The Enzyme Database

Your query returned 31 entries.    printer_iconPrintable version

EC 1.1.1.219     
Accepted name: dihydroflavonol 4-reductase
Reaction: a (2R,3S,4S)-leucoanthocyanidin + NADP+ = a (2R,3R)-dihydroflavonol + NADPH + H+
For diagram of flavonoid biosynthesis, click here
Other name(s): dihydrokaempferol 4-reductase; dihydromyricetin reductase; NADPH-dihydromyricetin reductase; dihydroquercetin reductase; DFR (gene name); cis-3,4-leucopelargonidin:NADP+ 4-oxidoreductase; dihydroflavanol 4-reductase (incorrect)
Systematic name: (2R,3S,4S)-leucoanthocyanidin:NADP+ 4-oxidoreductase
Comments: This plant enzyme, involved in the biosynthesis of anthocyanidins, is known to act on (+)-dihydrokaempferol, (+)-taxifolin, and (+)-dihydromyricetin, although some enzymes may act only on a subset of these compounds. Each dihydroflavonol is reduced to the corresponding cis-flavan-3,4-diol. NAD+ can act instead of NADP+, but more slowly.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 83682-99-9
References:
1.  Heller, W., Forkmann, G., Britsch, L. and Grisebach, H. Enzymatic reduction of (+)-dihydroflavonols to flavan-3,4-cis- diols with flower extracts from Matthiola incana and its role in anthocyanin biosynthesis. Planta 165 (1985) 284–287. [PMID: 24241054]
2.  Stafford, H.A. and Lester, H.H. Flavan-3-ol biosynthesis the conversion of (+)-dihydromyricetin to its flavan-3,4-diol (leucodelphinidin) and to (+)-gallocatechin by reductases extracted from tissue-cultures of Ginkgo biloba and Pseudotsuga-menziesii. Plant Physiol. 78 (1985) 791–794. [PMID: 16664326]
3.  Fischer, D., Stich, K., Britsch, L. and Grisebach, H. Purification and characterization of (+)dihydroflavonol (3-hydroxyflavanone) 4-reductase from flowers of Dahlia variabilis. Arch. Biochem. Biophys. 264 (1988) 40–47. [DOI] [PMID: 3293532]
4.  Li, H., Qiu, J., Chen, F., Lv, X., Fu, C., Zhao, D., Hua, X. and Zhao, Q. Molecular characterization and expression analysis of dihydroflavonol 4-reductase (DFR) gene in Saussurea medusa. Mol. Biol. Rep. 39 (2012) 2991–2999. [DOI] [PMID: 21701830]
[EC 1.1.1.219 created 1989, modified 2016]
 
 
EC 1.1.1.234     
Accepted name: flavanone 4-reductase
Reaction: (2S)-flavan-4-ol + NADP+ = (2S)-flavanone + NADPH + H+
For diagram of the biosynthesis of naringenin derivatives, click here
Systematic name: (2S)-flavan-4-ol:NADP+ 4-oxidoreductase
Comments: Involved in the biosynthesis of 3-deoxyanthocyanidins from flavanones such as naringenin or eriodictyol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 115232-53-6
References:
1.  Stich, K. and Forkmann, G. Biosynthesis of 3-deoxyanthocyanins with flower extracts from Sinningia cardinalis. Phytochemistry 27 (1988) 785–789.
[EC 1.1.1.234 created 1992]
 
 
EC 1.3.1.77     
Accepted name: anthocyanidin reductase [(2R,3R)-flavan-3-ol-forming]
Reaction: a (2R,3R)-flavan-3-ol + 2 NAD(P)+ = an anthocyanidin with a 3-hydroxy group + 2 NAD(P)H + H+
For diagram of anthocyanin biosynthesis, click here
Other name(s): ANR (gene name) (ambiguous); flavan-3-ol:NAD(P)+ oxidoreductase; anthocyanidin reductase (ambiguous)
Systematic name: (2R,3R)-flavan-3-ol:NAD(P)+ 3,4-oxidoreductase
Comments: The enzyme participates in the flavonoid biosynthesis pathway found in plants. It catalyses the double reduction of anthocyanidins, producing (2R,3R)-flavan-3-ol monomers required for the formation of proanthocyanidins. While the enzyme from the legume Medicago truncatula (MtANR) can use both NADPH and NADH as reductant, that from the crucifer Arabidopsis thaliana (AtANR) uses only NADPH. Also, while the substrate preference of MtANR is cyanidin>pelargonidin>delphinidin, the reverse preference is found with AtANR. cf. EC 1.3.1.112, anthocyanidin reductase [(2S)-flavan-3-ol-forming].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 93389-48-1
References:
1.  Xie, D.Y., Sharma, S.B., Paiva, N.L., Ferreira, D. and Dixon, R.A. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299 (2003) 396–399. [DOI] [PMID: 12532018]
2.  Xie, D.Y., Sharma, S.B. and Dixon, R.A. Anthocyanidin reductases from Medicago truncatula and Arabidopsis thaliana. Arch. Biochem. Biophys. 422 (2004) 91–102. [DOI] [PMID: 14725861]
3.  Pang, Y., Abeysinghe, I.S., He, J., He, X., Huhman, D., Mewan, K.M., Sumner, L.W., Yun, J. and Dixon, R.A. Functional characterization of proanthocyanidin pathway enzymes from tea and their application for metabolic engineering. Plant Physiol. 161 (2013) 1103–1116. [DOI] [PMID: 23288883]
[EC 1.3.1.77 created 2004, modified 2016]
 
 
EC 1.3.1.112     
Accepted name: anthocyanidin reductase [(2S)-flavan-3-ol-forming]
Reaction: (1) a (2S,3R)-flavan-3-ol + 2 NADP+ = an anthocyanidin with a 3-hydroxy group + 2 NADPH + H+
(2) a (2S,3S)-flavan-3-ol + 2 NADP+ = an anthocyanidin with a 3-hydroxy group + 2 NADPH + H+
Systematic name: (2S)-flavan-3-ol:NAD(P)+ oxidoreductase
Comments: The enzyme, characterized from Vitis vinifera (grape), participates in the flavonoid biosynthesis pathway. It catalyses the double reduction of anthocyanidins, producing a mixture of (2S,3S)- and (2S,3R)-flavan-3-ols. The enzyme catalyses sequential hydride transfers to C-2 and C-4, respectively. Epimerization at C-3 is achieved by tautomerization that occurs between the two hydride transfers. cf. EC 1.3.1.77, anthocyanidin reductase [(2R,3R)-flavan-3-ol-forming].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Gargouri, M., Manigand, C., Mauge, C., Granier, T., Langlois d'Estaintot, B., Cala, O., Pianet, I., Bathany, K., Chaudiere, J. and Gallois, B. Structure and epimerase activity of anthocyanidin reductase from Vitis vinifera. Acta Crystallogr. D Biol. Crystallogr. 65 (2009) 989–1000. [DOI] [PMID: 19690377]
2.  Gargouri, M., Chaudiere, J., Manigand, C., Mauge, C., Bathany, K., Schmitter, J.M. and Gallois, B. The epimerase activity of anthocyanidin reductase from Vitis vinifera and its regiospecific hydride transfers. Biol. Chem. 391 (2010) 219–227. [DOI] [PMID: 20030585]
[EC 1.3.1.112 created 2016]
 
 
EC 1.14.11.19      
Transferred entry: anthocyanidin synthase. Now EC 1.14.20.4, anthocyanidin synthase
[EC 1.14.11.19 created 2001, modified 2017, deleted 2018]
 
 
EC 1.14.11.23      
Transferred entry: flavonol synthase. Now EC 1.14.20.6, flavonol synthase
[EC 1.14.11.23 created 2004, deleted 2018]
 
 
EC 1.14.20.4     
Accepted name: anthocyanidin synthase
Reaction: a (2R,3S,4S)-leucoanthocyanidin + 2-oxoglutarate + O2 = an anthocyanidin + succinate + CO2 + 2 H2O (overall reaction)
(1a) a (2R,3S,4S)-leucoanthocyanidin + 2-oxoglutarate + O2 = a (4S)- 2,3-dehydroflavan-3,4-diol + succinate + CO2 + H2O
(1b) a (4S)- 2,3-dehydroflavan-3,4-diol = an anthocyanidin + H2O
For diagram of anthocyanin biosynthesis, click here
Glossary: taxifolin = 3,4-dihydroquercitin
Other name(s): leucocyanidin oxygenase; leucocyanidin,2-oxoglutarate:oxygen oxidoreductase; ANS (gene name)
Systematic name: (2R,3S,4S)-leucoanthocyanidin,2-oxoglutarate:oxygen oxidoreductase
Comments: The enzyme requires iron(II) and ascorbate. It is involved in the pathway by which many flowering plants make anthocyanin flower pigments (glycosylated anthocyandins). The enzyme hydroxylates the C-3 carbon, followed by a trans diaxial elimination, forming a C-2,C-3 enol. The product loses a second water molecule to form anthocyanidins. When assayed in vitro, non-enzymic epimerization of the product can lead to formation of dihydroflavanols. Thus when the substrate is leucocyanidin, a mixture of (+)-taxifolin and (+)-epitaxifolin are formed. The enzyme can also oxidize the formed (+)-taxifolin to quercetin (cf. EC 1.14.20.6, flavonol synthase) [2,3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 180984-01-4
References:
1.  Saito, K., Kobayashi, M., Gong, Z., Tanaka, Y. and Yamazaki, M. Direct evidence for anthocyanidin synthase as a 2-oxoglutarate-dependent oxygenase: molecular cloning and functional expression of cDNA from a red forma of Perilla frutescens. Plant J. 17 (1999) 181–190. [DOI] [PMID: 10074715]
2.  Turnbull, J.J., Sobey, W.J., Aplin, R.T., Hassan, A., Firmin, J.L., Schofield, C.J. and Prescott, A.G. Are anthocyanidins the immediate products of anthocyanidin synthase? Chem. Commun. (2000) 2473–2474.
3.  Wilmouth, R.C., Turnbull, J.J., Welford, R.W., Clifton, I.J., Prescott, A.G. and Schofield, C.J. Structure and mechanism of anthocyanidin synthase from Arabidopsis thaliana. Structure 10 (2002) 93–103. [DOI] [PMID: 11796114]
4.  Turnbull, J.J., Nagle, M.J., Seibel, J.F., Welford, R.W., Grant, G.H. and Schofield, C.J. The C-4 stereochemistry of leucocyanidin substrates for anthocyanidin synthase affects product selectivity. Bioorg. Med. Chem. Lett. 13 (2003) 3853–3857. [DOI] [PMID: 14552794]
5.  Wellmann, F., Griesser, M., Schwab, W., Martens, S., Eisenreich, W., Matern, U. and Lukacin, R. Anthocyanidin synthase from Gerbera hybrida catalyzes the conversion of (+)-catechin to cyanidin and a novel procyanidin. FEBS Lett. 580 (2006) 1642–1648. [DOI] [PMID: 16494872]
[EC 1.14.20.4 created 2001 as EC 1.14.11.19, transferred 2018 to EC 1.14.20.4]
 
 
EC 1.14.20.6     
Accepted name: flavonol synthase
Reaction: a dihydroflavonol + 2-oxoglutarate + O2 = a flavonol + succinate + CO2 + H2O
For diagram of flavonoid biosynthesis, click here, for diagram of kaempferol biosynthesis, click here and for diagram of myricetin biosynthesis, click here
Other name(s): FLS (gene name)
Systematic name: dihydroflavonol,2-oxoglutarate:oxygen oxidoreductase
Comments: In addition to the desaturation of (2R,3R)-dihydroflavonols to flavonols, the enzyme from Citrus unshiu (satsuma mandarin) also has a non-specific activity that trans-hydroxylates the flavanones (2S)-naringenin and the unnatural (2R)-naringenin at C-3 to kaempferol and (2R,3R)-dihydrokaempferol, respectively [2]. Requires Fe2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 146359-76-4
References:
1.  Wellmann, F., Lukačin, R., Moriguchi, T., Britsch, L., Schiltz, E. and Matern, U. Functional expression and mutational analysis of flavonol synthase from Citrus unshiu. Eur. J. Biochem. 269 (2002) 4134–4142. [DOI] [PMID: 12180990]
2.  Lukačin, R., Wellmann, F., Britsch, L., Martens, S. and Matern, U. Flavonol synthase from Citrus unshiu is a bifunctional dioxygenase. Phytochemistry 62 (2003) 287–292. [DOI] [PMID: 12620339]
3.  Martens, S., Forkmann, G., Britsch, L., Wellmann, F., Matern, U. and Lukačin, R. Divergent evolution of flavonoid 2-oxoglutarate-dependent dioxygenases in parsley. FEBS Lett. 544 (2003) 93–98. [DOI] [PMID: 12782296]
4.  Turnbull, J.J., Nakajima, J., Welford, R.W., Yamazaki, M., Saito, K. and Schofield, C.J. Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis: anthocyanidin synthase, flavonol synthase, and flavanone 3β-hydroxylase. J. Biol. Chem. 279 (2004) 1206–1216. [DOI] [PMID: 14570878]
[EC 1.14.20.6 created 2004 as EC 1.14.11.23, transferred 2018 to EC 1.14.20.6]
 
 
EC 1.17.1.3     
Accepted name: leucoanthocyanidin reductase
Reaction: (2R,3S)-catechin + NADP+ + H2O = 2,3-trans-3,4-cis-leucocyanidin + NADPH + H+
For diagram of flavonoid biosynthesis, click here
Other name(s): leucocyanidin reductase
Systematic name: (2R,3S)-catechin:NADP+ 4-oxidoreductase
Comments: The enzyme catalyses the synthesis of catechin, catechin-4β-ol (leucocyanidin) and the related flavan-3-ols afzelechin and gallocatechin, which are initiating monomers in the synthesis of plant polymeric proanthocyanidins or condensed tannins. While 2,3-trans-3,4-cis-leucocyanidin is the preferred flavan-3,4-diol substrate, 2,3-trans-3,4-cis-leucodelphinidin and 2,3-trans-3,4-cis-leucopelargonidin can also act as substrates, but more slowly. NADH can replace NADPH but is oxidized more slowly.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 776323-46-7
References:
1.  Tanner, G.J. and Kristiansen, K.N. Synthesis of 3,4-cis-[3H]leucocyanidin and enzymatic reduction to catechin. Anal. Biochem. 209 (1993) 274–277. [DOI] [PMID: 8470799]
2.  Tanner, G.J., Francki, K.T., Abrahams, S., Watson, J.M., Larkin, P.J. and Ashton, A.R. Proanthocyanidin biosynthesis in plants: Purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. J. Biol. Chem. 278 (2003) 31647–31656. [DOI] [PMID: 12788945]
[EC 1.17.1.3 created 2003]
 
 
EC 2.1.1.267     
Accepted name: flavonoid 3′,5′-methyltransferase
Reaction: (1) S-adenosyl-L-methionine + a 3′-hydroxyflavonoid = S-adenosyl-L-homocysteine + a 3′-methoxyflavonoid
(2) S-adenosyl-L-methionine + a 5′-hydroxy-3′-methoxyflavonoid = S-adenosyl-L-homocysteine + a 3′,5′-dimethoxyflavonoid
For diagram of anthocyanidin glucoside biosynthesis, click here
Glossary: delphinidin = 3,3′,4′,5,5′,7-hexahydroxyflavylium
cyanidin = 3,3′,4′,5,7-pentahydroxyflavylium
myricetin = 3,3′,4′,5,5′,7-hexahydroxyflavone
quercetin = 3,3′,4′,5,7-pentahydroxyflavone
Other name(s): AOMT; CrOMT2
Systematic name: S-adenosyl-L-methionine:flavonoid 3′-O-methyltransferase
Comments: Isolated from Vitis vinifera (grape) [2]. Most active with delphinidin 3-glucoside but also acts on cyanidin 3-glucoside, cyanidin, myricetin, quercetin and quercetin 3-glucoside. The enzyme from Catharanthus roseus was most active with myricetin [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Cacace, S., Schröder, G., Wehinger, E., Strack, D., Schmidt, J. and Schröder, J. A flavonol O-methyltransferase from Catharanthus roseus performing two sequential methylations. Phytochemistry 62 (2003) 127–137. [DOI] [PMID: 12482447]
2.  Hugueney, P., Provenzano, S., Verries, C., Ferrandino, A., Meudec, E., Batelli, G., Merdinoglu, D., Cheynier, V., Schubert, A. and Ageorges, A. A novel cation-dependent O-methyltransferase involved in anthocyanin methylation in grapevine. Plant Physiol. 150 (2009) 2057–2070. [DOI] [PMID: 19525322]
[EC 2.1.1.267 created 2013, modified 2014]
 
 
EC 2.3.1.153     
Accepted name: anthocyanin 5-(6′′′-hydroxycinnamoyltransferase)
Reaction: 4-hydroxycinnamoyl-CoA + an anthocyanidin 3,5-di-O-β-D-glucoside = CoA + anthocyanidin 3-O-β-D-glucoside 5-O-β-D-(6-O-4-hydroxycinnamoylglucoside)
For diagram of anthocyanidin glucoside biosynthesis, click here
Glossary: 4-hydroxycinnamoyl-CoA = 4-coumaroyl-CoA
Systematic name: 4-hydroxycinnamoyl-CoA:anthocyanidin 3,5-di-O-β-D-glucoside 5-O-glucoside-6′′′-O-4-hydroxycinnamoyltransferase
Comments: Isolated from the plant Gentiana triflora. Transfers the hydroxycinnamoyl group only to the C-5 glucoside of anthocyanin. Caffeoyl-CoA, but not malonyl-CoA, can substitute as an acyl donor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 198841-53-1
References:
1.  Fujiwara, H., Tanaka, Y., Fukui, Y., Nakao, M., Ashikari, T., Kusumi, T. Anthocyanin 5-aromatic acyltransferase from Gentiana triflora. Purification, characterization and its role in anthocyanin biosynthesis. Eur. J. Biochem. 249 (1997) 45–51. [DOI] [PMID: 9363752]
2.  Fujiwara, H., Tanaka, Y., Yonekura-Sakakibara, K., Fukuchi-Mizutani, M., Nakao, M., Fukui, Y., Yamaguchi, M., Ashikari, T. and Kusumi, T. cDNA cloning, gene expression and subcellular localization of anthocyanin 5-aromatic acyltransferase from Gentiana triflora. Plant J. 16 (1998) 421–431. [DOI] [PMID: 9881162]
[EC 2.3.1.153 created 1999, modified 2013]
 
 
EC 2.3.1.171     
Accepted name: anthocyanin 6′′-O-malonyltransferase
Reaction: malonyl-CoA + an anthocyanidin 3-O-β-D-glucoside = CoA + an anthocyanidin 3-O-(6-O-malonyl-β-D-glucoside)
For diagram of anthocyanidin acylglucoside biosynthesis, click here
Systematic name: malonyl-CoA:anthocyanidin-3-O-β-D-glucoside 6′′-O-malonyltransferase
Comments: Acts on pelargonidin 3-O-glucoside in dahlia (Dahlia variabilis), delphinidin 3-O-glucoside, and on cyanidin 3-O-glucoside in transgenic petunia (Petunia hybrida).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 111070-07-6
References:
1.  Suzuki, H., Nakayama, T., Yonekura-Sakakibara, K., Fukui, Y., Nakamura, N., Yamaguchi, M.A., Tanaka, Y., Kusumi, T. and Nishino, T. cDNA cloning, heterologous expressions, and functional characterization of malonyl-coenzyme A:anthocyanidin 3-O-glucoside-6′′-O-malonyltransferase from dahlia flowers. Plant Physiol. 130 (2002) 2142–2151. [DOI] [PMID: 12481098]
[EC 2.3.1.171 created 2004]
 
 
EC 2.3.1.172     
Accepted name: anthocyanin 5-O-glucoside 6′′′-O-malonyltransferase
Reaction: malonyl-CoA + pelargonidin 3-O-(6-caffeoyl-β-D-glucoside) 5-O-β-D-glucoside = CoA + 4′′′-demalonylsalvianin
For diagram of salvianin biosynthesis, click here
Glossary: salvianin = pelargonidin 3-O-(6-caffeoyl-β-D-glucoside) 5-O-(4,6-di-O-malonyl-β-D-glucoside)
4′′′-demalonylsalvianin = pelargonidin 3-O-(6-caffeoyl-β-D-glucoside) 5-O-(6-O-malonyl-β-D-glucoside)
pelargonidin = 3,4′,5,7-tetrahydroxyflavylium
Systematic name: malonyl-CoA:pelargonidin-3-O-(6-caffeoyl-β-D-glucoside)-5-O-β-D-glucoside 6′′′-O-malonyltransferase
Comments: Specific for the penultimate step in salvianin biosynthesis. The enzyme also catalyses the malonylation of shisonin to malonylshisonin [cyanidin 3-O-(6′′-O-p-coumaryl-β-D-glucoside)-5-(6′′′-O-malonyl-β-D-glucoside)]. The compounds 4′′′-demalonylsalvianin, salvianin, pelargonidin 3,5-diglucoside and delphinidin 3,5-diglucoside cannot act as substrates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 380229-66-3
References:
1.  Suzuki, H., Nakayama, T., Yonekura-Sakakibara, K., Fukui, Y., Nakamura, N., Nakao, M., Tanaka, Y., Yamaguchi, M.A., Kusumi, T. and Nishino, T. Malonyl-CoA:anthocyanin 5-O-glucoside-6′′′-O-malonyltransferase from scarlet sage (Salvia splendens) flowers. J. Biol. Chem. 276 (2001) 49013–49019. [DOI] [PMID: 11598135]
[EC 2.3.1.172 created 2004]
 
 
EC 2.3.1.213     
Accepted name: cyanidin 3-O-(6-O-glucosyl-2-O-xylosylgalactoside) 6′′′-O-hydroxycinnamoyltransferase
Reaction: 1-O-(4-hydroxycinnamoyl)-β-D-glucose + cyanidin 3-O-(6-O-β-D-glucosyl-2-O-β-D-xylosyl-β-D-galactoside) = β-D-glucose + cyanidin 3-O-[6-O-(6-O-4-hydroxycinnamoyl-β-D-glucosyl)-2-O-β-D-xylosyl-β-D-galactoside]
For diagram of cyanidin galactoside biosynthesis, click here
Glossary: 1-O-(4-hydroxycinnamoyl)-β-D-glucose = 1-O-(4-coumaroyl)-β-D-glucose
cyanidin = 3,3′,4′,5,7-pentahydroxyflavylium
Other name(s): 1-O-(4-hydroxycinnamoyl)-β-D-glucose:cyanidin 3-O-(2"-O-xylosyl-6"-O-glucosylgalactoside) 6′′′-O-(4-hydroxycinnamoyl)transferase
Systematic name: 1-O-(4-hydroxycinnamoyl)-β-D-glucose:cyanidin 3-O-(6-O-β-D-glucosyl-2-O-β-D-xylosyl-β-D-galactoside) 6′′′-O-(4-hydroxycinnamoyl)transferase
Comments: Isolated from the plant Daucus carota (Afghan cultivar carrot). In addition to 1-O-(4-hydroxycinnamoyl)-β-D-glucose, the enzyme can use the 1-O-sinapoyl- and 1-O-feruloyl- derivatives of β-D-glucose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Gläßgen, W.E. and Seitz, H.U. Acylation of anthocyanins with hydroxycinnamic acids via 1-O-acylglucosides by protein preparations from cell cultures of Daucus carota L. Planta 186 (1992) 582–585. [PMID: 24186789]
[EC 2.3.1.213 created 2013]
 
 
EC 2.3.1.215     
Accepted name: anthocyanidin 3-O-glucoside 6′′-O-acyltransferase
Reaction: 4-hydroxycinnamoyl-CoA + an anthocyanidin 3-O-β-D-glucoside = CoA + an anthocyanidin 3-O-[6-O-(4-hydroxycinnamoyl)-β-D-glucoside]
For diagram of anthocyanidin acylglucoside biosynthesis, click here and for diagram of salvianin biosynthesis, click here
Glossary: 4-hydroxycinnamoyl-CoA = 4-coumaroyl-CoA
3,4-dihydroxycinnamoyl-CoA = caffeoyl-CoA
cyanidin = 3,3′,4′,5,7-pentahydroxyflavylium
delphinidin = 3,3′,4′,5,5′,7-hexahydroxyflavylium
Systematic name: 4-hydroxycinnamoyl-CoA:anthocyanin-3-O-glucoside 6′′-O-acyltransferase
Comments: Isolated from the plants Perilla frutescens and Gentiana triflora (clustered gentian). Acts on a range of anthocyanidin 3-O-glucosides, 3,5-di-O-glucosides and cyanidin 3-rutinoside. It did not act on delphinidin 3,3′,7-tri-O-glucoside. Recombinant Perilla frutescens enzyme could utilize caffeoyl-CoA but not malonyl-CoA as alternative acyl donor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Fujiwara, H., Tanaka, Y., Fukui, Y., Ashikari, T., Yamaguchi, M. and Kusumi, T. Purification and characterization of anthocyanin 3-aromatic acyltransferase from Perilla frutescens. Plant Sci. 137 (1998) 87–94.
2.  Yonekura-Sakakibara, K., Tanaka, Y., Fukuchi-Mizutani, M., Fujiwara, H., Fukui, Y., Ashikari, T., Murakami, Y., Yamaguchi, M. and Kusumi, T. Molecular and biochemical characterization of a novel hydroxycinnamoyl-CoA: anthocyanin 3-O-glucoside-6"-O-acyltransferase from Perilla frutescens. Plant Cell Physiol. 41 (2000) 495–502. [DOI] [PMID: 10845463]
[EC 2.3.1.215 created 2013]
 
 
EC 2.4.1.115     
Accepted name: anthocyanidin 3-O-glucosyltransferase
Reaction: UDP-D-glucose + an anthocyanidin = UDP + an anthocyanidin-3-O-β-D-glucoside
For diagram of anthocyanin biosynthesis, click here
Other name(s): uridine diphosphoglucose-anthocyanidin 3-O-glucosyltransferase; UDP-glucose:anthocyanidin/flavonol 3-O-glucosyltransferase; UDP-glucose:cyanidin-3-O-glucosyltransferase; UDP-glucose:anthocyanidin 3-O-D-glucosyltransferase; 3-GT
Systematic name: UDP-D-glucose:anthocyanidin 3-O-β-D-glucosyltransferase
Comments: The anthocyanidin compounds cyanidin, delphinidin, peonidin and to a lesser extent pelargonidin can act as substrates. The enzyme does not catalyse glucosylation of the 5-position of cyanidin and does not act on flavanols such as quercetin and kaempferol (cf. EC 2.4.1.91 flavonol 3-O-glucosyltransferase). In conjunction with EC 1.14.20.4, anthocyanidin oxygenase, it is involved in the conversion of leucoanthocyanidin into anthocyanidin 3-glucoside. It may act on the pseudobase precursor of the anthocyanidin rather than on the anthocyanidin itself [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 65607-32-1
References:
1.  Kamsteeg, J., van Brederode, J. and van Nigtevecht, G. Identification and properties of UDP-glucose: cyanidin-3-O-glucosyltransferase isolated from petals of the red campion (Silene dioica). Biochem. Genet. 16 (1978) 1045–1058. [PMID: 751640]
2.  Ford, C.M., Boss, P.K. and Høj, P.B. Cloning and characterization of Vitis vinifera UDP-glucose:flavonoid 3-O-glucosyltransferase, a homologue of the enzyme encoded by the maize Bronze-1 locus that may primarily serve to glucosylate anthocyanidins in vivo. J. Biol. Chem. 273 (1998) 9224–9233. [DOI] [PMID: 9535914]
3.  Nakajima, J., Tanaka, Y., Yamazaki, M. and Saito, K. Reaction mechanism from leucoanthocyanidin to anthocyanidin 3-glucoside, a key reaction for coloring in anthocyanin biosynthesis. J. Biol. Chem. 276 (2001) 25797–25803. [DOI] [PMID: 11316805]
[EC 2.4.1.115 created 1984 (EC 2.4.1.233 created 2004, incorporated 2005), modified 2005]
 
 
EC 2.4.1.116     
Accepted name: cyanidin 3-O-rutinoside 5-O-glucosyltransferase
Reaction: UDP-α-D-glucose + cyanidin-3-O-rutinoside = UDP + cyanidin 3-O-rutinoside 5-O-β-D-glucoside
For diagram of anthocyanidin rutoside biosynthesis, click here
Glossary: cyanidin 3-O-rutinoside = cyanidin-3-O-α-L-rhamnosyl-(1→6)-β-D-glucoside
cyanidin = 3,3′,4′,5,7-pentahydroxyflavylium
Other name(s): uridine diphosphoglucose-cyanidin 3-rhamnosylglucoside 5-O-glucosyltransferase; cyanidin-3-rhamnosylglucoside 5-O-glucosyltransferase; UDP-glucose:cyanidin-3-O-D-rhamnosyl-1,6-D-glucoside 5-O-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:cyanidin-3-O-α-L-rhamnosyl-(1→6)-β-D-glucoside 5-O-β-D-glucosyltransferase
Comments: Isolated from the plants Silene dioica (red campion) [1], Iris ensata (Japanese iris) [2] and Iris hollandica (Dutch iris) [3]. Also acts on the 3-O-rutinosides of pelargonidin, delphinidin and malvidin, but not the corresponding glucosides or 6-acylglucosides. The enzyme does not catalyse the glucosylation of the 5-hydroxy group of cyanidin 3-glucoside.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 70248-66-7
References:
1.  Kamsteeg, J., van Brederode, J. and van Nigtevecht, G. Identification, properties, and genetic control of UDP-glucose: cyanidin-3-rhamnosyl-(1→6)-glucoside-5-O-glucosyltransferase isolated from petals of the red campion (Silene dioica). Biochem. Genet. 16 (1978) 1059–1071. [PMID: 751641]
2.  Yabuya, T., Yamaguchi, M., Imayama, T., Katoh, K. and Ino I. Anthocyanin 5-O-glucosyltransferase in flowers of Iris ensata. Plant Sci. 162 (2002) 779–784.
3.  Imayama, T., Yoshihara, Y., Fukuchi-Mizutani, M., Tanaka, Y., Ino, I. and Yabuya, T. Isolation and characterization of a cDNA clone of UDP-glucose:anthocyanin 5-O-glucosyltransferase in Iris hollandica. Plant Sci. 167 (2004) 1243–1248.
[EC 2.4.1.116 created 1984 (EC 2.4.1.235 created 2004, incorporated 2006), modified 2006, modified 2013]
 
 
EC 2.4.1.233      
Deleted entry:  anthocyanidin 3-O-glucosyltransferase. The enzyme is identical to EC 2.4.1.115, anthocyanidin 3-O-glucosyltransferase
[EC 2.4.1.233 created 2004, deleted 2005]
 
 
EC 2.4.1.235      
Deleted entry: cyanidin 3-O-rutinoside 5-O-glucosyltransferase. Enzyme is identical to EC 2.4.1.116, cyanidin 3-O-rutinoside 5-O-glucosyltransferase
[EC 2.4.1.235 created 2004, deleted 2006]
 
 
EC 2.4.1.238     
Accepted name: delphinidin 3,5-di-O-glucoside 3′-O-glucosyltransferase
Reaction: UDP-α-D-glucose + delphinidin 3,5-di-O-β-D-glucoside = UDP + delphinidin 3,3′,5-tri-O-β-D-glucoside
For diagram of anthocyanidin glucoside biosynthesis, click here
Glossary: delphinidin = 3,3′,4′,5,5′,7-hexahydroxyflavylium
Other name(s): UDP-glucose:anthocyanin 3′-O-glucosyltransferase; 3’GT
Systematic name: UDP-α-D-glucose:delphinidin-3,5-di-O-β-D-glucoside 3′-O-glucosyltransferase
Comments: Isolated from the plant Gentiana triflora (clustered gentian).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 380231-41-4
References:
1.  Fukuchi-Mizutani, M., Okuhara, H., Fukui, Y., Nakao, M., Katsumoto, Y., Yonekura-Sakakibara, K., Kusumi, T., Hase, T. and Tanaka, Y. Biochemical and molecular characterization of a novel UDP-glucose:anthocyanin 3′-O-glucosyltransferase, a key enzyme for blue anthocyanin biosynthesis, from gentian. Plant Physiol. 132 (2003) 1652–1663. [DOI] [PMID: 12857844]
[EC 2.4.1.238 created 2004, modified 2013]
 
 
EC 2.4.1.249     
Accepted name: delphinidin 3′,5′-O-glucosyltransferase
Reaction: 2 UDP-glucose + delphinidin 3-O-(6′′-O-malonyl)-β-D-glucoside = 2 UDP + delphinidin 3-O-(6′′-O-malonyl)-β-D-glucoside-3′,5′-di-O-β-D-glucoside (overall reaction)
(1a) UDP-glucose + delphinidin 3-O-(6′′-O-malonyl)-β-D-glucoside = UDP + delphinidin 3-O-(6′′-O-malonyl)-β-D-glucoside-3′-O-β-D-glucoside
(1b) UDP-glucose + delphinidin 3-O-(6′′-O-malonyl)-β-D-glucoside-3′-O-β-D-glucoside = UDP + delphinidin 3-O-(6′′-O-malonyl)-β-D-glucoside-3′,5′-di-O-β-D-glucoside
For diagram of anthocyanidin acylglucoside biosynthesis, click here
Glossary: delphinidin 3-O-(6′′-O-malonyl)-β-D-glucoside-3′,5′-di-O-β-D-glucoside = ternatin C5
Other name(s): UDP-glucose:anthocyanin 3′,5′-O-glucosyltransferase; UA3′5’GZ
Systematic name: UDP-glucose:delphinidin 3-O-(6′′-O-malonyl)-β-D-glucoside 3′-O-glucosyltransferase
Comments: Ternatins are a group of polyacetylated delphinidin glucosides that confer blue color to the petals of Clitoria ternatea (butterfly pea). This enzyme catalyses two reactions in the biosynthesis of ternatin C5: the conversion of delphinidin 3-O-(6′′-O-malonyl)-β-D-glucoside to delphinidin 3-O-(6′′-O-malonyl)-β-D-glucoside-3′-O-β-D-glucoside, followed by the conversion of the later to ternatin C5, by transferring two glucosyl groups in a stepwise manner [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kogawa, K., Kato, N., Kazuma, K., Noda, N. and Suzuki, M. Purification and characterization of UDP-glucose: anthocyanin 3′,5′-O-glucosyltransferase from Clitoria ternatea. Planta 226 (2007) 1501–1509. [DOI] [PMID: 17668234]
[EC 2.4.1.249 created 2009]
 
 
EC 2.4.1.254     
Accepted name: cyanidin-3-O-glucoside 2′′-O-glucuronosyltransferase
Reaction: UDP-α-D-glucuronate + cyanidin 3-O-β-D-glucoside = UDP + cyanidin 3-O-(2-O-β-D-glucuronosyl)-β-D-glucoside
Glossary: cyanidin = 3,3′,4′,5,7-pentahydroxyflavylium
Other name(s): BpUGT94B1; UDP-glucuronic acid:anthocyanin glucuronosyltransferase; UDP-glucuronic acid:anthocyanidin 3-glucoside 2′-O-β-glucuronosyltransferase; BpUGAT; UDP-D-glucuronate:cyanidin-3-O-β-glucoside 2-O-β-glucuronosyltransferase
Systematic name: UDP-α-D-glucuronate:cyanidin-3-O-β-D-glucoside 2-O-β-D-glucuronosyltransferase
Comments: The enzyme is highly specific for cyanidin 3-O-glucosides and UDP-α-D-glucuronate. Involved in the production of glucuronosylated anthocyanins that are the origin of the red coloration of flowers of Bellis perennis [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Sawada, S., Suzuki, H., Ichimaida, F., Yamaguchi, M.A., Iwashita, T., Fukui, Y., Hemmi, H., Nishino, T. and Nakayama, T. UDP-glucuronic acid:anthocyanin glucuronosyltransferase from red daisy (Bellis perennis) flowers. Enzymology and phylogenetics of a novel glucuronosyltransferase involved in flower pigment biosynthesis. J. Biol. Chem. 280 (2005) 899–906. [DOI] [PMID: 15509561]
2.  Osmani, S.A., Bak, S., Imberty, A., Olsen, C.E. and Møller, B.L. Catalytic key amino acids and UDP-sugar donor specificity of a plant glucuronosyltransferase, UGT94B1: molecular modeling substantiated by site-specific mutagenesis and biochemical analyses. Plant Physiol. 148 (2008) 1295–1308. [DOI] [PMID: 18829982]
[EC 2.4.1.254 created 2011]
 
 
EC 2.4.1.294     
Accepted name: cyanidin 3-O-galactosyltransferase
Reaction: UDP-α-D-galactose + cyanidin = UDP + cyanidin 3-O-β-D-galactoside
For diagram of cyanidin galactoside biosynthesis, click here
Glossary: cyanidin = 3,3′,4′,5,7-pentahydroxyflavylium
Other name(s): UDP-galactose:cyanidin galactosyltransferase
Systematic name: UDP-α-D-galactose:cyanidin 3-O-galactosyltransferase
Comments: Isolated from the plant Daucus carota (Afghan cultivar carrot).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Rose, A., Glassgen, W.E., Hopp, W. and Seitz, H.U. Purification and characterization of glycosyltransferases involved in anthocyanin biosynthesis in cell-suspension cultures of Daucus carota L. Planta 198 (1996) 397–403. [PMID: 8717136]
[EC 2.4.1.294 created 2013]
 
 
EC 2.4.1.295     
Accepted name: anthocyanin 3-O-sambubioside 5-O-glucosyltransferase
Reaction: UDP-α-D-glucose + an anthocyanidin 3-O-β-D-sambubioside = UDP + an anthocyanidin 5-O-β-D-glucoside 3-O-β-D-sambubioside
For diagram of anthocyanidin sambubioside biosynthesis, click here
Glossary: anthocyanidin 3-O-β-D-sambubioside = anthocyanidin 3-O-(β-D-xylosyl-(1→2)-β-D-glucoside)
Systematic name: UDP-α-D-glucose:anthocyanidin-3-O-β-D-sambubioside 5-O-glucosyltransferase
Comments: Isolated from the plant Matthiola incana (stock). No activity with anthocyanidin 3-O-glucosides.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Teusch, M., Forkmann, G. and Seyffert, W. Genetic control of UDP-glucose: anthocyanin 5-O-glucosyltransferase from flowers of Matthiola incana R.Br. Planta 168 (1986) 586–591. [PMID: 24232337]
[EC 2.4.1.295 created 2013]
 
 
EC 2.4.1.296     
Accepted name: anthocyanidin 3-O-coumaroylrutinoside 5-O-glucosyltransferase
Reaction: UDP-α-D-glucose + an anthocyanidin 3-O-[2-O-(4-coumaroyl)-α-L-rhamnosyl-(1→6)-β-D-glucoside] = UDP + an anthocyanidin 3-O-[2-O-(4-coumaroyl)-α-L-rhamnosyl-(1→6)-β-D-glucoside] 5-O-β-D-glucoside
For diagram of anthocyanidin rutoside biosynthesis, click here
Systematic name: UDP-α-D-glucose:anthocyanidin-3-O-[3-O-(4-coumaroyl)-α-L-rhamnosyl-(1→6)-β-D-glucoside] 5-O-β-D-glucosyltransferase
Comments: Isolated from the plant Petunia hybrida. It does not act on an anthocyanidin 3-O-rutinoside
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Jonsson, L.M.V., Aarsman, M.E.G., van Diepen, J., de Vlaming, P., Smit, N. and Schram, A.W. Properties and genetic control of anthocyanin 5-O-glucosyltransferase in flowers of Petunia hybrida. Planta 160 (1984) 341–347. [PMID: 24258583]
[EC 2.4.1.296 created 2013]
 
 
EC 2.4.1.297     
Accepted name: anthocyanidin 3-O-glucoside 2′′-O-glucosyltransferase
Reaction: UDP-α-D-glucose + an anthocyanidin 3-O-β-D-glucoside = UDP + an anthocyanidin 3-O-sophoroside
For diagram of anthocyanidin glycoside biosynthesis, click here
Glossary: anthocyanidin 3-O-sophoroside = anthocyanidin 3-O-(β-D-glucosyl(1→2)-β-D-glucoside)
Other name(s): 3GGT
Systematic name: UDP-α-D-glucose:anthocyanidin-3-O-glucoside 2′′-O-glucosyltransferase
Comments: Isolated from Ipomoea nil (Japanese morning glory).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Morita, Y., Hoshino, A., Kikuchi, Y., Okuhara, H., Ono, E., Tanaka, Y., Fukui, Y., Saito, N., Nitasaka, E., Noguchi, H. and Iida, S. Japanese morning glory dusky mutants displaying reddish-brown or purplish-gray flowers are deficient in a novel glycosylation enzyme for anthocyanin biosynthesis, UDP-glucose:anthocyanidin 3-O-glucoside-2′′-O-glucosyltransferase, due to 4-bp insertions in the gene. Plant J. 42 (2005) 353–363. [DOI] [PMID: 15842621]
[EC 2.4.1.297 created 2013]
 
 
EC 2.4.1.298     
Accepted name: anthocyanidin 3-O-glucoside 5-O-glucosyltransferase
Reaction: UDP-α-D-glucose + an anthocyanidin 3-O-β-D-glucoside = UDP + an anthocyanidin 3,5-di-O-β-D-glucoside
For diagram of anthocyanidin glucoside biosynthesis, click here
Other name(s): UDP-glucose:anthocyanin 5-O-glucosyltransferase
Systematic name: UDP-α-D-glucose:anthocyanidin-3-O-β-D-glucoside 5-O-glucosyltransferase
Comments: Isolated from the plants Perilla frutescens var. crispa, Verbena hybrida [1], Dahlia variabilis [2] and Gentiana triflora (clustered gentian) [3]. It will also act on anthocyanidin 3-O-(6-O-malonylglucoside) [2] and is much less active with hydroxycinnamoylglucose derivatives [3]. There is no activity in the absence of the 3-O-glucoside group.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yamazaki, M., Gong, Z., Fukuchi-Mizutani, M., Fukui, Y., Tanaka, Y., Kusumi, T. and Saito, K. Molecular cloning and biochemical characterization of a novel anthocyanin 5-O-glucosyltransferase by mRNA differential display for plant forms regarding anthocyanin. J. Biol. Chem. 274 (1999) 7405–7411. [DOI] [PMID: 10066805]
2.  Ogata, J., Sakamoto, T., Yamaguchi, M., Kawanobu, S., Yoshitama, K. Isolation and characterization of anthocyanin 5-O-glucosyltransferase from flowers of Dahlia variabilis. J. Plant Physiol. 158 (2001) 709–714.
3.  Nakatsuka, T., Sato, K., Takahashi, H., Yamamura, S. and Nishihara, M. Cloning and characterization of the UDP-glucose:anthocyanin 5-O-glucosyltransferase gene from blue-flowered gentian. J. Exp. Bot. 59 (2008) 1241–1252. [DOI] [PMID: 18375606]
[EC 2.4.1.298 created 2013]
 
 
EC 2.4.1.299     
Accepted name: cyanidin 3-O-glucoside 5-O-glucosyltransferase (acyl-glucose)
Reaction: 1-O-sinapoyl-β-D-glucose + cyanidin 3-O-β-D-glucoside = sinapate + cyanidin 3,5-di-O-β-D-glucoside
For diagram of anthocyanidin glucoside biosynthesis, click here
Glossary: sinapate = 4-hydroxy-3,5-dimethoxycinnamate
cyanidin = 3,3′,4′,5,7-pentahydroxyflavylium
Other name(s): AA5GT
Systematic name: 1-O-sinapoyl-β-D-glucose:cyanidin-3-O-β-D-glucoside 5-O-β-D-glucosyltransferase
Comments: Isolated from the plant Dianthus caryophyllus (carnation). Also acts on other anthocyanidins and with other acyl-glucose donors. cf. EC 2.4.1.298, anthocyanidin 3-O-glucoside 5-O-glucosyltransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Matsuba, Y., Sasaki, N., Tera, M., Okamura, M., Abe, Y., Okamoto, E., Nakamura, H., Funabashi, H., Takatsu, M., Saito, M., Matsuoka, H., Nagasawa, K. and Ozeki, Y. A novel glucosylation reaction on anthocyanins catalyzed by acyl-glucose-dependent glucosyltransferase in the petals of carnation and delphinium. Plant Cell 22 (2010) 3374–3389. [DOI] [PMID: 20971893]
2.  Nishizaki, Y., Matsuba, Y., Okamoto, E., Okamura, M., Ozeki, Y. and Sasaki, N. Structure of the acyl-glucose-dependent anthocyanin 5-O-glucosyltransferase gene in carnations and its disruption by transposable elements in some varieties. Mol. Genet. Genomics 286 (2011) 383–394. [DOI] [PMID: 22048706]
[EC 2.4.1.299 created 2013]
 
 
EC 2.4.1.300     
Accepted name: cyanidin 3-O-glucoside 7-O-glucosyltransferase (acyl-glucose)
Reaction: 1-O-vanilloyl-β-D-glucose + cyanidin 3-O-β-D-glucoside = vanillate + cyanidin 3,7-di-O-β-D-glucoside
For diagram of anthocyanidin glucoside biosynthesis, click here
Glossary: vanillate = 4-hydroxy-3-methoxybenzoate
cyanidin = 3,3′,4′,5,7-pentahydroxyflavylium
Other name(s): AA7GT
Systematic name: 1-O-vanilloyl-β-D-glucose:cyanidin-3-O-β-D-glucoside 7-O-β-D-glucosyltransferase
Comments: Isolated from the plant Delphinium grandiflorum (delphinium). Also acts on other anthocyanidins and with other acyl-glucose derivatives.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Matsuba, Y., Sasaki, N., Tera, M., Okamura, M., Abe, Y., Okamoto, E., Nakamura, H., Funabashi, H., Takatsu, M., Saito, M., Matsuoka, H., Nagasawa, K. and Ozeki, Y. A novel glucosylation reaction on anthocyanins catalyzed by acyl-glucose-dependent glucosyltransferase in the petals of carnation and delphinium. Plant Cell 22 (2010) 3374–3389. [DOI] [PMID: 20971893]
[EC 2.4.1.300 created 2013]
 
 
EC 2.4.2.50     
Accepted name: cyanidin 3-O-galactoside 2′′-O-xylosyltransferase
Reaction: UDP-α-D-xylose + cyanidin 3-O-β-D-galactoside = UDP + cyanidin 3-O-(β-D-xylosyl-(1→2)-β-D-galactoside)
For diagram of cyanidin galactoside biosynthesis, click here
Glossary: cyanidin = 3,3′,4′,5,7-pentahydroxyflavylium
Other name(s): CGXT
Systematic name: UDP-α-D-xylose:cyanidin-3-O-β-D-galactoside 2′′-O-xylosyltransferase
Comments: Isolated from the plant Daucus carota (Afghan cultivar carrot).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Rose, A., Glassgen, W.E., Hopp, W. and Seitz, H.U. Purification and characterization of glycosyltransferases involved in anthocyanin biosynthesis in cell-suspension cultures of Daucus carota L. Planta 198 (1996) 397–403. [PMID: 8717136]
[EC 2.4.2.50 created 2013]
 
 
EC 2.4.2.51     
Accepted name: anthocyanidin 3-O-glucoside 2′′′-O-xylosyltransferase
Reaction: UDP-α-D-xylose + an anthocyanidin 3-O-β-D-glucoside = UDP + an anthocyanidin 3-O-β-D-sambubioside
For diagram of anthocyanidin sambubioside biosynthesis, click here
Glossary: anthocyanidin 3-O-β-D-sambubioside = anthocyanidin 3-O-(β-D-xylosyl-(1→2)-β-D-glucoside)
Other name(s): uridine 5′-diphosphate-xylose:anthocyanidin 3-O-glucose-xylosyltransferase; UGT79B1
Systematic name: UDP-α-D-xylose:anthocyanidin-3-O-β-D-glucoside 2′′′-O-xylosyltransferase
Comments: Isolated from the plants Matthiola incana (stock) [1] and Arabidopsis thaliana (mouse-eared cress) [2]. The enzyme has similar activity with the 3-glucosides of pelargonidin, cyanidin, delphinidin, quercetin and kaempferol as well as with cyanidin 3-O-rhamnosyl-(1→6)-glucoside and cyanidin 3-O-(6-acylglucoside). There is no activity with other UDP-sugars or with cyanidin 3,5-diglucoside.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Teusch, M. Uridine 5′-diphosphate-xylose:anthocyanidin 3-O-glucose-xylosyltransferase from petals of Matthiola incana R.Br. Planta 169 (1986) 559–563. [PMID: 24232765]
2.  Yonekura-Sakakibara, K., Fukushima, A., Nakabayashi, R., Hanada, K., Matsuda, F., Sugawara, S., Inoue, E., Kuromori, T., Ito, T., Shinozaki, K., Wangwattana, B., Yamazaki, M. and Saito, K. Two glycosyltransferases involved in anthocyanin modification delineated by transcriptome independent component analysis in Arabidopsis thaliana. Plant J. 69 (2012) 154–167. [DOI] [PMID: 21899608]
[EC 2.4.2.51 created 2013]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald