The Enzyme Database

Your query returned 14 entries.    printer_iconPrintable version



EC 1.3.99.36     
Accepted name: cypemycin cysteine dehydrogenase (decarboxylating)
Reaction: cypemycin(1-18)-L-Cys-L-Leu-L-Val-L-Cys + acceptor = C3.19,S21-cyclocypemycin(1-18)-L-Ala-L-Leu-N-thioethenyl-L-valinamide + CO2 + H2S + reduced acceptor
For diagram of reaction, click here
Other name(s): cypemycin decarboxylase; CypD
Systematic name: cypemycin(1-18)-L-Cys-L-Leu-L-Val-L-Cys:acceptor oxidoreductase (decarboxylating, cyclizing)
Comments: Cypemycin, isolated from the bacterium Streptomyces sp. OH-4156, is a peptide antibiotic, member of the linaridins, a class of posttranslationally modified ribosomally synthesized peptides. The enzyme decarboxylates and reduces the C-terminal L-cysteine residue, producing a reactive ethenethiol group that reacts with a dethiolated cysteine upstream to form an aminovinyl-methyl-cysteine loop that is important for the antibiotic activity of the mature peptide.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Claesen, J. and Bibb, M. Genome mining and genetic analysis of cypemycin biosynthesis reveal an unusual class of posttranslationally modified peptides. Proc. Natl. Acad. Sci. USA 107 (2010) 16297–16302. [DOI] [PMID: 20805503]
[EC 1.3.99.36 created 2014]
 
 
EC 1.13.12.19     
Accepted name: 2-oxoglutarate dioxygenase (ethene-forming)
Reaction: 2-oxoglutarate + O2 = ethene + 3 CO2 + H2O
Glossary: ethene = ethylene
Other name(s): ethylene-forming enzyme; EFE; 2-oxoglutarate dioxygenase (ethylene-forming); 2-oxoglutarate:oxygen oxidoreductase (decarboxylating, ethylene-forming)
Systematic name: 2-oxoglutarate:oxygen oxidoreductase (decarboxylating, ethene-forming)
Comments: This is one of two simultaneous reactions catalysed by the enzyme, which is responsible for ethene production in bacteria of the Pseudomonas syringae group. In the other reaction [EC 1.14.20.7, 2-oxoglutarate/L-arginine monooxygenase/decarboxylase (succinate-forming)] the enzyme catalyses the mono-oxygenation of both 2-oxoglutarate and L-arginine, forming succinate, carbon dioxide and L-hydroxyarginine, which is subsequently cleaved into guanidine and (S)-1-pyrroline-5-carboxylate.The enzymes catalyse two cycles of the ethene-forming reaction for each cycle of the succinate-forming reaction, so that the stoichiometry of the products ethene and succinate is 2:1.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Nagahama, K., Ogawa, T., Fujii, T., Tazaki, M., Tanase, S., Morino, Y. and Fukuda, H. Purification and properties of an ethylene-forming enzyme from Pseudomonas syringae pv. phaseolicola PK2. J. Gen. Microbiol. 137 (1991) 2281–2286. [DOI] [PMID: 1770346]
2.  Fukuda, H., Ogawa, T., Tazaki, M., Nagahama, K., Fujii, T., Tanase, S. and Morino, Y. Two reactions are simultaneously catalyzed by a single enzyme: the arginine-dependent simultaneous formation of two products, ethylene and succinate, from 2-oxoglutarate by an enzyme from Pseudomonas syringae. Biochem. Biophys. Res. Commun. 188 (1992) 483–489. [DOI] [PMID: 1445291]
3.  Fukuda, H., Ogawa, T., Ishihara, K., Fujii, T., Nagahama, K., Omata, T., Inoue, Y., Tanase, S. and Morino, Y. Molecular cloning in Escherichia coli, expression, and nucleotide sequence of the gene for the ethylene-forming enzyme of Pseudomonas syringae pv. phaseolicola PK2. Biochem. Biophys. Res. Commun. 188 (1992) 826–832. [DOI] [PMID: 1445325]
[EC 1.13.12.19 created 2011]
 
 
EC 1.14.13.243     
Accepted name: toluene 2-monooxygenase
Reaction: (1) toluene + NADH + H+ + O2 = 2-methylphenol + NAD+ + H2O
(2) 2-methylphenol + NADH + H+ + O2 = 3-methylcatechol + NAD+ + H2O
Other name(s): tomA1/2/3/4/5 (gene names); toluene ortho-monooxygenase
Systematic name: toluene,NADH:oxygen oxidoreductase (2,3-dihydroxylating)
Comments: The enzyme, characterized from the bacterium Burkholderia cepacia, belongs to a class of nonheme, oxygen-dependent diiron enzymes. It contains a hydroxylase component with two binuclear iron centers, an NADH-oxidoreductase component containing FAD and a [2Fe-2S] iron-sulfur cluster, and a third component involved in electron transfer between the hydroxylase and the reductase. The enzyme dihydroxylates its substrate in two sequential hydroxylations, initially forming 2-methylphenol, which is hydroxylated to 3-methylcatechol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Newman, L.M. and Wackett, L.P. Purification and characterization of toluene 2-monooxygenase from Burkholderia cepacia G4. Biochemistry 34 (1995) 14066–14076. [PMID: 7578004]
2.  Yeager, C.M., Bottomley, P.J., Arp, D.J. and Hyman, M.R. Inactivation of toluene 2-monooxygenase in Burkholderia cepacia G4 by alkynes. Appl. Environ. Microbiol. 65 (1999) 632–639. [PMID: 9925593]
3.  Canada, K.A., Iwashita, S., Shim, H. and Wood, T.K. Directed evolution of toluene ortho-monooxygenase for enhanced 1-naphthol synthesis and chlorinated ethene degradation. J. Bacteriol. 184 (2002) 344–349. [PMID: 11751810]
[EC 1.14.13.243 created 2019]
 
 
EC 1.14.14.18     
Accepted name: heme oxygenase (biliverdin-producing)
Reaction: protoheme + 3 [reduced NADPH—hemoprotein reductase] + 3 O2 = biliverdin + Fe2+ + CO + 3 [oxidized NADPH—hemoprotein reductase] + 3 H2O
For diagram of the reaction mechanism, click here
Other name(s): ORP33 proteins; haem oxygenase (ambiguous); heme oxygenase (decyclizing) (ambiguous); heme oxidase (ambiguous); haem oxidase (ambiguous); heme oxygenase (ambiguous); heme,hydrogen-donor:oxygen oxidoreductase (α-methene-oxidizing, hydroxylating)
Systematic name: protoheme,NADPH—hemoprotein reductase:oxygen oxidoreductase (α-methene-oxidizing, hydroxylating)
Comments: This mammalian enzyme participates in the degradation of heme. The terminal oxygen atoms that are incorporated into the carbonyl groups of pyrrole rings A and B of biliverdin are derived from two separate oxygen molecules [4]. The third oxygen molecule provides the oxygen atom that converts the α-carbon to CO. The enzyme requires NAD(P)H and EC 1.6.2.4, NADPH—hemoprotein reductase. cf. EC 1.14.15.20, heme oxygenase (biliverdin-producing, ferredoxin).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9059-22-7
References:
1.  Maines, M.D., Ibrahim, N.G. and Kappas, K. Solubilization and partial purification of heme oxygenase from rat liver. J. Biol. Chem. 252 (1977) 5900–5903. [PMID: 18477]
2.  Sunderman, F.W., Jr., Downs, J.R., Reid, M.C. and Bibeau, L.M. Gas-chromatographic assay for heme oxygenase activity. Clin. Chem. 28 (1982) 2026–2032. [PMID: 6897023]
3.  Yoshida, T., Takahashi, S. and Kikuchi, J. Partial purification and reconstitution of the heme oxygenase system from pig spleen microsomes. J. Biochem. (Tokyo) 75 (1974) 1187–1191. [PMID: 4370250]
4.  Noguchi, M., Yoshida, T. and Kikuchi, G. Specific requirement of NADPH-cytochrome c reductase for the microsomal heme oxygenase reaction yielding biliverdin IX α. FEBS Lett. 98 (1979) 281–284. [DOI] [PMID: 105935]
5.  Lad, L., Schuller, D.J., Shimizu, H., Friedman, J., Li, H., Ortiz de Montellano, P.R. and Poulos, T.L. Comparison of the heme-free and -bound crystal structures of human heme oxygenase-1. J. Biol. Chem. 278 (2003) 7834–7843. [DOI] [PMID: 12500973]
[EC 1.14.14.18 created 1972 as EC 1.14.99.3, modified 2006, transferred 2015 to EC 1.14.14.18, modified 2016]
 
 
EC 1.14.15.20     
Accepted name: heme oxygenase (biliverdin-producing, ferredoxin)
Reaction: protoheme + 6 reduced ferredoxin [iron-sulfur] cluster + 3 O2 + 6 H+ = biliverdin + Fe2+ + CO + 6 oxidized ferredoxin [iron-sulfur] cluster + 3 H2O
For diagram of biliverdin biosynthesis, click here
Other name(s): HO1 (gene name); HY1 (gene name); HO3 (gene name); HO4 (gene name); pbsA1 (gene name)
Systematic name: protoheme,reduced ferredoxin:oxygen oxidoreductase (α-methene-oxidizing, hydroxylating)
Comments: The enzyme, found in plants, algae, and cyanobacteria, participates in the biosynthesis of phytochromobilin and phytobilins. The terminal oxygen atoms that are incorporated into the carbonyl groups of pyrrole rings A and B of biliverdin are derived from two separate oxygen molecules. The third oxygen molecule provides the oxygen atom that converts the α-carbon to CO. Unlike this enzyme, which uses ferredoxin as its electron donor, the electron source for the related mammalian enzyme (EC 1.14.14.18) is EC 1.6.2.4, NADPH—hemoprotein reductase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Montgomery, B.L. and Lagarias, J.C. Phytochrome ancestry: sensors of bilins and light. Trends Plant Sci 7 (2002) 357–366. [DOI] [PMID: 12167331]
2.  Sugishima, M., Migita, C.T., Zhang, X., Yoshida, T. and Fukuyama, K. Crystal structure of heme oxygenase-1 from cyanobacterium Synechocystis sp. PCC 6803 in complex with heme. Eur. J. Biochem. 271 (2004) 4517–4525. [DOI] [PMID: 15560792]
3.  Dammeyer, T. and Frankenberg-Dinkel, N. Function and distribution of bilin biosynthesis enzymes in photosynthetic organisms. Photochem Photobiol Sci 7 (2008) 1121–1130. [DOI] [PMID: 18846276]
[EC 1.14.15.20 created 2016]
 
 
EC 1.14.17.4     
Accepted name: aminocyclopropanecarboxylate oxidase
Reaction: 1-aminocyclopropane-1-carboxylate + ascorbate + O2 = ethene + cyanide + dehydroascorbate + CO2 + 2 H2O
For diagram of ethylene biosynthesis, click here
Glossary: ethene = ethylene
Other name(s): ACC oxidase; ethylene-forming enzyme; 1-aminocyclopropane-1-carboxylate oxygenase (ethylene-forming)
Systematic name: 1-aminocyclopropane-1-carboxylate oxygenase (ethene-forming)
Comments: A nonheme iron enzyme. Requires CO2 for activity. In the enzyme from plants, the ethene has signalling functions such as stimulation of fruit-ripening.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 98668-53-2
References:
1.  Zhang, Z.H., Schofield, C.J., Baldwin, J.E., Thomas, P. and John, P. Expression, purification and characterization of 1-aminocyclopropane-1-carboxylate oxidase from tomato in Escherichia coli. Biochem. J. 307 (1995) 77–85. [PMID: 7717997]
2.  Zhang, Z.H., Barlow, J.N., Baldwin, J.E. and Schofield, C.J. Metal-catalyzed oxidation and mutagenesis studies on the iron(II) binding site of 1-aminocyclopropane-1-carboxylate oxidase. Biochemistry 36 (1997) 15999–16007. [DOI] [PMID: 9398335]
3.  Pirrung, M.C. Ethylene biosynthesis from 1-aminocyclopropanecarboxylic acid. Acc. Chem. Res. 32 (1999) 711–718.
4.  Charng, Y., Chou, S.J., Jiaang, W.T., Chen, S.T. and Yang, S.F. The catalytic mechanism of 1-aminocyclopropane-1-carboxylic acid oxidase. Arch. Biochem. Biophys. 385 (2001) 179–185. [DOI] [PMID: 11361015]
5.  Thrower, J.S., Blalock, R. and Klinman, J.P. Steady-state kinetics of substrate binding and iron release in tomato ACC oxidase. Biochemistry 40 (2001) 9717–9724. [PMID: 11583172]
[EC 1.14.17.4 created 2003]
 
 
EC 1.14.20.7     
Accepted name: 2-oxoglutarate/L-arginine monooxygenase/decarboxylase (succinate-forming)
Reaction: L-arginine + 2-oxoglutarate + O2 = succinate + CO2 + guanidine + (S)-1-pyrroline-5-carboxylate + H2O (overall reaction)
(1a) L-arginine + 2-oxoglutarate + O2 = succinate + CO2 + 5-hydroxy-L-arginine
(1b) 5-hydroxy-L-arginine = guanidine + (S)-1-pyrroline-5-carboxylate + H2O
Other name(s): ethene-forming enzyme; ethylene-forming enzyme; EFE
Systematic name: L-arginine,2-oxoglutarate:oxygen oxidoreductase (succinate-forming)
Comments: This is one of two simultaneous reactions catalysed by the enzyme, which is responsible for ethylene production in bacteria of the Pseudomonas syringae group. In the other reaction [EC 1.13.12.19, 2-oxoglutarate dioxygenase (ethene-forming)] the enzyme catalyses the dioxygenation of 2-oxoglutarate forming ethene and three molecules of carbon dioxide.The enzyme catalyses two cycles of the ethene-forming reaction for each cycle of the succinate-forming reaction, so that the stoichiometry of the products ethene and succinate is 2:1.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Nagahama, K., Ogawa, T., Fujii, T., Tazaki, M., Tanase, S., Morino, Y. and Fukuda, H. Purification and properties of an ethylene-forming enzyme from Pseudomonas syringae pv. phaseolicola PK2. J. Gen. Microbiol. 137 (1991) 2281–2286. [DOI] [PMID: 1770346]
2.  Fukuda, H., Ogawa, T., Tazaki, M., Nagahama, K., Fujii, T., Tanase, S. and Morino, Y. Two reactions are simultaneously catalyzed by a single enzyme: the arginine-dependent simultaneous formation of two products, ethylene and succinate, from 2-oxoglutarate by an enzyme from Pseudomonas syringae. Biochem. Biophys. Res. Commun. 188 (1992) 483–489. [DOI] [PMID: 1445291]
3.  Fukuda, H., Ogawa, T., Ishihara, K., Fujii, T., Nagahama, K., Omata, T., Inoue, Y., Tanase, S. and Morino, Y. Molecular cloning in Escherichia coli, expression, and nucleotide sequence of the gene for the ethylene-forming enzyme of Pseudomonas syringae pv. phaseolicola PK2. Biochem. Biophys. Res. Commun. 188 (1992) 826–832. [DOI] [PMID: 1445325]
4.  Martinez, S., Fellner, M., Herr, C.Q., Ritchie, A., Hu, J. and Hausinger, R.P. Structures and mechanisms of the non-heme Fe(II)- and 2-oxoglutarate-dependent ethylene-forming enzyme: substrate binding creates a twist. J. Am. Chem. Soc. 139 (2017) 11980–11988. [DOI] [PMID: 28780854]
[EC 1.14.20.7 created 2011 as EC 1.14.11.34, transferred 2018 to EC 1.14.20.7]
 
 
EC 1.14.99.3      
Transferred entry: heme oxygenase (biliverdin-producing). Now EC 1.14.14.18, heme oxygenase (biliverdin-producing)
[EC 1.14.99.3 created 1972, modified 2006, deleted 2015]
 
 
EC 1.14.99.48     
Accepted name: heme oxygenase (staphylobilin-producing)
Reaction: (1) protoheme + 5 reduced acceptor + 4 O2 = β-staphylobilin + Fe2+ + formaldehyde + 5 acceptor + 4 H2O
(2) protoheme + 5 reduced acceptor + 4 O2 = δ-staphylobilin + Fe2+ + formaldehyde + 5 acceptor + 4 H2O
For diagram of staphylobilin biosynthesis, click here
Glossary: β-staphylobilin = 10-oxo-β-bilirubin = 3,7-bis(2-carboxyethyl)-2,8,13,18-tetramethyl-12,17-divinylbiladiene-ac-1,10,19(21H,24H)-trione
δ-staphylobilin = 10-oxo-δ-bilirubin = 3,7-bis(2-carboxyethyl)-2,8,12,17-tetramethyl-13,18-divinylbiladiene-ac-1,10,19(21H,24H)-trione
Other name(s): haem oxygenase (ambiguous); heme oxygenase (decyclizing) (ambiguous); heme oxidase (ambiguous); haem oxidase (ambiguous); heme oxygenase (ambiguous); isdG (gene name); isdI (gene name)
Systematic name: protoheme,hydrogen-donor:oxygen oxidoreductase (δ/β-methene-oxidizing, hydroxylating)
Comments: This enzyme, which is found in some pathogenic bacteria, is involved in an iron acquisition system that catabolizes the host’s hemoglobin. The two enzymes from the bacterium Staphylococcus aureus, encoded by the isdG and isdI genes, produce 67.5 % and 56.2 % δ-staphylobilin, respectively.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Reniere, M.L., Ukpabi, G.N., Harry, S.R., Stec, D.F., Krull, R., Wright, D.W., Bachmann, B.O., Murphy, M.E. and Skaar, E.P. The IsdG-family of haem oxygenases degrades haem to a novel chromophore. Mol. Microbiol. 75 (2010) 1529–1538. [DOI] [PMID: 20180905]
2.  Matsui, T., Nambu, S., Ono, Y., Goulding, C.W., Tsumoto, K. and Ikeda-Saito, M. Heme degradation by Staphylococcus aureus IsdG and IsdI liberates formaldehyde rather than carbon monoxide. Biochemistry 52 (2013) 3025–3027. [DOI] [PMID: 23600533]
3.  Streit, B.R., Kant, R., Tokmina-Lukaszewska, M., Celis, A.I., Machovina, M.M., Skaar, E.P., Bothner, B. and DuBois, J.L. Time-resolved studies of IsdG protein identify molecular signposts along the non-canonical heme oxygenase pathway. J. Biol. Chem. 291 (2016) 862–871. [DOI] [PMID: 26534961]
[EC 1.14.99.48 created 2013]
 
 
EC 1.18.6.2     
Accepted name: vanadium-dependent nitrogenase
Reaction: 12 reduced ferredoxin + 12 H+ + N2 + 40 ATP + 40 H2O = 12 oxidized ferredoxin + 3 H2 + 2 NH3 + 40 ADP + 40 phosphate
Other name(s): vnfD (gene name); vnfG (gene name); vnfK (gene name)
Systematic name: ferredoxin:dinitrogen oxidoreductase (ATP-hydrolysing, vanadium-dependent)
Comments: Requires Mg2+. This enzyme, originally isolated from the bacterium Azotobacter vinelandii, is a complex of two components (namely dinitrogen reductase and dinitrogenase). Dinitrogen reductase is a [4Fe-4S] protein, which, in the presence of ATP, transfers an electron from ferredoxin to the dinitrogenase component. Dinitrogenase is a vanadium-iron protein that reduces dinitrogen to two molecules of ammonia in three successive two-electron reductions via diazine and hydrazine. Compared with molybdenum-depedent nitrogenase (EC 1.18.6.1), this enzyme produces more dihydrogen and consumes more ATP per dinitrogen molecule being reduced. Unlike EC 1.18.6.1, this enzyme can also use CO as substrate, producing ethene, ethane and propane [7,9].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, UM-BBD
References:
1.  Eady, R.R., Richardson, T.H., Miller, R.W., Hawkins, M. and Lowe, D.J. The vanadium nitrogenase of Azotobacter chroococcum. Purification and properties of the Fe protein. Biochem. J. 256 (1988) 189–196. [PMID: 2851977]
2.  Miller, R.W. and Eady, R.R. Molybdenum and vanadium nitrogenases of Azotobacter chroococcum. Low temperature favours N2 reduction by vanadium nitrogenase. Biochem. J. 256 (1988) 429–432. [PMID: 3223922]
3.  Thorneley, R.N., Bergstrom, N.H., Eady, R.R. and Lowe, D.J. Vanadium nitrogenase of Azotobacter chroococcum. MgATP-dependent electron transfer within the protein complex. Biochem. J. 257 (1989) 789–794. [PMID: 2784670]
4.  Dilworth, M.J., Eldridge, M.E. and Eady, R.R. Correction for creatine interference with the direct indophenol measurement of NH3 in steady-state nitrogenase assays. Anal. Biochem. 207 (1992) 6–10. [PMID: 1336937]
5.  Dilworth, M.J., Eldridge, M.E. and Eady, R.R. The molybdenum and vanadium nitrogenases of Azotobacter chroococcum: effect of elevated temperature on N2 reduction. Biochem. J. 289 (1993) 395–400. [PMID: 8424785]
6.  Eady, R.R. Current status of structure function relationships of vanadium nitrogenase. Coordinat. Chem. Rev. 237 (2003) 23–30.
7.  Lee, C.C., Hu, Y. and Ribbe, M.W. Vanadium nitrogenase reduces CO. Science 329:642 (2010). [DOI] [PMID: 20689010]
8.  Lee, C.C., Hu, Y. and Ribbe, M.W. Tracing the hydrogen source of hydrocarbons formed by vanadium nitrogenase. Angew. Chem. Int. Ed. Engl. 50 (2011) 5545–5547. [DOI] [PMID: 21538750]
9.  Sippel, D. and Einsle, O. The structure of vanadium nitrogenase reveals an unusual bridging ligand. Nat. Chem. Biol. 13 (2017) 956–960. [DOI] [PMID: 28692069]
[EC 1.18.6.2 created 2018]
 
 
EC 1.21.99.5     
Accepted name: tetrachloroethene reductive dehalogenase
Reaction: trichloroethene + chloride + acceptor = tetrachloroethene + reduced acceptor
Glossary: methylviologen = 1,1′-dimethyl-4,4′-bipyridine-1,1′-diium
Other name(s): tetrachloroethene reductase
Systematic name: acceptor:trichloroethene oxidoreductase (chlorinating)
Comments: This enzyme allows the common pollutant tetrachloroethene to support bacterial growth and is responsible for disposal of a number of chlorinated hydrocarbons. The reaction occurs in the reverse direction. The enzyme also reduces trichloroethene to dichloroethene. Although the physiological reductant is unknown, the supply of reductant in some organisms involves menaquinol, which is reduced by molecular hydrogen via the action of EC 1.12.5.1, hydrogen:quinone oxidoreductase. The enzyme contains a corrinoid and two iron-sulfur clusters. Methylviologen can act as electron donor in vitro.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD, CAS registry number: 163913-51-7
References:
1.  Holliger, C, Wohlfarth, G. and Diekert, G. Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol. Rev. 22 (1998) 383–398.
2.  Glod, G., Angst, W., Holliger, C. and Schwarzenbach, R.P. Corrinoid-mediated reduction of tetrachloroethene, trichloroethene, and trichlorofluoroethene in homogeneous aqueous solution: Reaction kinetics and reaction mechanisms. Environ. Sci. Technol. 31 (1997) 253–260.
3.  Neumann, A., Wohlfarth, G. and Diekert, G. Purification and characterization of tetrachloroethene reductive dehalogenase from Dehalospirillum multivorans. J. Biol. Chem. 271 (1996) 16515–16519. [DOI] [PMID: 8663199]
4.  Schumacher, W., Holliger, C., Zehnder, A.J.B. and Hagen, W.R. Redox chemistry of cobalamin and iron-sulfur cofactors in the tetrachloroethene reductase of Dehalobacter restrictus. FEBS Lett. 409 (1997) 421–425. [DOI] [PMID: 9224702]
5.  Schumacher, W. and Holliger, C. The proton/electron ratio of the menaquinone-dependent electron transport from dihydrogen to tetrachloroethene in "Dehalobacter restrictus". J. Bacteriol. 178 (1996) 2328–2333. [DOI] [PMID: 8636034]
[EC 1.21.99.5 created 2001 as EC 1.97.1.8, transferred 2017 to EC 1.21.99.5]
 
 
EC 1.97.1.8      
Transferred entry: tetrachloroethene reductive dehalogenase. Now EC 1.21.99.5, tetrachloroethene reductive dehalogenase
[EC 1.97.1.8 created 2001, deleted 2017]
 
 
EC 4.4.1.14     
Accepted name: 1-aminocyclopropane-1-carboxylate synthase
Reaction: S-adenosyl-L-methionine = 1-aminocyclopropane-1-carboxylate + methylthioadenosine
For diagram of ethylene biosynthesis, click here
Other name(s): 1-aminocyclopropanecarboxylate synthase; 1-aminocyclopropane-1-carboxylic acid synthase; 1-aminocyclopropane-1-carboxylate synthetase; aminocyclopropanecarboxylic acid synthase; aminocyclopropanecarboxylate synthase; ACC synthase; S-adenosyl-L-methionine methylthioadenosine-lyase
Systematic name: S-adenosyl-L-methionine methylthioadenosine-lyase (1-aminocyclopropane-1-carboxylate-forming)
Comments: A pyridoxal-phosphate protein. The enzyme catalyses an α,γ-elimination.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 72506-68-4
References:
1.  Boller, T., Herner, R.C. and Kende, H. Assay for and enzymatic formation of an ethylene precursor, 1-aminocyclopropane-1-carboxylic acid. Planta 145 (1979) 293–303. [PMID: 24317737]
2.  Yu, Y.-B., Adams, D.O. and Yang, S.F. 1-Aminocyclopropanecarboxylate synthase, a key enzyme in ethylene biosynthesis. Arch. Biochem. Biophys. 198 (1979) 280–296. [DOI] [PMID: 507845]
[EC 4.4.1.14 created 1984]
 
 
EC 4.4.1.23     
Accepted name: 2-hydroxypropyl-CoM lyase
Reaction: (1) (R)-2-hydroxypropyl-CoM = (R)-1,2-epoxypropane + HS-CoM
(2) (S)-2-hydroxypropyl-CoM = (S)-1,2-epoxypropane + HS-CoM
For diagram of epoxide carboxylation, click here
Glossary: coenzyme M (CoM) = 2-mercaptoethanesulfonate
Other name(s): epoxyalkane:coenzyme M transferase; epoxyalkane:CoM transferase; epoxyalkane:2-mercaptoethanesulfonate transferase; coenzyme M-epoxyalkane ligase; epoxyalkyl:CoM transferase; epoxypropane:coenzyme M transferase; epoxypropyl:CoM transferase; EaCoMT; 2-hydroxypropyl-CoM:2-mercaptoethanesulfonate lyase (epoxyalkane-ring-forming); (R)-2-hydroxypropyl-CoM 2-mercaptoethanesulfonate lyase (cyclizing; (R)-1,2-epoxypropane-forming)
Systematic name: (R)-[or (S)-]2-hydroxypropyl-CoM:2-mercaptoethanesulfonate lyase (epoxyalkane-ring-forming)
Comments: Requires zinc. Acts on both enantiomers of chiral epoxyalkanes to form the corresponding (R)- and (S)-2-hydroxyalkyl-CoM adducts. The enzyme will function with some other thiols (e.g., 2-sulfanylethanol) as the nucleophile. Uses short-chain epoxyalkanes from C2 (epoxyethane) to C6 (1,2-epoxyhexane). This enzyme forms component I of a four-component enzyme system {comprising EC 4.4.1.23 (2-hydroxypropyl-CoM lyase; component I), EC 1.8.1.5 [2-oxopropyl-CoM reductase (carboxylating); component II], EC 1.1.1.268 [2-(R)-hydroxypropyl-CoM dehydrogenase; component III] and EC 1.1.1.269 [2-(S)-hydroxypropyl-CoM dehydrogenase; component IV]} that is involved in epoxyalkane carboxylation in Xanthobacter sp. strain Py2.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD, CAS registry number: 244301-07-3
References:
1.  Allen, J.R., Clark, D.D., Krum, J.G. and Ensign, S.A. A role for coenzyme M (2-mercaptoethanesulfonic acid) in a bacterial pathway of aliphatic epoxide carboxylation. Proc. Natl. Acad. Sci. USA 96 (1999) 8432–8437. [DOI] [PMID: 10411892]
2.  Krum, J.G., Ellsworth, H., Sargeant, R.R., Rich, G. and Ensign, S.A. Kinetic and microcalorimetric analysis of substrate and cofactor interactions in epoxyalkane:CoM transferase, a zinc-dependent epoxidase. Biochemistry 41 (2002) 5005–5014. [DOI] [PMID: 11939797]
3.  Coleman, N.V. and Spain, J.C. Epoxyalkane: coenzyme M transferase in the ethene and vinyl chloride biodegradation pathways of Mycobacterium strain JS60. J. Bacteriol. 185 (2003) 5536–5545. [DOI] [PMID: 12949106]
[EC 4.4.1.23 created 2001 as EC 4.2.99.19, transferred 2005 to EC 4.4.1.23]
 
 


Data © 2001–2020 IUBMB
Web site © 2005–2020 Andrew McDonald