The Enzyme Database

Your query returned 11 entries.    printer_iconPrintable version



EC 1.16.1.9     
Accepted name: ferric-chelate reductase (NADPH)
Reaction: 2 Fe(II)-siderophore + NADP+ + H+ = 2 Fe(III)-siderophore + NADPH
Other name(s): ferric chelate reductase (ambiguous); iron chelate reductase (ambiguous); NADPH:Fe3+-EDTA reductase; NADPH-dependent ferric reductase; yqjH (gene name); Fe(II):NADP+ oxidoreductase
Systematic name: Fe(II)-siderophore:NADP+ oxidoreductase
Comments: Contains FAD. The enzyme, which is widespread among bacteria, catalyses the reduction of ferric iron bound to a variety of iron chelators (siderophores), including ferric triscatecholates and ferric dicitrate, resulting in the release of ferrous iron. The enzyme from the bacterium Escherichia coli has the highest efficiency with the hydrolysed ferric enterobactin complex ferric N-(2,3-dihydroxybenzoyl)-L-serine [3]. cf. EC 1.16.1.7, ferric-chelate reductase (NADH) and EC 1.16.1.10, ferric-chelate reductase [NAD(P)H].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 120720-17-4
References:
1.  Bamford, V.A., Armour, M., Mitchell, S.A., Cartron, M., Andrews, S.C. and Watson, K.A. Preliminary X-ray diffraction analysis of YqjH from Escherichia coli: a putative cytoplasmic ferri-siderophore reductase. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64 (2008) 792–796. [DOI] [PMID: 18765906]
2.  Wang, S., Wu, Y. and Outten, F.W. Fur and the novel regulator YqjI control transcription of the ferric reductase gene yqjH in Escherichia coli. J. Bacteriol. 193 (2011) 563–574. [DOI] [PMID: 21097627]
3.  Miethke, M., Hou, J. and Marahiel, M.A. The siderophore-interacting protein YqjH acts as a ferric reductase in different iron assimilation pathways of Escherichia coli. Biochemistry 50 (2011) 10951–10964. [DOI] [PMID: 22098718]
[EC 1.16.1.9 created 1992 as EC 1.6.99.13, transferred 2002 to EC 1.16.1.7, transferred 2011 to EC 1.16.1.9, modified 2012, modified 2014]
 
 
EC 2.4.1.369     
Accepted name: enterobactin C-glucosyltransferase
Reaction: (1) UDP-α-D-glucose + enterobactin = UDP + monoglucosyl-enterobactin
(2) UDP-α-D-glucose + monoglucosyl-enterobactin = UDP + diglucosyl-enterobactin
(3) UDP-α-D-glucose + diglucosyl-enterobactin = UDP + triglucosyl-enterobactin
Glossary: enterobactin = N-(2,3-dihydroxybenzoyl)-O-[N-(2,3-dihydroxybenzoyl)-O-[N-(2,3-dihydroxybenzoyl)-L-seryl]-L-seryl]-L-serine-(3→1(3))-lactone
monoglucosyl-enterobactin = N-(2,3-dihydroxybenzoyl)-O-[N-(2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-L-seryl]-L-seryl]-L-serine-3→1(3)-lactone = mono-C-glucosyl-enterobactin = salmochelin MGE
diglucosyl-enterobactin = N-(2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-L-seryl]-L-seryl]-L-serine-(3→1(3))-lactone = salmochelin S4 = di-C-glucosyl-enterobactin
triglucosyl-enterobactin = N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-L-seryl]-L-seryl]-L-serine-(3→1(3))-lactone = tri-C-glucosyl-enterobactin = salmochelin TGE
Other name(s): iroB (gene name)
Systematic name: UDP-α-D-glucose:enterobactin 5′-C-β-D-glucosyltransferase (configuration-inverting)
Comments: The enzyme, found in pathogenic strains of the bacteria Escherichia coli and Salmonella enterica, catalyses the transfer of glucosyl groups to C-5 of one, two, or three of the 2,3-hydroxybenzoyl units of the siderophore enterobactin, forming C-glucosylated derivatives known as salmochelins.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Fischbach, M.A., Lin, H., Liu, D.R. and Walsh, C.T. In vitro characterization of IroB, a pathogen-associated C-glycosyltransferase. Proc. Natl. Acad. Sci. USA 102 (2005) 571–576. [PMID: 15598734]
[EC 2.4.1.369 created 2019]
 
 
EC 2.7.7.58     
Accepted name: (2,3-dihydroxybenzoyl)adenylate synthase
Reaction: ATP + 2,3-dihydroxybenzoate = diphosphate + (2,3-dihydroxybenzoyl)adenylate
Other name(s): 2,3-dihydroxybenzoate-AMP ligase
Systematic name: ATP:2,3-dihydroxybenzoate adenylyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 122332-73-4
References:
1.  Rusnak, F., Faraci, W.S. and Walsh, C.T. Subcloning, expression, and purification of the enterobactin biosynthetic enzyme 2,3-dihydroxybenzoate-AMP ligase: demonstration of enzyme-bound (2,3-dihydroxybenzoyl)adenylate product. Biochemistry 28 (1989) 6827–6835. [PMID: 2531000]
[EC 2.7.7.58 created 1992]
 
 
EC 3.1.1.107     
Accepted name: apo-salmochelin esterase
Reaction: (1) enterobactin + H2O = N-(2,3-dihydroxybenzoyl)-L-serine trimer
(2) triglucosyl-enterobactin + H2O = triglucosyl-(2,3-dihydroxybenzoylserine)3
(3) diglucosyl-enterobactin + H2O = diglucosyl-(2,3-dihydroxybenzoylserine)3
(4) monoglucosyl-enterobactin + H2O = monoglucosyl-(2,3-dihydroxybenzoylserine)3
Glossary: N-(2,3-dihydroxybenzoyl)-L-serine trimer = O-3-{O-3-[N-(2,3-dihydroxybenzoyl)-L-seryl]-N-(2,3-dihydroxybenzoyl)-L-seryl}-N-(2,3-dihydroxybenzoyl)-L-serine
diglucosyl-(2,3-dihydroxybenzoylserine)3 = salmochelin S2 = O-3-{O-3-[N-(2,3-dihydroxybenzoyl)-C-5-deoxy-β-D-glucosyl-L-seryl]-N-(2,3-dihydroxybenzoyl)-C-5-deoxy-β-D-glucosyl-L-seryl}-N-(2,3-dihydroxybenzoyl)-L-serine
enterobactin = N-(2,3-dihydroxybenzoyl)-O-[N-(2,3-dihydroxybenzoyl)-O-[N-(2,3-dihydroxybenzoyl)-L-seryl]-L-seryl]-L-serine-(3→1(3))-lactone
monoglucosyl-enterobactin = N-(2,3-dihydroxybenzoyl)-O-[N-(2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-L-seryl]-L-seryl]-L-serine-3→1(3)-lactone = mono-C-glucosyl-enterobactin = salmochelin MGE
diglucosyl-enterobactin = N-(2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-L-seryl]-L-seryl]-L-serine-(3→1(3))-lactone = salmochelin S4 = di-C-glucosyl-enterobactin
triglucosyl-enterobactin = N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-L-seryl]-L-seryl]-L-serine-(3→1(3))-lactone = tri-C-glucosyl-enterobactin = salmochelin TGE
Other name(s): iroE (gene name)
Systematic name: apo-salmochelin esterase
Comments: This bacterial enzyme is present in pathogenic Salmonella species, uropathogenic and avian pathogenic Escherichia coli strains, and certain Klebsiella strains. Unlike EC 3.1.1.108, ferric enterobactin esterase, which acts only on enterobactin, this enzyme can also act on the C-glucosylated forms known as salmochelins. Unlike EC 3.1.1.109, ferric salmochelin esterase (IroD), IroE prefers apo siderophores as substrates, and is assumed to act before the siderophores are exported out of the cell. It hydrolyses the trilactone only once, producing linearized trimers.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lin, H., Fischbach, M.A., Liu, D.R. and Walsh, C.T. In vitro characterization of salmochelin and enterobactin trilactone hydrolases IroD, IroE, and Fes. J. Am. Chem. Soc. 127 (2005) 11075–11084. [PMID: 16076215]
[EC 3.1.1.107 created 2019]
 
 
EC 3.1.1.108     
Accepted name: iron(III)-enterobactin esterase
Reaction: iron(III)-enterobactin + 3 H2O = iron(III)-N-(2,3-dihydroxybenzoyl)-L-serine complex + 2 N-(2,3-dihydroxybenzoyl)-L-serine (overall reaction)
(1a) iron(III)-enterobactin + H2O = iron(III)-N-(2,3-dihydroxybenzoyl)-L-serine trimer complex
(1b) iron(III)-N-(2,3-dihydroxybenzoyl)-L-serine trimer complex + H2O = iron(III)-N-(2,3-dihydroxybenzoyl)-L-serine dimer complex + N-(2,3-dihydroxybenzoyl)-L-serine
(1c) iron(III)-N-(2,3-dihydroxybenzoyl)-L-serine dimer complex + H2O = iron(III)-N-(2,3-dihydroxybenzoyl)-L-serine complex + N-(2,3-dihydroxybenzoyl)-L-serine
Other name(s): fes (gene name); pfeE (gene name); enterochelin hydrolase; enterochelin esterase; ferric enterobactin esterase
Systematic name: iron(III)-enterobactin hydrolase
Comments: The enzyme, isolated from the bacterium Escherichia coli, allows the bacterium to grow in limited iron conditions. It can also act on enterobactin (with no complexed iron) and the aluminium(III) analogue of iron(III)-enterobactin. The trimer formed is further hydrolysed to form the dimer and the monomer.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  O'Brien, I.G., Cox, G.B. and Gibson, F. Enterochelin hydrolysis and iron metabolism in Escherichia coli. Biochim. Biophys. Acta 237 (1971) 537–549. [PMID: 4330269]
2.  Greenwood, K.T. and Luke, R.K. Enzymatic hydrolysis of enterochelin and its iron complex in Escherichia Coli K-12. Properties of enterochelin esterase. Biochim. Biophys. Acta 525 (1978) 209–218. [PMID: 150859]
3.  Pettis, G.S. and McIntosh, M.A. Molecular characterization of the Escherichia coli enterobactin cistron entF and coupled expression of entF and the fes gene. J. Bacteriol. 169 (1987) 4154–4162. [PMID: 3040679]
4.  Brickman, T.J. and McIntosh, M.A. Overexpression and purification of ferric enterobactin esterase from Escherichia coli. Demonstration of enzymatic hydrolysis of enterobactin and its iron complex. J. Biol. Chem. 267 (1992) 12350–12355. [PMID: 1534808]
5.  Winkelmann, G., Cansier, A., Beck, W. and Jung, G. HPLC separation of enterobactin and linear 2,3-dihydroxybenzoylserine derivatives: a study on mutants of Escherichia coli defective in regulation (fur), esterase (fes) and transport (fepA). Biometals 7 (1994) 149–154. [PMID: 8148617]
6.  Perraud, Q., Moynie, L., Gasser, V., Munier, M., Godet, J., Hoegy, F., Mely, Y., Mislin, G.LA., Naismith, J.H. and Schalk, I.J. A key role for the periplasmic PfeE esterase in iron acquisition via the siderophore enterobactin in Pseudomonas aeruginosa. ACS Chem. Biol. 13 (2018) 2603–2614. [PMID: 30086222]
[EC 3.1.1.108 created 2019]
 
 
EC 3.1.1.109     
Accepted name: iron(III)-salmochelin esterase
Reaction: (1) iron(III)-[diglucosyl-enterobactin] complex + H2O = iron(III)-[salmochelin S2] complex
(2) iron(III)-[monoglucosyl-enterobactin] complex + H2O = iron(III)-[monoglucosyl-(2,3-dihydroxybenzoylserine)3] complex
(3) iron(III)-[salmochelin S2] complex + H2O = iron(III)-[diglucosyl-(2,3-dihydroxybenzoylserine)2] complex + N-(2,3-dihydroxybenzoyl)-L-serine
(4) iron(III)-[salmochelin S2] complex + H2O = iron(III)-[salmochelin S1] complex + salmochelin SX
(5) iron(III)-[monoglucosyl-(2,3-dihydroxybenzoylserine)3] complex + H2O = iron(III)-[salmochelin S1] complex + N-(2,3-dihydroxybenzoyl)-L-serine
(6) iron(III)-[diglucosyl-(2,3-dihydroxybenzoylserine)2] complex + H2O = iron(III)-[salmochelin SX] complex + salmochelin SX
Glossary: salmochelin S2 = O-3-{O-3-[N-(2,3-dihydroxybenzoyl)-C-5-deoxy-β-D-glucosyl-L-seryl]-N-(2,3-dihydroxybenzoyl)-C-5-deoxy-β-D-glucosyl-L-seryl}-N-(2,3-dihydroxybenzoyl)-L-serine
salmochelin S1 = O-3-[N-(2,3-dihydroxybenzoyl)-L-seryl]-N-(C-5-deoxy-β-D-glucosyl-2,3-dihydroxybenzoyl)-L-serine
monoglucosyl-enterobactin = N-(2,3-dihydroxybenzoyl)-O-[N-(2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-L-seryl]-L-seryl]-L-serine-[3→1(3)]-lactone = mono-C-glucosyl-enterobactin = salmochelin MGE
diglucosyl-enterobactin = N-(2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-L-seryl]-L-seryl]-L-serine-[3→1(3)]-lactone = salmochelin S4 = di-C-glucosyl-enterobactin
salmochelin SX = N-(C-5-deoxy-β-D-glucosyl-2,3-dihydroxybenzoyl)-L-serine
Other name(s): iroD (gene name); ferric-salmochelin esterase
Systematic name: iron(III)-salmochelin complex hydrolase
Comments: This bacterial enzyme is present in pathogenic Salmonella species, uropathogenic and avian pathogenic Escherichia coli strains, and certain Klebsiella strains. The enzyme acts on iron(III)-bound enterobactin and C-glucosylated derivatives known as salmochelins. Unlike EC 3.1.1.107, apo-salmochelin esterase (IroE), IroD prefers iron(III)-bound siderophores as substrates, and is assumed to act after the iron-siderophore complexes are imported into the cell. It catalyses several hydrolytic reactions, producing a mixture of iron(III)-[N-(2,3-dihydroxybenzoyl)-L-serine] complex and salmochelin SX.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lin, H., Fischbach, M.A., Liu, D.R. and Walsh, C.T. In vitro characterization of salmochelin and enterobactin trilactone hydrolases IroD, IroE, and Fes. J. Am. Chem. Soc. 127 (2005) 11075–11084. [PMID: 16076215]
[EC 3.1.1.109 created 2019]
 
 
EC 3.3.2.1     
Accepted name: isochorismatase
Reaction: isochorismate + H2O = (2S,3S)-2,3-dihydroxy-2,3-dihydrobenzoate + pyruvate
For diagram of shikimate and chorismate biosynthesis, click here
Glossary: isochorismate = (5S,6S)-5-[(1-carboxyethenyl)oxy]-6-hydroxycyclohexa-1,3-diene-1-carboxylate
Other name(s): 2,3-dihydro-2,3-dihydroxybenzoate synthase; 2,3-dihydroxy-2,3-dihydrobenzoate synthase; 2,3-dihydroxy-2,3-dihydrobenzoic synthase
Systematic name: isochorismate pyruvate-hydrolase
Comments: The enzyme is involved in the biosynthesis of several siderophores, such as 2,3-dihydroxybenzoylglycine, enterobactin, bacillibactin, and vibriobactin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37288-64-5
References:
1.  Young, I.G. and Gibson, F. Regulation of the enzymes involved in the biosynthesis of 2,3-dihydroxybenzoic acid in Aerobacter aerogenes and Escherichia coli. Biochim. Biophys. Acta 177 (1969) 401–411. [DOI] [PMID: 4306838]
[EC 3.3.2.1 created 1972]
 
 
EC 3.6.3.34      
Transferred entry: iron-chelate-transporting ATPase; now recognized to be at least 3 separate enzymes EC 7.2.2.16, iron(III) hydroxamate ABC transporter, EC 7.2.2.17, ferric enterobactin ABC transporter, and EC 7.2.2.18, ferric citrate ABC transporter
[EC 3.6.3.34 created 2000, deleted 2018]
 
 
EC 5.4.4.2     
Accepted name: isochorismate synthase
Reaction: chorismate = isochorismate
For diagram of shikimate and chorismate biosynthesis, click here
Other name(s): MenF
Systematic name: isochorismate hydroxymutase
Comments: Requires Mg2+. The reaction is reversible.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37318-53-9
References:
1.  Young, I.G. and Gibson, F. Regulation of the enzymes involved in the biosynthesis of 2,3-dihydroxybenzoic acid in Aerobacter aerogenes and Escherichia coli. Biochim. Biophys. Acta 177 (1969) 401–411. [DOI] [PMID: 4306838]
2.  van Tegelen, L.J., Moreno, P.R., Croes, A.F., Verpoorte, R. and Wullems, G.J. Purification and cDNA cloning of isochorismate synthase from elicited cell cultures of Catharanthus roseus. Plant Physiol. 119 (1999) 705–712. [PMID: 9952467]
3.  Dahm, C., Müller, R., Schulte, G., Schmidt, K. and Leistner, E. The role of isochorismate hydroxymutase genes entC and menF in enterobactin and menaquinone biosynthesis in Escherichia coli. Biochim. Biophys. Acta 1425 (1998) 377–386. [DOI] [PMID: 9795253]
4.  Daruwala, R., Kwon, O., Meganathan, R. and Hudspeth, M.E. A new isochorismate synthase specifically involved in menaquinone (vitamin K2) biosynthesis encoded by the menF gene. FEMS Microbiol. Lett. 140 (1996) 159–163. [PMID: 8764478]
[EC 5.4.4.2 created 1972 as EC 5.4.99.6, transferred 2003 to EC 5.4.4.2]
 
 
EC 6.3.2.14     
Accepted name: enterobactin synthase
Reaction: 6 ATP + 3 2,3-dihydroxybenzoate + 3 L-serine = enterobactin + 6 AMP + 6 diphosphate
For diagram of enterobactin biosynthesis, click here
Other name(s): N-(2,3-dihydroxybenzoyl)-serine synthetase; 2,3-dihydroxybenzoylserine synthetase; 2,3-dihydroxybenzoate—serine ligase
Systematic name: 2,3-dihydroxybenzoate:L-serine ligase
Comments: This enzyme complex catalyses the conversion of three molecules each of 2,3-dihydroxybenzoate and L-serine to form the siderophore enterobactin. In Escherichia coli the complex is formed by EntB (an aryl carrier protein that has to be activated by 4′-phosphopantetheine), EntD (a phosphopantetheinyl transferase that activates EntB), EntE (catalyses the ATP-dependent condensation of 2,3-dihydroxybenzoate and holo-EntB to form the covalently arylated form of EntB), and EntF (a four domain protein that catalyses the activation of L-serine by ATP, the condensation of the activated L-serine with the activated 2,3-dihydroxybenzoate, and the trimerization of three such moieties to a single enterobactin molecule).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37318-63-1
References:
1.  Brot, N. and Goodwin, J. Regulation of 2,3-dihydroxybenzoylserine synthetase by iron. J. Biol. Chem. 243 (1968) 510–513. [PMID: 4966114]
2.  Rusnak, F., Faraci, W.S. and Walsh, C.T. Subcloning, expression, and purification of the enterobactin biosynthetic enzyme 2,3-dihydroxybenzoate-AMP ligase: demonstration of enzyme-bound (2,3-dihydroxybenzoyl)adenylate product. Biochemistry 28 (1989) 6827–6835. [PMID: 2531000]
3.  Rusnak, F., Liu, J., Quinn, N., Berchtold, G.A. and Walsh, C.T. Subcloning of the enterobactin biosynthetic gene entB: expression, purification, characterization, and substrate specificity of isochorismatase. Biochemistry 29 (1990) 1425–1435. [PMID: 2139796]
4.  Rusnak, F., Sakaitani, M., Drueckhammer, D., Reichert, J. and Walsh, C.T. Biosynthesis of the Escherichia coli siderophore enterobactin: sequence of the entF gene, expression and purification of EntF, and analysis of covalent phosphopantetheine. Biochemistry 30 (1991) 2916–2927. [PMID: 1826089]
5.  Gehring, A.M., Mori, I. and Walsh, C.T. Reconstitution and characterization of the Escherichia coli enterobactin synthetase from EntB, EntE, and EntF. Biochemistry 37 (1998) 2648–2659. [DOI] [PMID: 9485415]
6.  Shaw-Reid, C.A., Kelleher, N.L., Losey, H.C., Gehring, A.M., Berg, C. and Walsh, C.T. Assembly line enzymology by multimodular nonribosomal peptide synthetases: the thioesterase domain of E. coli EntF catalyzes both elongation and cyclolactonization. Chem. Biol. 6 (1999) 385–400. [DOI] [PMID: 10375542]
[EC 6.3.2.14 created 1972, modified 2012]
 
 
EC 7.2.2.17     
Accepted name: ABC-type ferric enterobactin transporter
Reaction: ATP + H2O + Fe3+-enterobactin complex-[enterobactin-binding protein][side 1] = ADP + phosphate + Fe3+-enterobactin complex[side 2] + [enterobactin-binding protein][side 1]
Other name(s): ferric enterobactin transporting ATPase; ferric enterobactin ABC transporter; fepBCDG (gene names)
Systematic name: ATP phosphohydrolase (ABC-type, iron(III) enterobactin-importing)
Comments: An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. A bacterial enzyme that interacts with an extracytoplasmic substrate binding protein and mediates the high affinity uptake of Fe3+-enterobactin complexes.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Chenault, S.S. and Earhart, C.F. Organization of genes encoding membrane proteins of the Escherichia coli ferrienterobactin permease. Mol. Microbiol. 5 (1991) 1405–1413. [PMID: 1787794]
2.  Shea, C.M. and McIntosh, M.A. Nucleotide sequence and genetic organization of the ferric enterobactin transport system: homology to other periplasmic binding-protein-dependent systems in Escherichia coli. Mol. Microbiol. 5 (1991) 1415–1428. [DOI] [PMID: 1838574]
[EC 7.2.2.17 created 2000 as EC 3.6.3.34, part transferred 2018 to EC 7.2.2.17]
 
 


Data © 2001–2020 IUBMB
Web site © 2005–2020 Andrew McDonald