The Enzyme Database

Your query returned 5 entries.    printer_iconPrintable version

EC 1.14.11.81     
Accepted name: (–)-cyclopenine synthase
Reaction: (1) cyclopeptine + 2-oxoglutarate + O2 = dehydrocyclopeptine + succinate + CO2 + H2O
(2) dehydrocyclopeptine + 2-oxoglutarate + O2 = (–)-cyclopenine + succinate + CO2
For diagram of cyclopeptine, cyclopenine and viridicatin biosynthesis, click here
Glossary: cyclopeptine = (3S)-3-benzyl-4-methyl-3,4-dihydro-1H-1,4-benzodiazepine-2,5-dione
(–)-cyclopenine = (3S,3′R)-4-methyl-3′-phenyl-1H-spiro[1,4-benzodiazepine-3,2′-oxirane]-2,5-dione
Other name(s): asqJ (gene name)
Systematic name: cyclopeptine,2-oxoglutarate:oxygen oxidoreductase ((–)-cyclopenine-forming)
Comments: This fungal enzyme is involved in the biosynthesis of quinolone compounds. it catalyses two oxidation reactions: the first reaction results in a desaturation; the second reaction is a monooxygenation of the double bond, forming an epoxide. The enzyme is also active with 4′-methoxycyclopeptine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Nover, L. and Luckner, M. Mixed functional oxygenations during the biosynthesis of cyclopenin and cyclopenol, benzodiazepine alkaloids of Penicillium cyclopium westling. Incorporation of molecular oxygen and NIH-shift. FEBS Lett. 3 (1969) 292–296. [DOI] [PMID: 11947032]
2.  Ishikawa, N., Tanaka, H., Koyama, F., Noguchi, H., Wang, C.C., Hotta, K. and Watanabe, K. Non-heme dioxygenase catalyzes atypical oxidations of 6,7-bicyclic systems to form the 6,6-quinolone core of viridicatin-type fungal alkaloids. Angew. Chem. Int. Ed. Engl. 53 (2014) 12880–12884. [DOI] [PMID: 25251934]
3.  Brauer, A., Beck, P., Hintermann, L. and Groll, M. Structure of the dioxygenase AsqJ: Mechanistic insights into a one-pot multistep quinolone antibiotic biosynthesis. Angew. Chem. Int. Ed. Engl. 55 (2016) 422–426. [DOI] [PMID: 26553478]
4.  Chang, W.C., Li, J., Lee, J.L., Cronican, A.A. and Guo, Y. Mechanistic investigation of a non-heme iron enzyme catalyzed epoxidation in (–)-4′-methoxycyclopenin biosynthesis. J. Am. Chem. Soc. 138 (2016) 10390–10393. [DOI] [PMID: 27442345]
5.  Song, X., Lu, J. and Lai, W. Mechanistic insights into dioxygen activation, oxygen atom exchange and substrate epoxidation by AsqJ dioxygenase from quantum mechanical/molecular mechanical calculations. Phys Chem Chem Phys 19 (2017) 20188–20197. [DOI] [PMID: 28726913]
6.  Liao, H.J., Li, J., Huang, J.L., Davidson, M., Kurnikov, I., Lin, T.S., Lee, J.L., Kurnikova, M., Guo, Y., Chan, N.L. and Chang, W.C. Insights into the desaturation of cyclopeptin and its C3 epimer catalyzed by a non-heme iron enzyme: structural characterization and mechanism elucidation. Angew. Chem. Int. Ed. Engl. 57 (2018) 1831–1835. [DOI] [PMID: 29314482]
7.  Mader, S.L., Brauer, A., Groll, M. and Kaila, V.RI. Catalytic mechanism and molecular engineering of quinolone biosynthesis in dioxygenase AsqJ. Nat. Commun. 9:1168 (2018). [DOI] [PMID: 29563492]
8.  Wojdyla, Z. and Borowski, T. On how the binding cavity of AsqJ dioxygenase controls the desaturation reaction regioselectivity: a QM/MM study. J. Biol. Inorg. Chem. 23 (2018) 795–808. [DOI] [PMID: 29876666]
9.  Li, J., Liao, H.J., Tang, Y., Huang, J.L., Cha, L., Lin, T.S., Lee, J.L., Kurnikov, I.V., Kurnikova, M.G., Chang, W.C., Chan, N.L. and Guo, Y. Epoxidation catalyzed by the nonheme iron(II)- and 2-oxoglutarate-dependent oxygenase, AsqJ: mechanistic elucidation of oxygen atom transfer by a ferryl intermediate. J. Am. Chem. Soc. 142 (2020) 6268–6284. [DOI] [PMID: 32131594]
10.  Tang, H., Tang, Y., Kurnikov, I.V., Liao, H.J., Chan, N.L., Kurnikova, M.G., Guo, Y. and Chang, W.C. Harnessing the substrate promiscuity of dioxygenase AsqJ and developing efficient chemoenzymatic synthesis for quinolones. ACS Catal. 11 (2021) 7186–7192. [DOI] [PMID: 35721870]
[EC 1.14.11.81 created 2022]
 
 
EC 2.7.7.54      
Deleted entry: phenylalanine adenylyltransferase. The activity is part of EC 6.3.2.40, cyclopeptine synthase.
[EC 2.7.7.54 created 1989, deleted 2013]
 
 
EC 2.7.7.55      
Deleted entry: anthranilate adenylyltransferase. The activity is part of EC 6.3.2.40, cyclopeptine synthase.
[EC 2.7.7.55 created 1989, deleted 2013]
 
 
EC 4.1.99.27     
Accepted name: cyclopenase
Reaction: (–)-cyclopenine = viridicatin + methyl isocyanate
For diagram of cyclopeptine, cyclopenine and viridicatin biosynthesis, click here
Glossary: (–)-cyclopenine = (3S,3′R)-4-methyl-3′-phenyl-1H-spiro[1,4-benzodiazepine-3,2′-oxirane]-2,5-dione
viridicatin = 3-hydroxy-4-phenyl-1H-quinolin-2-one
Other name(s): asqI (gene name)
Systematic name: (–)-cyclopenine methyl-isocyanate lyase (viridicatin-forming)
Comments: This fungal enzyme catalyses a key reaction in the biosynthesis of quinolone compounds, converting the benzodiazepine structure into a quinolone structure. The enzyme is also active with (–)-4′-methoxycyclopenine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kishimoto, S., Hara, K., Hashimoto, H., Hirayama, Y., Champagne, P.A., Houk, K.N., Tang, Y. and Watanabe, K. Enzymatic one-step ring contraction for quinolone biosynthesis. Nat. Commun. 9:2826 (2018). [DOI] [PMID: 30026518]
[EC 4.1.99.27 created 2022]
 
 
EC 6.3.2.40     
Accepted name: cyclopeptine synthase
Reaction: 2 ATP + S-adenosyl-L-methionine + anthranilate + L-phenylalanine = cyclopeptine + 2 AMP + 2 diphosphate + S-adenosyl-L-homocysteine
For diagram of cyclopeptine, cyclopenine and viridicatin biosynthesis, click here
Glossary: cyclopeptine = (3S)-3-benzyl-4-methyl-3,4-dihydro-1H-1,4-benzodiazepine-2,5-dione
4′-methoxycyclopeptine = (3S)-3-(4-methoxybenzyl)-4-methyl-3,4-dihydro-1H-1,4-benzodiazepine-2,5-dione
Systematic name: S-adenosyl-L-methionine:anthranilate:L-phenylalanine ligase (cyclopeptine-forming)
Comments: Cyclopeptine synthase is the key enzyme of benzodiazepine alkaloid biosynthesis in several fungi species. The enzyme is a non-ribosomal peptide synthase. It is also active with O-methyl-L-tyrosine forming 4′-methoxycyclopeptine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lerbs, W. and Luckner, M. Cyclopeptine synthetase activity in surface cultures of Penicillium cyclopium. J. Basic Microbiol. 25 (1985) 387–391. [DOI] [PMID: 2995633]
2.  Gerlach, M, Schwelle, N., Lerbs, W. and Luckner, M. Enzymatic synthesis of cyclopeptine intermediates in Penicillium cyclopium. Phytochemistry 24 (1985) 1935–1939.
3.  Ishikawa, N., Tanaka, H., Koyama, F., Noguchi, H., Wang, C.C., Hotta, K. and Watanabe, K. Non-heme dioxygenase catalyzes atypical oxidations of 6,7-bicyclic systems to form the 6,6-quinolone core of viridicatin-type fungal alkaloids. Angew. Chem. Int. Ed. Engl. 53 (2014) 12880–12884. [DOI] [PMID: 25251934]
[EC 6.3.2.40 created 2013]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald