The Enzyme Database

Your query returned 7 entries.    printer_iconPrintable version



EC 1.1.1.184     
Accepted name: carbonyl reductase (NADPH)
Reaction: R-CHOH-R′ + NADP+ = R-CO-R′ + NADPH + H+
Other name(s): aldehyde reductase 1; prostaglandin 9-ketoreductase; xenobiotic ketone reductase; NADPH-dependent carbonyl reductase; ALR3; carbonyl reductase; nonspecific NADPH-dependent carbonyl reductase; carbonyl reductase (NADPH2)
Systematic name: secondary-alcohol:NADP+ oxidoreductase
Comments: Acts on a wide range of carbonyl compounds, including quinones, aromatic aldehydes, ketoaldehydes, daunorubicin and prostaglandins E and F, reducing them to the corresponding alcohol. Si-specific with respect to NADPH [cf. EC 1.1.1.2 alcohol dehydrogenase (NADP+)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 89700-36-7
References:
1.  Ahmed, N.K., Felsted, R.L. and Bachur, N.R. Heterogeneity of anthracycline antibiotic carbonyl reductases in mammalian livers. Biochem. Pharmacol. 27 (1978) 2713–2719. [DOI] [PMID: 31888]
2.  Lin, Y.M. and Jarabak, J. Isolation of two proteins with 9-ketoprostaglandin reductase and NADP-linked 15-hydroxyprostaglandin dehydrogenase activities and studies on their inhibition. Biochem. Biophys. Res. Commun. 81 (1978) 1227–1234. [DOI] [PMID: 666816]
3.  Wermuth, B. Purification and properties of an NADPH-dependent carbonyl reductase from human brain. Relationship to prostaglandin 9-ketoreductase and xenobiotic ketone reductase. J. Biol. Chem. 256 (1981) 1206–1213. [PMID: 7005231]
[EC 1.1.1.184 created 1983]
 
 
EC 1.1.1.362     
Accepted name: aklaviketone reductase
Reaction: aklavinone + NADP+ = aklaviketone + NADPH + H+
For diagram of aflatoxin biosynthesis, click here
Glossary: aklavinone = methyl (1R,2R,4S)-2-ethyl-2,4,5,7-tetrahydroxy-6,11-dioxo-1,2,3,4,6,11-hexahydrotetracene-1-carboxylate
aklaviketone = methyl (1R,2R)-2-ethyl-2,5,7-trihydroxy-4,6,11-trioxo-1,2,3,4,6,11-hexahydrotetracene-1-carboxylate
Other name(s): dauE (gene name); aknU (gene name)
Systematic name: aklavinone:NADP+ oxidoreductase
Comments: The enzyme is involved in the synthesis of the aklavinone aglycone, a common precursor for several anthracycline antibiotics including aclacinomycins, daunorubicin and doxorubicin. The enzyme from the Gram-negative bacterium Streptomyces sp. C5 produces daunomycin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Dickens, M.L., Ye, J. and Strohl, W.R. Cloning, sequencing, and analysis of aklaviketone reductase from Streptomyces sp. strain C5. J. Bacteriol. 178 (1996) 3384–3388. [DOI] [PMID: 8655529]
[EC 1.1.1.362 created 2013]
 
 
EC 1.14.13.180     
Accepted name: aklavinone 12-hydroxylase
Reaction: aklavinone + NADPH + H+ + O2 = ε-rhodomycinone + NADP+ + H2O
For diagram of aflatoxin biosynthesis, click here
Glossary: aklavinone = methyl (1R,2R,4S)-2-ethyl-2,4,5,7-tetrahydroxy-6,11-dioxo-1,2,3,4,6,11-hexahydrotetracene-1-carboxylate
ε-rhodomycinone = methyl (1R,2R,4S)-2-ethyl-2,4,5,7,12-pentahydroxy-6,11-dioxo-1,2,3,4,6,11-hexahydrotetracene-1-carboxylate
Other name(s): DnrF; RdmE; aklavinone 11-hydroxylase (incorrect)
Systematic name: aklavinone,NADPH:oxygen oxidoreductase (12-hydroxylating)
Comments: The enzymes from the Gram-positive bacteria Streptomyces peucetius and Streptomyces purpurascens participate in the biosynthesis of daunorubicin, doxorubicin and rhodomycins. The enzyme from Streptomyces purpurascens is an FAD monooxygenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Filippini, S., Solinas, M.M., Breme, U., Schluter, M.B., Gabellini, D., Biamonti, G., Colombo, A.L. and Garofano, L. Streptomyces peucetius daunorubicin biosynthesis gene, dnrF: sequence and heterologous expression. Microbiology 141 (1995) 1007–1016. [DOI] [PMID: 7773378]
2.  Niemi, J., Wang, Y., Airas, K., Ylihonko, K., Hakala, J. and Mantsala, P. Characterization of aklavinone-11-hydroxylase from Streptomyces purpurascens. Biochim. Biophys. Acta 1430 (1999) 57–64. [DOI] [PMID: 10082933]
[EC 1.14.13.180 created 2013]
 
 
EC 1.14.13.181     
Accepted name: 13-deoxydaunorubicin hydroxylase
Reaction: (1) 13-deoxydaunorubicin + NADPH + H+ + O2 = 13-dihydrodaunorubicin + NADP+ + H2O
(2) 13-dihydrodaunorubicin + NADPH + H+ + O2 = daunorubicin + NADP+ + 2 H2O
For diagram of daunorubicin biosynthesis, click here
Glossary: 13-dihydrodaunorubicin = daunorubicinol = (1S,3S)-3,5,12-trihydroxy-3-(1-hydroxyethyl)-10-methoxy-6,11-dioxo-1,2,3,4,6,11-hexahydrotetracen-1-yl 3-amino-2,3,6-trideoxy-α-L-lyxo-hexopyranoside
13-deoxydaunorubicin = (1S,3S)-3-ethyl-3,5,12-trihydroxy-10-methoxy-6,11-dioxo-1,2,3,4,6,11-hexahydrotetracen-1-yl 3-amino-2,3,6-trideoxy-α-L-lyxo-hexopyranoside
daunorubicin = (1S,3S)-3-acetyl-3,5,12-trihydroxy-10-methoxy-6,11-dioxo-1,2,3,4,6,11-hexahydrotetracen-1-yl 3-amino-2,3,6-trideoxy-α-L-lyxo-hexopyranoside
Other name(s): DoxA
Systematic name: 13-deoxydaunorubicin,NADPH:oxygen oxidoreductase (13-hydroxylating)
Comments: The enzymes from the Gram-positive bacteria Streptomyces sp. C5 and Streptomyces peucetius show broad substrate specificity for structures based on an anthracycline aglycone, but have a strong preference for 4-methoxy anthracycline intermediates (13-deoxydaunorubicin and 13-dihydrodaunorubicin) over their 4-hydroxy analogues (13-deoxycarminomycin and 13-dihydrocarminomycin), as well as a preference for substrates hydroxylated at the C-13 rather than the C-14 position.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Walczak, R.J., Dickens, M.L., Priestley, N.D. and Strohl, W.R. Purification, properties, and characterization of recombinant Streptomyces sp. strain C5 DoxA, a cytochrome P-450 catalyzing multiple steps in doxorubicin biosynthesis. J. Bacteriol. 181 (1999) 298–304. [PMID: 9864343]
2.  Dickens, M.L., Priestley, N.D. and Strohl, W.R. In vivo and in vitro bioconversion of ε-rhodomycinone glycoside to doxorubicin: functions of DauP, DauK, and DoxA. J. Bacteriol. 179 (1997) 2641–2650. [DOI] [PMID: 9098063]
[EC 1.14.13.181 created 2013]
 
 
EC 2.1.1.288     
Accepted name: aklanonic acid methyltransferase
Reaction: S-adenosyl-L-methionine + aklanonate = S-adenosyl-L-homocysteine + methyl aklanonate
For diagram of aflatoxin biosynthesis, click here
Glossary: methyl aklanonate = methyl [1,4,5-trihydroxy-9,10-dioxo-3-(3-oxopentanoyl)-9,10-dihydroanthracen-2-yl]acetate
aklanonate = [4,5-dihydroxy-9,10-dioxo-3-(3-oxopentanoyl)-9,10-dihydroanthracen-2-yl]acetic acid
Other name(s): DauC; AAMT
Systematic name: S-adenosyl-L-methionine:aklanonate O-methyltransferase
Comments: The enzyme from the Gram-positive bacterium Streptomyces sp. C5 is involved in the biosynthesis of the anthracycline daunorubicin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Dickens, M.L., Ye, J. and Strohl, W.R. Analysis of clustered genes encoding both early and late steps in daunomycin biosynthesis by Streptomyces sp. strain C5. J. Bacteriol. 177 (1995) 536–543. [DOI] [PMID: 7836284]
[EC 2.1.1.288 created 2013]
 
 
EC 2.1.1.292     
Accepted name: carminomycin 4-O-methyltransferase
Reaction: S-adenosyl-L-methionine + carminomycin = S-adenosyl-L-homocysteine + daunorubicin
For diagram of daunorubicin biosynthesis, click here
Glossary: daunorubicin = (+)-daunomycin = (8S,10S)-8-acetyl-10-[(2S,4S,5S,6S)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-6,8,11-trihydroxy-1-methoxy-9,10-dihydro-7H-tetracene-5,12-dione
carminomycin = (1S,3S)-3-acetyl-3,5,10,12-tetrahydroxy-6,11-dioxo-1,2,3,4,6,11-hexahydrotetracen-1-yl 3-amino-2,3,6-trideoxy-α-L-lyxo-hexopyranoside = (1S,3S)-3-acetyl-3,5,10,12-tetrahydroxy-6,11-dioxo-1,2,3,4,6,11-hexahydronaphthacen-1-yl 3-amino-2,3,6-trideoxy-α-L-lyxo-hexopyranoside
carubicin = (1S,3S)-3-acetyl-3,5,12-trihydroxy-10-methoxy-6,11-dioxo-1,2,3,4,6,11-hexahydrotetracen-1-yl 3-amino-2,3,6-trideoxy-α-L-lyxo-hexopyranoside
= (8S,10S)-8-acetyl-10-[(3-amino-2,3,6-trideoxy-α-L-lyxo-hexopyranosyl)oxy]-6,8,11-trihydroxy-1-methoxy-7,8,9,10-tetrahydronaphthacene-5,12-dione
Other name(s): DnrK; DauK
Systematic name: S-adenosyl-L-methionine:carminomycin 4-O-methyltransferase
Comments: The enzymes from the Gram-positive bacteria Streptomyces sp. C5 and Streptomyces peucetius are involved in the biosynthesis of the anthracycline daunorubicin. In vitro the enzyme from Streptomyces sp. C5 also catalyses the 4-O-methylation of 13-dihydrocarminomycin, rhodomycin D and 10-carboxy-13-deoxycarminomycin [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Connors, N.C. and Strohl, W.R. Partial purification and properties of carminomycin 4-O-methyltransferase from Streptomyces sp. strain C5. J. Gen. Microbiol. 139 Pt 6 (1993) 1353–1362. [DOI] [PMID: 8360627]
2.  Jansson, A., Koskiniemi, H., Mantsala, P., Niemi, J. and Schneider, G. Crystal structure of a ternary complex of DnrK, a methyltransferase in daunorubicin biosynthesis, with bound products. J. Biol. Chem. 279 (2004) 41149–41156. [DOI] [PMID: 15273252]
3.  Dickens, M.L., Priestley, N.D. and Strohl, W.R. In vivo and in vitro bioconversion of ε-rhodomycinone glycoside to doxorubicin: functions of DauP, DauK, and DoxA. J. Bacteriol. 179 (1997) 2641–2650. [DOI] [PMID: 9098063]
[EC 2.1.1.292 created 2013]
 
 
EC 5.5.1.23     
Accepted name: aklanonic acid methyl ester cyclase
Reaction: aklaviketone = methyl aklanonate
For diagram of aklavinone biosynthesis, click here
Glossary: aklaviketone = methyl (1R,2R)-2-ethyl-2,5,7-trihydroxy-4,6,11-trioxo-1,2,3,4,6,11-hexahydrotetracene-1-carboxylate
methyl aklanonate = methyl [4,5-dihydroxy-9,10-dioxo-3-(3-oxopentanoyl)-9,10-dihydroanthracen-2-yl]acetate
Other name(s): dauD (gene name); aknH (gene name); dnrD (gene name); methyl aklanonate cyclase; methyl aklanonate-aklaviketone isomerase (cyclizing); aklaviketone lyase (decyclizing)
Systematic name: aklaviketone lyase (ring-opening)
Comments: The enzyme is involved in the biosynthesis of aklaviketone, an intermediate in the biosynthetic pathways leading to formation of several anthracycline antibiotics, including aclacinomycin, daunorubicin and doxorubicin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Dickens, M.L., Ye, J. and Strohl, W.R. Analysis of clustered genes encoding both early and late steps in daunomycin biosynthesis by Streptomyces sp. strain C5. J. Bacteriol. 177 (1995) 536–543. [DOI] [PMID: 7836284]
2.  Kendrew, S.G., Katayama, K., Deutsch, E., Madduri, K. and Hutchinson, C.R. DnrD cyclase involved in the biosynthesis of doxorubicin: purification and characterization of the recombinant enzyme. Biochemistry 38 (1999) 4794–4799. [DOI] [PMID: 10200167]
3.  Kallio, P., Sultana, A., Niemi, J., Mantsala, P. and Schneider, G. Crystal structure of the polyketide cyclase AknH with bound substrate and product analogue: implications for catalytic mechanism and product stereoselectivity. J. Mol. Biol. 357 (2006) 210–220. [DOI] [PMID: 16414075]
[EC 5.5.1.23 created 2013, modified 2014]
 
 


Data © 2001–2020 IUBMB
Web site © 2005–2020 Andrew McDonald