The Enzyme Database

Your query returned 15 entries.    printer_iconPrintable version



EC 2.3.1.206     
Accepted name: 3,5,7-trioxododecanoyl-CoA synthase
Reaction: 3 malonyl-CoA + hexanoyl-CoA = 3 CoA + 3,5,7-trioxododecanoyl-CoA + 3 CO2
For diagram of cannabinoid biosynthesis, click here
Other name(s): TKS (ambiguous); olivetol synthase (incorrect)
Systematic name: malonyl-CoA:hexanoyl-CoA malonyltransferase (3,5,7-trioxododecanoyl-CoA-forming)
Comments: A polyketide synthase catalysing the first committed step in the cannabinoids biosynthetic pathway of the plant Cannabis sativa. The enzyme was previously thought to also function as a cyclase, but the cyclization is now known to be catalysed by EC 4.4.1.26, olivetolic acid cyclase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Taura, F., Tanaka, S., Taguchi, C., Fukamizu, T., Tanaka, H., Shoyama, Y. and Morimoto, S. Characterization of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway. FEBS Lett. 583 (2009) 2061–2066. [DOI] [PMID: 19454282]
2.  Gagne, S.J., Stout, J.M., Liu, E., Boubakir, Z., Clark, S.M. and Page, J.E. Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides. Proc. Natl. Acad. Sci. USA 109 (2012) 12811–12816. [DOI] [PMID: 22802619]
[EC 2.3.1.206 created 2012]
 
 
EC 2.3.1.241     
Accepted name: Kdo2-lipid IVA lauroyltransferase
Reaction: a dodecanoyl-[acyl-carrier protein] + Kdo2-lipid IVA = dodecanoyl-Kdo2-lipid IVA + an [acyl-carrier protein]
For diagram of Kdo-Kdo-Lipid IVA metabolism, click here
Glossary: Kdo = 3-deoxy-D-manno-oct-2-ulopyranosylonic acid
lipid IVA = 2-deoxy-2-[(3R)-3-hydroxytetradecanamido]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranosyl phosphate
Kdo2-lipid IVA = α-Kdo-(2→4)-α-Kdo-(2→6)-lipid IVA
dodecanoyl = lauroyl
dodecanoyl-Kdo2-lipid IVA = α-Kdo-(2→4)-α-Kdo-(2→6)-2-deoxy-2-[(3R)-3-(dodecanoyloxy)tetradecanamido]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranosyl phosphate
Other name(s): LpxL; htrB (gene name); dodecanoyl-[acyl-carrier protein]:α-Kdo-(2→4)-α-Kdo-(2→6)-lipid IVA O-dodecanoyltransferase; lauroyl-[acyl-carrier protein]:Kdo2-lipid IVA O-lauroyltransferase; (Kdo)2-lipid IVA lauroyltransferase; α-Kdo-(2→4)-α-(2→6)-lipid IVA lauroyltransferase
Systematic name: dodecanoyl-[acyl-carrier protein]:Kdo2-lipid IVA O-dodecanoyltransferase
Comments: The enzyme, characterized from the bacterium Escherichia coli, is involved in the biosynthesis of the phosphorylated outer membrane glycolipid lipid A.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Clementz, T., Bednarski, J.J. and Raetz, C.R. Function of the htrB high temperature requirement gene of Escherichia coli in the acylation of lipid A: HtrB catalyzed incorporation of laurate. J. Biol. Chem. 271 (1996) 12095–12102. [DOI] [PMID: 8662613]
2.  Six, D.A., Carty, S.M., Guan, Z. and Raetz, C.R. Purification and mutagenesis of LpxL, the lauroyltransferase of Escherichia coli lipid A biosynthesis. Biochemistry 47 (2008) 8623–8637. [DOI] [PMID: 18656959]
[EC 2.3.1.241 created 2014]
 
 
EC 2.3.1.243     
Accepted name: lauroyl-Kdo2-lipid IVA myristoyltransferase
Reaction: a tetradecanoyl-[acyl-carrier protein] + dodecanoyl-Kdo2-lipid IVA = dodecanoyl-(tetradecanoyl)-Kdo2-lipid IVA + an [acyl-carrier protein]
For diagram of Kdo-Kdo-Lipid IVA metabolism, click here
Glossary: Kdo = 3-deoxy-D-manno-oct-2-ulopyranosylonic acid
lipid IVA = 2-deoxy-2-[(3R)-3-hydroxytetradecanamido]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranosyl phosphate
Kdo2-lipid IVA = α-Kdo-(2→4)-α-Kdo-(2→6)-lipid IVA
dodecanoyl = lauroyl
tetradecanoyl = myristoyl
dodecanoyl-Kdo2-lipid IVA = α-Kdo-(2→4)-α-Kdo-(2→6)-2-deoxy-2-[(3R)-3-(dodecanoyloxy)tetradecanamido]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranosyl phosphate
dodecanoyl-(tetradecanoyl)-Kdo2-lipid IVA = α-Kdo-(2→4)-α-Kdo-(2→6)-2-deoxy-2-[(3R)-3-(dodecanoyloxy)tetradecanamido]-3-O-[(3R)-3-(tetradecanoyloxy)tetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranosyl phosphate
Other name(s): MsbB acyltransferase; lpxM (gene name); myristoyl-[acyl-carrier protein]:α-Kdo-(2→4)-α-Kdo-(2→6)-(dodecanoyl)-lipid IVA O-myristoyltransferase
Systematic name: tetradecanoyl-[acyl-carrier protein]:dodecanoyl-Kdo2-lipid IVA O-tetradecanoyltransferase
Comments: The enzyme, characterized from the bacterium Escherichia coli, is involved in the biosynthesis of the phosphorylated outer membrane glycolipid lipid A.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Clementz, T., Zhou, Z. and Raetz, C.R. Function of the Escherichia coli msbB gene, a multicopy suppressor of htrB knockouts, in the acylation of lipid A. Acylation by MsbB follows laurate incorporation by HtrB. J. Biol. Chem. 272 (1997) 10353–10360. [DOI] [PMID: 9099672]
[EC 2.3.1.243 created 2014]
 
 
EC 2.3.1.251     
Accepted name: lipid IVA palmitoyltransferase
Reaction: (1) 1-palmitoyl-2-acyl-sn-glycero-3-phosphocholine + hexa-acyl lipid A = 2-acyl-sn-glycero-3-phosphocholine + hepta-acyl lipid A
(2) 1-palmitoyl-2-acyl-sn-glycero-3-phosphocholine + lipid IIA = 2-acyl-sn-glycero-3-phosphocholine + lipid IIB
(3) 1-palmitoyl-2-acyl-sn-glycero-3-phosphocholine + lipid IVA = 2-acyl-sn-glycero-3-phosphocholine + lipid IVB
For diagram of lipid IVB biosynthesis, click here
Glossary: palmitoyl = hexadecanoyl
hexa-acyl lipid A = 2-deoxy-2-[(3R)-3-(tetradecanoyloxy)tetradecanamido]-3-O-[(3R)-3-(dodecanoyloxy)tetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranosyl phosphate
hepta-acyl lipid A = 2-deoxy-2-[(3R)-3-(tetradecanoyloxy)tetradecanamido]-3-O-[(3R)-3-(dodecanoyloxy)tetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-(hexadecanoyloxy)tetradecanamido]-α-D-glucopyranosyl phosphate
lipid IIA = 4-amino-4-deoxy-β-L-arabinopyranosyl 2-deoxy-2-[(3R)-3-hydroxytetradecanamido]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranose phosphate
lipid IIB = 4-amino-4-deoxy-β-L-arabinopyranosyl 2-deoxy-2-[(3R)-3-hydroxytetradecanamido]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-(hexadecanoyloxy)tetradecanamido]-α-D-glucopyranosyl phosphate
lipid IVA = 2-deoxy-2-[(3R)-3-hydroxytetradecanamido]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranose phosphate
lipid IVB = 2-deoxy-2-[(3R)-3-hydroxytetradecanamido]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-(hexadecanoyloxy)tetradecanamido]-α-D-glucopyranosyl phosphate
Other name(s): PagP; crcA (gene name)
Systematic name: 1-palmitoyl-2-acyl-sn-glycero-3-phosphocholine:lipid-IVA palmitoyltransferase
Comments: Isolated from the bacteria Escherichia coli and Salmonella typhimurium. The enzyme prefers phosphatidylcholine with a palmitoyl group at the sn-1 position and palmitoyl or stearoyl groups at the sn-2 position. There is some activity with corresponding phosphatidylserines but only weak activity with other diacylphosphatidyl compounds. The enzyme also acts on Kdo-(2→4)-Kdo-(2→6)-lipid IVA.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Bishop, R.E., Gibbons, H.S., Guina, T., Trent, M.S., Miller, S.I. and Raetz, C.R. Transfer of palmitate from phospholipids to lipid A in outer membranes of gram-negative bacteria. EMBO J. 19 (2000) 5071–5080. [DOI] [PMID: 11013210]
2.  Cuesta-Seijo, J.A., Neale, C., Khan, M.A., Moktar, J., Tran, C.D., Bishop, R.E., Pomes, R. and Prive, G.G. PagP crystallized from SDS/cosolvent reveals the route for phospholipid access to the hydrocarbon ruler. Structure 18 (2010) 1210–1219. [DOI] [PMID: 20826347]
[EC 2.3.1.251 created 2015]
 
 
EC 2.3.3.2     
Accepted name: decylcitrate synthase
Reaction: lauroyl-CoA + H2O + oxaloacetate = (2S,3S)-2-hydroxytridecane-1,2,3-tricarboxylate + CoA
For diagram of reaction, click here
Other name(s): 2-decylcitrate synthase; (2S,3S)-2-hydroxytridecane-1,2,3-tricarboxylate oxaloacetate-lyase (CoA-acylating)
Systematic name: dodecanoyl-CoA:oxaloacetate C-dodecanoyltransferase (thioester-hydrolysing, 1-carboxyundecyl-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9068-72-8
References:
1.  Maahlén, A. and Gatenbeck, S. A metabolic variation in Penicillium spiculisporum Lehman. II. Purification and some properties of the enzyme synthesizing (-)-decylcitric acid. Acta Chem. Scand. 22 (1968) 2617–2623. [PMID: 5719165]
2.  Maahlén, A. Properties of 2-decylcitrate synthase from Penicillium spiculisporum Lehman. Eur. J. Biochem. 22 (1971) 104–114. [DOI] [PMID: 5099208]
[EC 2.3.3.2 created 1972 as EC 4.1.3.23, transferred 2002 to EC 2.3.3.2]
 
 
EC 2.3.3.4     
Accepted name: decylhomocitrate synthase
Reaction: dodecanoyl-CoA + H2O + 2-oxoglutarate = (3S,4S)-3-hydroxytetradecane-1,3,4-tricarboxylate + CoA
For diagram of reaction, click here
Other name(s): 2-decylhomocitrate synthase; 3-hydroxytetradecane-1,3,4-tricarboxylate 2-oxoglutarate-lyase (CoA-acylating)
Systematic name: dodecanoyl-CoA:2-oxoglutarate C-dodecanoyltransferase (thioester-hydrolysing, 1-carboxyundecyl-forming)
Comments: Decanoyl-CoA can act instead of dodecanoyl-CoA, but 2-oxoglutarate cannot be replaced by oxaloacetate or pyruvate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 51845-40-0
References:
1.  Maahlén, A. Purification and some properties of 2-decylhomocitrate synthase from Penicillium spiculisporum. Eur. J. Biochem. 38 (1973) 32–39. [DOI] [PMID: 4774124]
2.  Brandäge, S., Dahlman, O., Lindqvist, B., Maahlén, A. and Mörch, L. Absolute configuration and enantiospecific synthesis of spiculisporic acid. Acta Chem. Scand. 38B (1984) 837–844.
[EC 2.3.3.4 created 1976 as EC 4.1.3.29, transferred 2002 to EC 2.3.3.4]
 
 
EC 2.4.2.43     
Accepted name: lipid IVA 4-amino-4-deoxy-L-arabinosyltransferase
Reaction: (1) 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate + α-Kdo-(2→4)-α-Kdo-(2→6)-lipid A = α-Kdo-(2→4)-α-Kdo-(2→6)-[4-P-L-Ara4N]-lipid A + ditrans,octacis-undecaprenyl phosphate
(2) 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate + lipid IVA = lipid IIA + ditrans,octacis-undecaprenyl phosphate
(3) 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate + α-Kdo-(2→4)-α-Kdo-(2→6)-lipid IVA = 4′-α-L-Ara4N-α-Kdo-(2→4)-α-Kdo-(2→6)-lipid IVA + ditrans,octacis-undecaprenyl phosphate
For diagram of lipid IIA biosynthesis, click here
Glossary: lipid IVA = 2-deoxy-2-{[(3R)-3-hydroxytetradecanoyl]amino}-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-{[(3R)-3-hydroxytetradecanoyl]amino}-1-O-phosphono-α-D-glucopyranose
lipid IIA = 4-amino-4-deoxy-β-L-arabinopyranosyl 2-deoxy-2-{[(3R)-3-hydroxytetradecanoyl]amino}-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-{[(3R)-3-hydroxytetradecanoyl]amino}-α-D-glucopyranosyl phosphate
α-Kdo-(2→4)-α-Kdo-(2→6)-lipid IVA = (3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→4)-(3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→6)-2-deoxy-2-{[(3R)-3-hydroxytetradecanoyl]amino}-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phosphono-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-{[(3R)-3-hydroxytetradecanoyl]amino}-1-O-phosphono-α-D-glucopyranose
4′-α-L-Ara4N-α-Kdo-(2→4)-α-Kdo-(2→6)-lipid IVA = 4-amino-4-deoxy-α-L-arabinopyranosyl 2-deoxy-2-[(3R)-3-hydroxytetradecanamido]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-phospho-β-D-glucopyranosy-(1→6)-2-deoxy-2-[(3R)-3-hydroxytetradecanamido]-3-O-[(3R)-3-hydroxytetradecanoyl]-α-D-glucopyranosyl phosphate
lipid A = lipid A of Escherichia coli = 2-deoxy-2-{[(3R)-3-(dodecanoyloxy)tetradecanoyl]amino}-3-O-[(3R)-3-(tetradecanoyloxy)tetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-{[(3R)-3-hydroxytetradecanoyl]amino}-1-O-phosphono-α-D-glucopyranose
α-Kdo-(2→4)-α-Kdo-(2→6)-lipid A = (3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→4)-(3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→6)-2-deoxy-2-{[(3R)-3-(dodecanoyloxy)tetradecanoyl]amino}-3-O-[(3R)-3-(tetradecanoyloxy)tetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-{[(3R)-3-hydroxytetradecanoyl]amino}-1-O-phosphono-α-D-glucopyranose
α-Kdo-(2→4)-α-Kdo-(2→6)-[4′-P-α-L-Ara4N]-lipid A = (3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→4)-(3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→6)-2-deoxy-2-{[(3R)-3-(dodecanoyloxy)tetradecanoyl]amino}-3-O-[(3R)-3-(tetradecanoyloxy)tetradecanoyl]-4-O-(4-amino-4-deoxy-α-L-arabinopyranosyl)phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-{[(3R)-3-hydroxytetradecanoyl]amino}-1-O-phosphono-α-D-glucopyranose
Other name(s): undecaprenyl phosphate-α-L-Ara4N transferase; 4-amino-4-deoxy-L-arabinose lipid A transferase; polymyxin resistance protein PmrK; arnT (gene name)
Systematic name: 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate:lipid IVA 4-amino-4-deoxy-L-arabinopyranosyltransferase
Comments: Integral membrane protein present in the inner membrane of certain Gram negative endobacteria. In strains that do not produce 3-deoxy-D-manno-octulosonic acid (Kdo), the enzyme adds a single arabinose unit to the 1-phosphate moiety of the tetra-acylated lipid A precursor, lipid IVA. In the presence of a Kdo disaccharide, the enzyme primarily adds an arabinose unit to the 4-phosphate of lipid A molecules. The Salmonella typhimurium enzyme can add arabinose units to both positions.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Trent, M.S., Ribeiro, A.A., Lin, S., Cotter, R.J. and Raetz, C.R. An inner membrane enzyme in Salmonella and Escherichia coli that transfers 4-amino-4-deoxy-L-arabinose to lipid A: induction on polymyxin-resistant mutants and role of a novel lipid-linked donor. J. Biol. Chem. 276 (2001) 43122–43131. [DOI] [PMID: 11535604]
2.  Trent, M.S., Ribeiro, A.A., Doerrler, W.T., Lin, S., Cotter, R.J. and Raetz, C.R. Accumulation of a polyisoprene-linked amino sugar in polymyxin-resistant Salmonella typhimurium and Escherichia coli: structural characterization and transfer to lipid A in the periplasm. J. Biol. Chem. 276 (2001) 43132–43144. [DOI] [PMID: 11535605]
3.  Zhou, Z., Ribeiro, A.A., Lin, S., Cotter, R.J., Miller, S.I. and Raetz, C.R. Lipid A modifications in polymyxin-resistant Salmonella typhimurium: PMRA-dependent 4-amino-4-deoxy-L-arabinose, and phosphoethanolamine incorporation. J. Biol. Chem. 276 (2001) 43111–43121. [DOI] [PMID: 11535603]
4.  Bretscher, L.E., Morrell, M.T., Funk, A.L. and Klug, C.S. Purification and characterization of the L-Ara4N transferase protein ArnT from Salmonella typhimurium. Protein Expr. Purif. 46 (2006) 33–39. [DOI] [PMID: 16226890]
5.  Impellitteri, N.A., Merten, J.A., Bretscher, L.E. and Klug, C.S. Identification of a functionally important loop in Salmonella typhimurium ArnT. Biochemistry 49 (2010) 29–35. [DOI] [PMID: 19947657]
[EC 2.4.2.43 created 2010, modified 2011]
 
 
EC 2.7.4.29     
Accepted name: Kdo2-lipid A phosphotransferase
Reaction: ditrans-octacis-undecaprenyl diphosphate + α-D-Kdo-(2→4)-α-D-Kdo-(2→6)-lipid A = ditrans-octacis-undecaprenyl phosphate + α-D-Kdo-(2→4)-α-D-Kdo-(2→6)-lipid A 1-diphosphate
Glossary: lipid A = 2-deoxy-2-[(3R)-3-(tetradecanoyloxy)tetradecanamido]-3-O-[(3R)-3-(dodecanoyloxy)tetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranosyl phosphate
lipid A 1-diphosphate =
2-deoxy-2-[(3R)-3-(tetradecanoyloxy)tetradecanamido]-3-O-[(3R)-3-(dodecanoyloxy)tetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranosyl diphosphate
Other name(s): lipid A undecaprenyl phosphotransferase; LpxT; YeiU
Systematic name: ditrans-octacis-undecaprenyl diphosphate:α-D-Kdo-(2→4)-α-D-Kdo-(2→6)-lipid-A phosphotransferase
Comments: An inner-membrane protein. The activity of the enzyme is regulated by PmrA. In vitro the enzyme can use diacylglycerol 3-diphosphate as the phosphate donor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Touze, T., Tran, A.X., Hankins, J.V., Mengin-Lecreulx, D. and Trent, M.S. Periplasmic phosphorylation of lipid A is linked to the synthesis of undecaprenyl phosphate. Mol. Microbiol. 67 (2008) 264–277. [DOI] [PMID: 18047581]
2.  Herrera, C.M., Hankins, J.V. and Trent, M.S. Activation of PmrA inhibits LpxT-dependent phosphorylation of lipid A promoting resistance to antimicrobial peptides. Mol. Microbiol. 76 (2010) 1444–1460. [DOI] [PMID: 20384697]
[EC 2.7.4.29 created 2015]
 
 
EC 2.7.4.30      
Transferred entry: lipid A phosphoethanolamine transferase. Now EC 2.7.8.43, lipid A phosphoethanolamine transferase
[EC 2.7.4.30 created 2015, deleted 2016]
 
 
EC 2.7.8.42     
Accepted name: Kdo2-lipid A phosphoethanolamine 7′′-transferase
Reaction: (1) diacylphosphatidylethanolamine + α-D-Kdo-(2→4)-α-D-Kdo-(2→6)-lipid A = diacylglycerol + 7-O-[2-aminoethoxy(hydroxy)phosphoryl]-α-D-Kdo-(2→4)-α-D-Kdo-(2→6)-lipid A
(2) diacylphosphatidylethanolamine + α-D-Kdo-(2→4)-α-D-Kdo-(2→6)-lipid IVA = diacylglycerol + 7-O-[2-aminoethoxy(hydroxy)phosphoryl]-α-D-Kdo-(2→4)-α-D-Kdo-(2→6)-lipid IVA
Glossary: lipid A = 2-deoxy-2-[(3R)-3-(tetradecanoyloxy)tetradecanamido]-3-O-[(3R)-3-(dodecanoyloxy)tetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranosyl phosphate
lipid IVA = 2-deoxy-2-[(3R)-3-hydroxytetradecanamido]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranosyl phosphate
Other name(s): eptB (gene name)
Systematic name: diacylphosphatidylethanolamine:α-D-Kdo-(2→4)-α-D-Kdo-(2→6)-lipid-A 7′′-phosphoethanolaminetransferase
Comments: The enzyme has been characterized from the bacterium Escherichia coli. It is activated by Ca2+ ions and is silenced by the sRNA MgrR.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kanipes, M.I., Lin, S., Cotter, R.J. and Raetz, C.R. Ca2+-induced phosphoethanolamine transfer to the outer 3-deoxy-D-manno-octulosonic acid moiety of Escherichia coli lipopolysaccharide. A novel membrane enzyme dependent upon phosphatidylethanolamine. J. Biol. Chem. 276 (2001) 1156–1163. [DOI] [PMID: 11042192]
2.  Reynolds, C.M., Kalb, S.R., Cotter, R.J. and Raetz, C.R. A phosphoethanolamine transferase specific for the outer 3-deoxy-D-manno-octulosonic acid residue of Escherichia coli lipopolysaccharide. Identification of the eptB gene and Ca2+ hypersensitivity of an eptB deletion mutant. J. Biol. Chem. 280 (2005) 21202–21211. [DOI] [PMID: 15795227]
3.  Moon, K., Six, D.A., Lee, H.J., Raetz, C.R. and Gottesman, S. Complex transcriptional and post-transcriptional regulation of an enzyme for lipopolysaccharide modification. Mol. Microbiol. 89 (2013) 52–64. [DOI] [PMID: 23659637]
[EC 2.7.8.42 created 2015]
 
 
EC 2.7.8.43     
Accepted name: lipid A phosphoethanolamine transferase
Reaction: (1) diacylphosphatidylethanolamine + lipid A = diacylglycerol + lipid A 1-(2-aminoethyl diphosphate)
(2) diacylphosphatidylethanolamine + lipid A = diacylglycerol + lipid A 4′-(2-aminoethyl diphosphate)
(3) diacylphosphatidylethanolamine + lipid A 1-(2-aminoethyl diphosphate) = diacylglycerol + lipid A 1,4′-bis(2-aminoethyl diphosphate)
Glossary: lipid A (Campylobacter jejuni) = 2,3-dideoxy-2,3-bis[(3R)-3-(hexadecanoyloxy)tetradecanamido]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranosyl phosphate
lipid A (Escherichia coli) =
2-deoxy-2-[(3R)-3-(tetradecanoyloxy)tetradecanamido]-3-O-[(3R)-3-(dodecanoyloxy)tetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranosyl phosphate
lipid A (Helicobacter pylori) = 2-deoxy-2-[(3R)-3-(octadecanoyloxy)octadecanamido]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxyhexadecanoyl]-2-[(3R)-3-hydroxyoctadecanamido]-α-D-glucopyranosyl phosphate
lipid A (Neisseria meningitidis) =
2-deoxy-3-O-[(3R)-3-hydroxydodecanoyl]-2-[(3R)-3-(dodecanoyloxy)tetradecanamido]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxydodecanoyl]-2-[(3R)-3-(dodecanoyloxy)tetradecanamido]-α-D-glucopyranosyl phosphate
lipid A 1-[(2-aminoethyl) diphosphate] = P1-(2-aminoethyl)
P2-(2-deoxy-2-[(3R)-3-(tetradecanoyloxy)tetradecanamido]-3-O-[(3R)-3-(dodecanoyloxy)tetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranosyl) diphosphate
lipid A 1,4′-bis(2-aminoethyl diphosphate) = P1-(2-aminoethyl)
P2-(2-deoxy-2-[(3R)-3-(tetradecanoyloxy)tetradecanamido]-3-O-[(3R)-3-(dodecanoyloxy)tetradecanoyl]-4-O-(2-aminoethyldiphospho)-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranosyl) diphosphate
Other name(s): lipid A PEA transferase; LptA
Systematic name: diacylphosphatidylethanolamine:lipid-A ethanolaminephosphotransferase
Comments: The enzyme adds one or two ethanolamine phosphate groups to lipid A giving a diphosphate, sometimes in combination with EC 2.4.2.43 (lipid IVA 4-amino-4-deoxy-L-arabinosyltransferase) giving products with 4-amino-4-deoxy-β-L-arabinose groups at the phosphates of lipid A instead of diphosphoethanolamine groups. It will also act on lipid IVA and Kdo2-lipid A.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Tran, A.X., Karbarz, M.J., Wang, X., Raetz, C.R., McGrath, S.C., Cotter, R.J. and Trent, M.S. Periplasmic cleavage and modification of the 1-phosphate group of Helicobacter pylori lipid A. J. Biol. Chem. 279 (2004) 55780–55791. [DOI] [PMID: 15489235]
2.  Herrera, C.M., Hankins, J.V. and Trent, M.S. Activation of PmrA inhibits LpxT-dependent phosphorylation of lipid A promoting resistance to antimicrobial peptides. Mol. Microbiol. 76 (2010) 1444–1460. [DOI] [PMID: 20384697]
3.  Cullen, T.W. and Trent, M.S. A link between the assembly of flagella and lipooligosaccharide of the Gram-negative bacterium Campylobacter jejuni. Proc. Natl. Acad. Sci. USA 107 (2010) 5160–5165. [DOI] [PMID: 20194750]
4.  Anandan, A., Piek, S., Kahler, C.M. and Vrielink, A. Cloning, expression, purification and crystallization of an endotoxin-biosynthesis enzyme from Neisseria meningitidis. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 68 (2012) 1494–1497. [DOI] [PMID: 23192031]
5.  Wanty, C., Anandan, A., Piek, S., Walshe, J., Ganguly, J., Carlson, R.W., Stubbs, K.A., Kahler, C.M. and Vrielink, A. The structure of the neisserial lipooligosaccharide phosphoethanolamine transferase A (LptA) required for resistance to polymyxin. J. Mol. Biol. 425 (2013) 3389–3402. [DOI] [PMID: 23810904]
[EC 2.7.8.43 created 2015 as EC 2.7.4.30, transferred 2016 to EC 2.7.8.43]
 
 
EC 3.1.1.81     
Accepted name: quorum-quenching N-acyl-homoserine lactonase
Reaction: an N-acyl-L-homoserine lactone + H2O = an N-acyl-L-homoserine
Other name(s): acyl homoserine degrading enzyme; acyl-homoserine lactone acylase; AHL lactonase; AHL-degrading enzyme; AHL-inactivating enzyme; AHLase; AhlD; AhlK; AiiA; AiiA lactonase; AiiA-like protein; AiiB; AiiC; AttM; delactonase; lactonase-like enzyme; N-acyl homoserine lactonase; N-acyl homoserine lactone hydrolase; N-acyl-homoserine lactone lactonase; N-acyl-L-homoserine lactone hydrolase; quorum-quenching lactonase; quorum-quenching N-acyl homoserine lactone hydrolase
Systematic name: N-acyl-L-homoserine-lactone lactonohydrolase
Comments: Acyl-homoserine lactones (AHLs) are produced by a number of bacterial species and are used by them to regulate the expression of virulence genes in a process known as quorum-sensing. Each bacterial cell has a basal level of AHL and, once the population density reaches a critical level, it triggers AHL-signalling which, in turn, initiates the expression of particular virulence genes [5]. Plants or animals capable of degrading AHLs would have a therapeutic advantage in avoiding bacterial infection as they could prevent AHL-signalling and the expression of virulence genes in quorum-sensing bacteria [5]. N-(3-Oxohexanoyl)-L-homoserine lactone, N-(3-oxododecanoyl)-L-homoserine lactone, N-butanoyl-L-homoserine lactone and N-(3-oxooctanoyl)-L-homoserine lactone can act as substrates [5].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 389867-43-0
References:
1.  Thomas, P.W., Stone, E.M., Costello, A.L., Tierney, D.L. and Fast, W. The quorum-quenching lactonase from Bacillus thuringiensis is a metalloprotein. Biochemistry 44 (2005) 7559–7569. [DOI] [PMID: 15895999]
2.  Dong, Y.H., Gusti, A.R., Zhang, Q., Xu, J.L. and Zhang, L.H. Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl. Environ. Microbiol. 68 (2002) 1754–1759. [DOI] [PMID: 11916693]
3.  Wang, L.H., Weng, L.X., Dong, Y.H. and Zhang, L.H. Specificity and enzyme kinetics of the quorum-quenching N-acyl homoserine lactone lactonase (AHL-lactonase). J. Biol. Chem. 279 (2004) 13645–13651. [DOI] [PMID: 14734559]
4.  Dong, Y.H., Xu, J.L., Li, X.Z. and Zhang, L.H. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl. Acad. Sci. USA 97 (2000) 3526–3531. [DOI] [PMID: 10716724]
5.  Dong, Y.H., Wang, L.H., Xu, J.L., Zhang, H.B., Zhang, X.F. and Zhang, L.H. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411 (2001) 813–817. [DOI] [PMID: 11459062]
6.  Lee, S.J., Park, S.Y., Lee, J.J., Yum, D.Y., Koo, B.T. and Lee, J.K. Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl. Environ. Microbiol. 68 (2002) 3919–3924. [DOI] [PMID: 12147491]
7.  Park, S.Y., Lee, S.J., Oh, T.K., Oh, J.W., Koo, B.T., Yum, D.Y. and Lee, J.K. AhlD, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiology 149 (2003) 1541–1550. [DOI] [PMID: 12777494]
8.  Ulrich, R.L. Quorum quenching: enzymatic disruption of N-acylhomoserine lactone-mediated bacterial communication in Burkholderia thailandensis. Appl. Environ. Microbiol. 70 (2004) 6173–6180. [DOI] [PMID: 15466564]
9.  Kim, M.H., Choi, W.C., Kang, H.O., Lee, J.S., Kang, B.S., Kim, K.J., Derewenda, Z.S., Oh, T.K., Lee, C.H. and Lee, J.K. The molecular structure and catalytic mechanism of a quorum-quenching N-acyl-L-homoserine lactone hydrolase. Proc. Natl. Acad. Sci. USA 102 (2005) 17606–17611. [DOI] [PMID: 16314577]
10.  Liu, D., Lepore, B.W., Petsko, G.A., Thomas, P.W., Stone, E.M., Fast, W. and Ringe, D. Three-dimensional structure of the quorum-quenching N-acyl homoserine lactone hydrolase from Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 102 (2005) 11882–11887. [DOI] [PMID: 16087890]
11.  Yang, F., Wang, L.H., Wang, J., Dong, Y.H., Hu, J.Y. and Zhang, L.H. Quorum quenching enzyme activity is widely conserved in the sera of mammalian species. FEBS Lett. 579 (2005) 3713–3717. [DOI] [PMID: 15963993]
[EC 3.1.1.81 created 2007]
 
 
EC 3.1.2.21     
Accepted name: dodecanoyl-[acyl-carrier-protein] hydrolase
Reaction: a dodecanoyl-[acyl-carrier protein] + H2O = an [acyl-carrier protein] + dodecanoate
Other name(s): lauryl-acyl-carrier-protein hydrolase; dodecanoyl-acyl-carrier-protein hydrolase; dodecyl-acyl-carrier protein hydrolase; dodecanoyl-[acyl-carrier protein] hydrolase; dodecanoyl-[acyl-carrier-protein] hydrolase
Systematic name: dodecanoyl-[acyl-carrier protein] hydrolase
Comments: Acts on the acyl-carrier-protein thioester of C12 and, with a much lower activity, C14 fatty acids. The derivative of oleic acid is hydrolysed very slowly (cf. EC 3.1.2.14, oleoyl-[acyl-carrier-protein] hydrolase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 137903-37-8
References:
1.  Pollard, M.R., Anderson, L., Fan, C., Hawkins, D.J., Davies, H.M. A specific acyl-ACP thioesterase implicated in medium-chain fatty acid production in immature cotyledons of Umbellularia californica. Arch. Biochem. Biophys. 284 (1991) 306–312. [DOI] [PMID: 1989513]
2.  Davies, H.M., Anderson, L., Fan, C., Hawkins, D.J. Developmental induction, purification, and further characterization of 12:0-ACP thioesterase from immature cotyledons of Umbellularia californica. Arch. Biochem. Biophys. 290 (1991) 37–45. [DOI] [PMID: 1898097]
[EC 3.1.2.21 created 1999]
 
 
EC 3.5.1.97     
Accepted name: acyl-homoserine-lactone acylase
Reaction: an N-acyl-L-homoserine lactone + H2O = L-homoserine lactone + a carboxylate
Other name(s): acyl-homoserine lactone acylase; AHL-acylase; AiiD; N-acyl-homoserine lactone acylase; PA2385 protein; quorum-quenching AHL acylase; quorum-quenching enzyme; QuiP
Systematic name: N-acyl-L-homoserine-lactone amidohydrolase
Comments: Acyl-homoserine lactones (AHLs) are produced by a number of bacterial species and are used by them to regulate the expression of virulence genes in a process known as quorum-sensing. Each bacterial cell has a basal level of AHL and, once the population density reaches a critical level, it triggers AHL-signalling which, in turn, initiates the expression of particular virulence genes. Plants or animals capable of degrading AHLs would have a therapeutic advantage in avoiding bacterial infection as they could prevent AHL-signalling and the expression of virulence genes in quorum-sensing bacteria. This quorum-quenching enzyme removes the fatty-acid side chain from the homoserine lactone ring of AHL-dependent quorum-sensing signal molecules. It has broad specificity for AHLs with side changes ranging in length from 11 to 14 carbons. Substituents at the 3′-position, as found in N-(3-oxododecanoyl)-L-homoserine lactone, do not affect this activity.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lin, Y.H., Xu, J.L., Hu, J., Wang, L.H., Ong, S.L., Leadbetter, J.R. and Zhang, L.H. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol. Microbiol. 47 (2003) 849–860. [DOI] [PMID: 12535081]
2.  Sio, C.F., Otten, L.G., Cool, R.H., Diggle, S.P., Braun, P.G., Bos, R., Daykin, M., Cámara, M., Williams, P. and Quax, W.J. Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infect. Immun. 74 (2006) 1673–1682. [DOI] [PMID: 16495538]
[EC 3.5.1.97 created 2007]
 
 
EC 4.4.1.26     
Accepted name: olivetolic acid cyclase
Reaction: 3,5,7-trioxododecanoyl-CoA = CoA + 2,4-dihydroxy-6-pentylbenzoate
For diagram of cannabinoid biosynthesis, click here
Glossary: 2,4-dihydroxy-6-pentylbenzoate = olivetolate
Other name(s): OAC
Systematic name: 3,5,7-trioxododecanoyl-CoA CoA-lyase (2,4-dihydroxy-6-pentylbenzoate-forming)
Comments: Part of the cannabinoids biosynthetic pathway in the plant Cannabis sativa.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Gagne, S.J., Stout, J.M., Liu, E., Boubakir, Z., Clark, S.M. and Page, J.E. Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides. Proc. Natl. Acad. Sci. USA 109 (2012) 12811–12816. [DOI] [PMID: 22802619]
[EC 4.4.1.26 created 2012]
 
 


Data © 2001–2020 IUBMB
Web site © 2005–2020 Andrew McDonald