The Enzyme Database

Your query returned 4 entries.    printer_iconPrintable version

EC 1.14.11.1     
Accepted name: γ-butyrobetaine dioxygenase
Reaction: 4-trimethylammoniobutanoate + 2-oxoglutarate + O2 = 3-hydroxy-4-trimethylammoniobutanoate + succinate + CO2
Other name(s): α-butyrobetaine hydroxylase; γ-butyrobetaine hydroxylase; butyrobetaine hydroxylase
Systematic name: 4-trimethylammoniobutanoate,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating)
Comments: Requires Fe2+ and ascorbate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9045-31-2
References:
1.  Lindstedt, G. and Lindstedt, S. Cofactor requirements of γ-butyrobetaine hydroxylase from rat liver. J. Biol. Chem. 245 (1970) 4178–4186. [PMID: 4396068]
[EC 1.14.11.1 created 1972]
 
 
EC 1.14.13.239     
Accepted name: carnitine monooxygenase
Reaction: L-carnitine + NAD(P)H + H+ + O2 = (3R)-3-hydroxy-4-oxobutanoate + trimethylamine + NAD(P)+ + H2O
Glossary: (3R)-3-hydroxy-4-oxobutanoate = L-malic semialdehyde
Other name(s): cntAB (gene names); yeaWX (gene names)
Systematic name: L-carnitine,NAD(P)H:oxygen oxidoreductase (trimethylamine-forming)
Comments: The bacterial enzyme is a complex consisting of a reductase and an oxygenase components. The reductase subunit contains a flavin and a plant-type ferredoxin [2Fe-2S] cluster, while the oxygenase subunit is a Rieske-type protein in which a [2Fe-2S] cluster is coordinated by two histidine and two cysteine residues.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Ditullio, D., Anderson, D., Chen, C.S. and Sih, C.J. L-Carnitine via enzyme-catalyzed oxidative kinetic resolution. Bioorg. Med. Chem. 2 (1994) 415–420. [DOI] [PMID: 8000862]
2.  Zhu, Y., Jameson, E., Crosatti, M., Schafer, H., Rajakumar, K., Bugg, T.D. and Chen, Y. Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proc. Natl. Acad. Sci. USA 111 (2014) 4268–4273. [DOI] [PMID: 24591617]
3.  Koeth, R.A., Levison, B.S., Culley, M.K., Buffa, J.A., Wang, Z., Gregory, J.C., Org, E., Wu, Y., Li, L., Smith, J.D., Tang, W.H., DiDonato, J.A., Lusis, A.J. and Hazen, S.L. γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Cell Metab 20 (2014) 799–812. [DOI] [PMID: 25440057]
[EC 1.14.13.239 created 2017]
 
 
EC 2.8.3.21     
Accepted name: L-carnitine CoA-transferase
Reaction: (1) (E)-4-(trimethylammonio)but-2-enoyl-CoA + L-carnitine = (E)-4-(trimethylammonio)but-2-enoate + L-carnitinyl-CoA
(2) 4-trimethylammoniobutanoyl-CoA + L-carnitine = 4-trimethylammoniobutanoate + L-carnitinyl-CoA
Glossary: L-carnitine = (3R)-3-hydroxy-4-(trimethylammonio)butanoate
(E)-4-(trimethylammonio)but-2-enoate = crotonobetaine
4-trimethylammoniobutanoate = γ-butyrobetaine
Other name(s): CaiB; crotonobetainyl/γ-butyrobetainyl-CoA:carnitine CoA-transferase
Systematic name: (E)-4-(trimethylammonio)but-2-enoyl-CoA:L-carnitine CoA-transferase
Comments: The enzyme is found in gammaproteobacteria such as Proteus sp. and Escherichia coli. It has similar activity with both substrates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Engemann, C., Elssner, T. and Kleber, H.P. Biotransformation of crotonobetaine to L-(–)-carnitine in Proteus sp. Arch. Microbiol. 175 (2001) 353–359. [PMID: 11409545]
2.  Elssner, T., Engemann, C., Baumgart, K. and Kleber, H.P. Involvement of coenzyme A esters and two new enzymes, an enoyl-CoA hydratase and a CoA-transferase, in the hydration of crotonobetaine to L-carnitine by Escherichia coli. Biochemistry 40 (2001) 11140–11148. [DOI] [PMID: 11551212]
3.  Stenmark, P., Gurmu, D. and Nordlund, P. Crystal structure of CaiB, a type-III CoA transferase in carnitine metabolism. Biochemistry 43 (2004) 13996–14003. [DOI] [PMID: 15518548]
4.  Engemann, C., Elssner, T., Pfeifer, S., Krumbholz, C., Maier, T. and Kleber, H.P. Identification and functional characterisation of genes and corresponding enzymes involved in carnitine metabolism of Proteus sp. Arch. Microbiol. 183 (2005) 176–189. [DOI] [PMID: 15731894]
5.  Rangarajan, E.S., Li, Y., Iannuzzi, P., Cygler, M. and Matte, A. Crystal structure of Escherichia coli crotonobetainyl-CoA: carnitine CoA-transferase (CaiB) and its complexes with CoA and carnitinyl-CoA. Biochemistry 44 (2005) 5728–5738. [DOI] [PMID: 15823031]
[EC 2.8.3.21 created 2014]
 
 
EC 6.2.1.48     
Accepted name: carnitine—CoA ligase
Reaction: ATP + L-carnitine + CoA = AMP + diphosphate + L-carnitinyl-CoA
Glossary: carnitine = 3-hydroxy-4-(trimethylammonio)butanoate
crotonobetaine = (E)-4-(trimethylammonio)but-2-enoate
γ-butyrobetaine = 4-(trimethylammonio)butanoate
Other name(s): caiC (gene name)
Systematic name: L-carnitine:CoA ligase (AMP-forming)
Comments: The enzyme, originally characterized from the bacterium Escherichia coli, can catalyse the transfer of CoA to L-carnitine, crotonobetaine and γ-butyrobetaine. In vitro the enzyme also exhibits the activity of EC 2.8.3.21, L-carnitine CoA-transferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Eichler, K., Bourgis, F., Buchet, A., Kleber, H.P. and Mandrand-Berthelot, M.A. Molecular characterization of the cai operon necessary for carnitine metabolism in Escherichia coli. Mol. Microbiol. 13 (1994) 775–786. [DOI] [PMID: 7815937]
2.  Bernal, V., Arense, P., Blatz, V., Mandrand-Berthelot, M.A., Canovas, M. and Iborra, J.L. Role of betaine:CoA ligase (CaiC) in the activation of betaines and the transfer of coenzyme A in Escherichia coli. J. Appl. Microbiol. 105 (2008) 42–50. [DOI] [PMID: 18266698]
[EC 6.2.1.48 created 2017]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald