The Enzyme Database

Your query returned 5 entries.    printer_iconPrintable version

EC 1.14.18.5     
Accepted name: sphingolipid C4-monooxygenase
Reaction: a dihydroceramide + 2 ferrocytochrome b5 + O2 + 2 H+ = a (4R)-4-hydroxysphinganine ceramide + 2 ferricytochrome b5 + H2O
Other name(s): sphinganine C4-monooxygenase; sphingolipid C4-hydroxylase; SUR2 (gene name); SBH1 (gene name); SBH2 (gene name); DEGS2 (gene name)
Systematic name: dihydroceramide,ferrocytochrome b5:oxygen oxidoreductase (C4-hydroxylating)
Comments: The enzyme, which belongs to the familiy of endoplasmic reticular cytochrome b5-dependent enzymes, is involved in the biosynthesis of sphingolipids in eukaryotes. Some enzymes are bifunctional and also catalyse EC 1.14.19.17, sphingolipid 4-desaturase [4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Haak, D., Gable, K., Beeler, T. and Dunn, T. Hydroxylation of Saccharomyces cerevisiae ceramides requires Sur2p and Scs7p. J. Biol. Chem. 272 (1997) 29704–29710. [DOI] [PMID: 9368039]
2.  Grilley, M.M., Stock, S.D., Dickson, R.C., Lester, R.L. and Takemoto, J.Y. Syringomycin action gene SYR2 is essential for sphingolipid 4-hydroxylation in Saccharomyces cerevisiae. J. Biol. Chem. 273 (1998) 11062–11068. [DOI] [PMID: 9556590]
3.  Sperling, P., Ternes, P., Moll, H., Franke, S., Zähringer, U. and Heinz, E. Functional characterization of sphingolipid C4-hydroxylase genes from Arabidopsis thaliana. FEBS Lett. 494 (2001) 90–94. [DOI] [PMID: 11297741]
4.  Ternes, P., Franke, S., Zähringer, U., Sperling, P. and Heinz, E. Identification and characterization of a sphingolipid Δ4-desaturase family. J. Biol. Chem. 277 (2002) 25512–25518. [DOI] [PMID: 11937514]
5.  Mizutani, Y., Kihara, A. and Igarashi, Y. Identification of the human sphingolipid C4-hydroxylase, hDES2, and its up-regulation during keratinocyte differentiation. FEBS Lett. 563 (2004) 93–97. [DOI] [PMID: 15063729]
[EC 1.14.18.5 created 2012 as EC 1.14.13.169, transferred 2015 to EC 1.14.18.5]
 
 
EC 1.14.18.6     
Accepted name: 4-hydroxysphinganine ceramide fatty acyl 2-hydroxylase
Reaction: a phytoceramide + 2 ferrocytochrome b5 + O2 + 2 H+ = a (2′R)-2′-hydroxyphytoceramide + 2 ferricytochrome b5 + H2O
Glossary: a phytoceramide = a (4R)-4-hydroxysphinganine ceramide = an N-acyl-4-hydroxysphinganine
Other name(s): FA2H (gene name); SCS7 (gene name)
Systematic name: (4R)-4-hydroxysphinganine ceramide,ferrocytochrome-b5:oxygen oxidoreductase (fatty acyl 2-hydroxylating)
Comments: The enzyme, characterized from yeast and mammals, catalyses the hydroxylation of carbon 2 of long- or very-long-chain fatty acids attached to (4R)-4-hydroxysphinganine during de novo ceramide synthesis. The enzymes from yeast and from mammals contain an N-terminal cytochrome b5 domain that acts as the direct electron donor to the desaturase active site. The newly introduced 2-hydroxyl group has R-configuration. cf. EC 1.14.18.7, dihydroceramide fatty acyl 2-hydroxylase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Mitchell, A.G. and Martin, C.E. Fah1p, a Saccharomyces cerevisiae cytochrome b5 fusion protein, and its Arabidopsis thaliana homolog that lacks the cytochrome b5 domain both function in the α-hydroxylation of sphingolipid-associated very long chain fatty acids. J. Biol. Chem. 272 (1997) 28281–28288. [DOI] [PMID: 9353282]
2.  Dunn, T.M., Haak, D., Monaghan, E. and Beeler, T.J. Synthesis of monohydroxylated inositolphosphorylceramide (IPC-C) in Saccharomyces cerevisiae requires Scs7p, a protein with both a cytochrome b5-like domain and a hydroxylase/desaturase domain. Yeast 14 (1998) 311–321. [DOI] [PMID: 9559540]
3.  Alderson, N.L., Rembiesa, B.M., Walla, M.D., Bielawska, A., Bielawski, J. and Hama, H. The human FA2H gene encodes a fatty acid 2-hydroxylase. J. Biol. Chem. 279 (2004) 48562–48568. [DOI] [PMID: 15337768]
4.  Eckhardt, M., Yaghootfam, A., Fewou, S.N., Zoller, I. and Gieselmann, V. A mammalian fatty acid hydroxylase responsible for the formation of α-hydroxylated galactosylceramide in myelin. Biochem. J. 388 (2005) 245–254. [DOI] [PMID: 15658937]
5.  Guo, L., Zhang, X., Zhou, D., Okunade, A.L. and Su, X. Stereospecificity of fatty acid 2-hydroxylase and differential functions of 2-hydroxy fatty acid enantiomers. J. Lipid Res. 53 (2012) 1327–1335. [DOI] [PMID: 22517924]
[EC 1.14.18.6 created 2015]
 
 
EC 1.14.18.7     
Accepted name: dihydroceramide fatty acyl 2-hydroxylase
Reaction: a dihydroceramide + 2 ferrocytochrome b5 + O2 + 2 H+ = a (2′R)-2′-hydroxydihydroceramide + 2 ferricytochrome b5 + H2O
Glossary: a dihydroceramide = an N-acylsphinganine
Other name(s): FAH1 (gene name); FAH2 (gene name); plant sphingolipid fatty acid 2-hydroxylase
Systematic name: dihydroceramide,ferrocytochrome-b5:oxygen oxidoreductase (fatty acyl 2-hydroxylating)
Comments: The enzyme, characterized from plants, catalyses the hydroxylation of carbon 2 of long- or very-long-chain fatty acids attached to sphinganine during de novo ceramide synthesis. The enzyme requires an external cytochrome b5 as the electron donor. The newly introduced 2-hydroxyl group has R-configuration. cf. EC 1.14.18.6, 4-hydroxysphinganine ceramide fatty acyl 2-hydroxylase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Nagano, M., Ihara-Ohori, Y., Imai, H., Inada, N., Fujimoto, M., Tsutsumi, N., Uchimiya, H. and Kawai-Yamada, M. Functional association of cell death suppressor, Arabidopsis Bax inhibitor-1, with fatty acid 2-hydroxylation through cytochrome b5. Plant J. 58 (2009) 122–134. [DOI] [PMID: 19054355]
2.  Nagano, M., Takahara, K., Fujimoto, M., Tsutsumi, N., Uchimiya, H. and Kawai-Yamada, M. Arabidopsis sphingolipid fatty acid 2-hydroxylases (AtFAH1 and AtFAH2) are functionally differentiated in fatty acid 2-hydroxylation and stress responses. Plant Physiol. 159 (2012) 1138–1148. [DOI] [PMID: 22635113]
3.  Nagano, M., Uchimiya, H. and Kawai-Yamada, M. Plant sphingolipid fatty acid 2-hydroxylases have unique characters unlike their animal and fungus counterparts. Plant Signal. Behav. 7 (2012) 1388–1392. [DOI] [PMID: 22918503]
[EC 1.14.18.7 created 2015]
 
 
EC 1.14.19.17     
Accepted name: sphingolipid 4-desaturase
Reaction: a dihydroceramide + 2 ferrocytochrome b5 + O2 + 2 H+ = a (4E)-sphing-4-enine ceramide + 2 ferricytochrome b5 + 2 H2O
Glossary: a dihydroceramide = an N-acylsphinganine
Other name(s): dehydroceramide desaturase
Systematic name: dihydroceramide,ferrocytochrome b5:oxygen oxidoreductase (4,5-dehydrogenating)
Comments: The enzyme, which has been characterized from plants, fungi, and mammals, generates a trans double bond at position 4 of sphinganine bases in sphingolipids [1]. The preferred substrate is dihydroceramide, but the enzyme is also active with dihydroglucosylceramide [2]. Unlike EC 1.14.19.29, sphingolipid 8-desaturase, this enzyme does not contain an integral cytochrome b5 domain [4] and requires an external cytochrome b5 [3]. The product serves as an important signalling molecules in mammals and is required for spermatide differentiation [5].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Stoffel, W., Assmann, G. and Bister, K. Metabolism of sphingosine bases. XVII. Stereospecificities in the introduction of the 4t-double bond into sphinganine yielding 4t-sphingenine (sphingosine). Hoppe-Seylers Z. Physiol. Chem. 352 (1971) 1531–1544. [PMID: 5140816]
2.  Michel, C., van Echten-Deckert, G., Rother, J., Sandhoff, K., Wang, E. and Merrill, A.H., Jr. Characterization of ceramide synthesis. A dihydroceramide desaturase introduces the 4,5-trans-double bond of sphingosine at the level of dihydroceramide. J. Biol. Chem. 272 (1997) 22432–22437. [DOI] [PMID: 9312549]
3.  Causeret, C., Geeraert, L., Van der Hoeven, G., Mannaerts, G.P. and Van Veldhoven, P.P. Further characterization of rat dihydroceramide desaturase: tissue distribution, subcellular localization, and substrate specificity. Lipids 35 (2000) 1117–1125. [DOI] [PMID: 11104018]
4.  Ternes, P., Franke, S., Zähringer, U., Sperling, P. and Heinz, E. Identification and characterization of a sphingolipid Δ4-desaturase family. J. Biol. Chem. 277 (2002) 25512–25518. [DOI] [PMID: 11937514]
5.  Michaelson, L.V., Zäuner, S., Markham, J.E., Haslam, R.P., Desikan, R., Mugford, S., Albrecht, S., Warnecke, D., Sperling, P., Heinz, E. and Napier, J.A. Functional characterization of a higher plant sphingolipid Δ4-desaturase: defining the role of sphingosine and sphingosine-1-phosphate in Arabidopsis. Plant Physiol. 149 (2009) 487–498. [DOI] [PMID: 18978071]
[EC 1.14.19.17 created 2015]
 
 
EC 2.3.1.291     
Accepted name: sphingoid base N-palmitoyltransferase
Reaction: palmitoyl-CoA + a sphingoid base = an N-(palmitoyl)-sphingoid base + CoA
Other name(s): mammalian ceramide synthase 5; CERS5 (gene name); LASS5 (gene name)
Systematic name: palmitoyl-CoA:sphingoid base N-palmitoyltransferase
Comments: Mammals have six ceramide synthases that exhibit relatively strict specificity regarding the chain-length of their acyl-CoA substrates. Ceramide synthase 5 (CERS5) is specific for palmitoyl-CoA as the acyl donor. It can use multiple sphingoid bases including sphinganine, sphingosine, and phytosphingosine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Lahiri, S. and Futerman, A.H. LASS5 is a bona fide dihydroceramide synthase that selectively utilizes palmitoyl-CoA as acyl donor. J. Biol. Chem. 280 (2005) 33735–33738. [PMID: 16100120]
2.  Xu, Z., Zhou, J., McCoy, D.M. and Mallampalli, R.K. LASS5 is the predominant ceramide synthase isoform involved in de novo sphingolipid synthesis in lung epithelia. J. Lipid Res. 46 (2005) 1229–1238. [PMID: 15772421]
3.  Mizutani, Y., Kihara, A. and Igarashi, Y. Mammalian Lass6 and its related family members regulate synthesis of specific ceramides. Biochem. J. 390 (2005) 263–271. [PMID: 15823095]
[EC 2.3.1.291 created 2019, modified 2019]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald