L. and Underhill, E.W. Purification and properties of UDP-glucose:thiohydroximate glucosyltransferase from Brassica napus L. seedlings. Arch. Biochem. Biophys. 305 (1993) 526–532. [DOI] [PMID: 8373190]
3.  Marillia, E.F., MacPherson, J.M., Tsang, E.W., Van Audenhove, K., Keller, W.A. and GrootWassink, J.W. Molecular cloning of a Brassica napus thiohydroximate S-glucosyltransferase gene and its expression in Escherichia coli. Physiol. Plant. 113 (2001) 176–184. [PMID: 12060294]
4.  Fahey, J.W., Zalcmann, A.T. and Talalay, P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56 (2001) 5–51. [DOI] [PMID: 11198818]
5.  Grubb, C.D., Zipp, B.J., Ludwig-Muller, J., Masuno, M.N., Molinski, T.F. and Abel, S. Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. Plant J. 40 (2004) 893–908. [DOI] [PMID: 15584955]
[EC created 1992, modified 2006, modified 2018]
Accepted name: thiosulfate sulfurtransferase
Reaction: thiosulfate + cyanide = sulfite + thiocyanate
Other name(s): thiosulfate cyanide transsulfurase; thiosulfate thiotransferase; rhodanese; rhodanase
Systematic name: thiosulfate:cyanide sulfurtransferase
Comments: A few other sulfur compounds can act as donors.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9026-04-4
1.  Sörbo, B.H. Crystalline rhodanese. I. Purification and physicochemical examination. Acta Chem. Scand. 7 (1953) 1129–1136.
2.  Sörbo, B.H. Crystalline rhodanese. II. The enzyme catalyzed reaction. Acta Chem. Scand. 7 (1953) 1137–1145.
3.  Westley, J. and Green, J.R. Crystalline beef kidney rhodanese. J. Biol. Chem. 234 (1959) 2325–2326. [PMID: 13844173]
[EC created 1961]
Transferred entry: cyanate hydrolase. Now EC, cyanate hydratase
[EC created 1972, deleted 1990]
Accepted name: thiocyanate hydrolase
Reaction: thiocyanate + 2 H2O = carbonyl sulfide + NH3 + HO-
Systematic name: thiocyanate aminohydrolase
Comments: The enzyme from Thiobacillus thioparus catalyses the first step in the degradation of thiocyanate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, UM-BBD, CAS registry number: 142539-65-9
1.  Katayama, Y., Matsushita, Y., Kaneko, M., Kondo, M., Mizuno, T. and Nyunoya, H. Cloning of genes coding for the three subunits of thiocyanate hydrolase of Thiobacillus thioparus THI 115 and their evolutionary relationships to nitrile hydratase. J. Bacteriol. 180 (1998) 2583–2589. [PMID: 9573140]
2.  Katayama, Y., Narahara, Y., Inoue, Y., Amano, F., Kanagawa, T. and Kuraishi, H. A thiocyanate hydrolase of Thiobacillus thioparus. J. Biol. Chem. 267 (1992) 9170–9175. [PMID: 1577754]
[EC created 2000]
Accepted name: carbonyl sulfide hydrolase
Reaction: carbonyl sulfide + H2O = hydrogen sulfide + CO2
Other name(s): COSase; COS hydrolase; cos (gene name)
Systematic name: carbonyl sulfide hydrogen-sulfide-lyase (decarboxylating)
Comments: The enzyme, characterized from the bacterium Thiobacillus thioparus, catalyses a step in the degradation pathway of thiocyanate. This activity is also catalysed by the archaeal EC, carbon disulfide lyase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Ogawa, T., Noguchi, K., Saito, M., Nagahata, Y., Kato, H., Ohtaki, A., Nakayama, H., Dohmae, N., Matsushita, Y., Odaka, M., Yohda, M., Nyunoya, H. and Katayama, Y. Carbonyl sulfide hydrolase from Thiobacillus thioparus strain THI115 is one of the β-carbonic anhydrase family enzymes. J. Am. Chem. Soc. 135 (2013) 3818–3825. [DOI] [PMID: 23406161]
[EC created 2018]
Accepted name: cyanase
Reaction: cyanate + HCO3- + 2 H+ = NH3 + 2 CO2 (overall reaction)
(1a) cyanate + HCO3- + H+ = carbamate + CO2
(1b) carbamate + H+ = NH3 + CO2 (spontaneous)
For diagram of reaction, click here
Glossary: cyanate = NCO-
carbamate = H2N-CO-O-
Other name(s): cyanate lyase; cyanate hydrolase; cyanate aminohydrolase; cyanate C-N-lyase; cyanate hydratase
Systematic name: carbamate hydro-lyase
Comments: This enzyme, which is found in bacteria and plants, is used to decompose cyanate, which can be used as the sole source of nitrogen [6,7]. Reaction (1) can be considered as the reverse of ’carbamate = cyanate + H2O′, where this is assisted by reaction with bicarbonate and carbon dioxide (see mechanism above) [2], and hence is classified in sub-subclass 4.2.1. Bicarbonate functions as a recycling substrate [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, UM-BBD, CAS registry number: 37289-24-0
1.  Anderson, P.M. Purification and properties of the inducible enzyme cyanase. Biochemistry 19 (1980) 2882–2888. [PMID: 6994799]
2.  Johnson, W.V. and Anderson, P.M. Bicarbonate is a recycling substrate for cyanase. J. Biol. Chem. 262 (1987) 9021–9025. [PMID: 3110153]
3.  Taussig, A. The synthesis of the induced enzyme, "cyanase", in E. coli. Biochim. Biophys. Acta 44 (1960) 510–519. [PMID: 13775509]
4.  Taussig, A. Some properties of the induced enzyme cyanase. Can. J. Biochem. 43 (1965) 1063–1069. [PMID: 5322950]
5.  Anderson, P.M., Korte, J.J. and Holcomb, T.A. Reaction of the N-terminal methionine residues in cyanase with diethylpyrocarbonate. Biochemistry 33 (1994) 14121–14125. [PMID: 7947823]
6.  Kozliak, E.I., Fuchs, J.A., Guilloton, M.B. and Anderson, P.M. Role of bicarbonate/CO2 in the inhibition of Escherichia coli growth by cyanate. J. Bacteriol. 177 (1995) 3213–3219. [DOI] [PMID: 7768821]
7.  Walsh, M.A., Otwinowski, Z., Perrakis, A., Anderson, P.M. and Joachimiak, A. Structure of cyanase reveals that a novel dimeric and decameric arrangement of subunits is required for formation of the enzyme active site. Structure 8 (2000) 505–514. [DOI] [PMID: 10801492]
[EC created 1972 as EC, transferred 1990 to EC, transferred 2001 to EC, modified 2007]
Transferred entry: cyanate lyase. Now EC, cyanate hydratase
[EC created 1972 as EC, transferred 1990 to EC, deleted 2001]
Accepted name: thiocyanate isomerase
Reaction: benzyl isothiocyanate = benzyl thiocyanate
Other name(s): isothiocyanate isomerase
Systematic name: benzyl-thiocyanate isomerase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9023-71-6
1.  Virtanen, A.I. On enzymic and chemical reactions in crushed plants. Arch. Biochem. Biophys. Suppl. 1 (1962) 200–208. [PMID: 13997458]
[EC created 1965]
Accepted name: ABC-type nitrate transporter
Reaction: ATP + H2O + nitrate-[nitrate-binding protein][side 1] = ADP + phosphate + nitrate[side 2] + [nitrate-binding protein][side 1]
Other name(s): nitrate-transporting ATPase (ambiguous)
Systematic name: ATP phosphohydrolase (ABC-type, nitrate-importing)
Comments: An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. The enzyme, found in bacteria, interacts with an extracytoplasmic substrate binding protein and mediates the import of nitrate, nitrite, and cyanate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
1.  Omata, T. Structure, function and regulation of the nitrate transport system of the cyanobacterium Synechococcus sp. PCC7942. Plant Cell Physiol. 36 (1995) 207–213. [PMID: 7767600]
2.  Kuan, G., Dassa, E., Saurin, N., Hofnung, M. and Saier, M.H., Jr. Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. Res. Microbiol. 146 (1995) 271–278. [DOI] [PMID: 7569321]
3.  Saier, M.H., Jr. Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. Adv. Microb. Physiol. 40 (1998) 81–136. [PMID: 9889977]
4.  Griffiths, J.K. and Sansom, C.E. The Transporter Factsbook, Academic Press, San Diego, 1998.
[EC created 2000 as EC, transferred 2018 to EC]

Data © 2001–2020 IUBMB
Web site © 2005–2020 Andrew McDonald