The Enzyme Database

Your query returned 5 entries.    printer_iconPrintable version

EC 2.4.1.314     
Accepted name: ginsenoside Rd glucosyltransferase
Reaction: UDP-α-D-glucose + ginsenoside Rd = UDP + ginsenoside Rb1
For diagram of protopanaxadiol ginsenosides ginsenosidases, click here
Glossary: ginsenoside Rd = 20-(β-D-glucopyranosyl)oxy-3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rb1 = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyloxy]dammar-24-en-12β-ol
Other name(s): UDPG:ginsenoside Rd glucosyltransferase; UDP-glucose:ginsenoside Rd glucosyltransferase; UGRdGT
Systematic name: UDP-glucose:ginsenoside-Rd β-1,6-glucosyltransferase
Comments: The glucosyl group forms a 1→6 bond to the glucosyloxy moiety at C-20 of ginsenoside Rd. Isolated from sanchi ginseng (Panax notoginseng).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yue, C.-J. and Zhong J.-J. Purification and characterization of UDPG:ginsenoside Rd glucosyltransferase from suspended cells of Panax notoginseng. Process Biochem. 40 (2005) 3742–3748.
[EC 2.4.1.314 created 2013]
 
 
EC 2.4.1.365     
Accepted name: protopanaxadiol-type ginsenoside-3-O-glucoside 2′′-O-glucosyltransferase
Reaction: (1) UDP-α-D-glucose + (20S)-ginsenoside Rh2 = UDP + (20S)-ginsenoside Rg3
(2) UDP-α-D-glucose + ginsenoside F2 = UDP + ginsenoside Rd
Glossary: (20S)-ginsenoside Rh2 = (3β,12β)-12,20-dihydroxydammar-24-en-3-yl β-D-glucopyranoside
ginsenoside F2 = (3β,12β)-20-(β-D-glucopyranosyloxy)-12-hydroxydammar-24-en-3-yl β-D-glucopyranoside
Other name(s): UGT94Q2 (gene name)
Systematic name: UDP-α-D-glucose:3-O-glucosyl-protopanaxadiol-type ginsenoside 2′′-O-glucosyltransferase
Comments: The enzyme, characterized from the plant Panax ginseng, transfers a glucosyl moiety to the 2′′ position of the glucose moiety in the protopanaxadiol-type ginsenoside-3-O-glucosides (20S)-ginsenoside Rh2 and ginsenoside F2.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Jung, S.C., Kim, W., Park, S.C., Jeong, J., Park, M.K., Lim, S., Lee, Y., Im, W.T., Lee, J.H., Choi, G. and Kim, S.C. Two ginseng UDP-glycosyltransferases synthesize ginsenoside Rg3 and Rd. Plant Cell Physiol. 55 (2014) 2177–2188. [PMID: 25320211]
[EC 2.4.1.365 created 2019]
 
 
EC 3.2.1.192     
Accepted name: ginsenoside Rb1 β-glucosidase
Reaction: ginsenoside Rb1 + 2 H2O = ginsenoside Rg3 + 2 D-glucopyranose (overall reaction)
(1a) ginsenoside Rb1 + H2O = ginsenoside Rd + D-glucopyranose
(1b) ginsenoside Rd + H2O = ginsenoside Rg3 + D-glucopyranose
For diagram of protopanaxadiol ginsenosides ginsenosidases, click here
Glossary: ginsenoside Rb1 = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rd = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-(β-D-glucopyranosyloxy)dammar-24-en-12β-ol
ginsenoside F2 = 3β,20-bis(β-D-glucopyranosyloxy)dammar-24-en-12β-ol
Systematic name: ginsenoside Rb1 glucohydrolase
Comments: Ginsenosidases catalyse the hydrolysis of glycosyl moieties attached to the C-3, C-6 or C-20 position of ginsenosides. They are specific with respect to the nature of the glycosidic linkage, the position and the order in which the linkages are cleaved. Ginsenoside Rb1 β-glucosidase specifically and sequentially hydrolyses the 20-[β-D-glucopyranosyl-(1→6)-β-D glucopyranosyloxy] residues attached to position 20 by first hydrolysing the (1→6)-glucosidic bond to generate ginsenoside Rd as an intermediate, followed by hydrolysis of the remaining 20-O-β-D-glucosidic bond.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yan, Q., Zhou, W., Li, X., Feng, M. and Zhou, P. Purification method improvement and characterization of a novel ginsenoside-hydrolyzing β-glucosidase from Paecilomyces Bainier sp. 229. Biosci. Biotechnol. Biochem. 72 (2008) 352–359. [DOI] [PMID: 18256474]
[EC 3.2.1.192 created 2014]
 
 
EC 3.2.1.193     
Accepted name: ginsenosidase type I
Reaction: (1) a protopanaxadiol-type ginsenoside with two glucosyl residues at position 3 + H2O = a protopanaxadiol-type ginsenoside with one glucosyl residue at position 3 + D-glucopyranose
(2) a protopanaxadiol-type ginsenoside with one glucosyl residue at position 3 + H2O = a protopanaxadiol-type ginsenoside with no glycosidic modifications at position 3 + D-glucopyranose
(3) a protopanaxadiol-type ginsenoside with two glycosyl residues at position 20 + H2O = a protopanaxadiol-type ginsenoside with a single glucosyl residue at position 20 + a monosaccharide
For diagram of protopanaxadiol ginsenosides ginsenosidases, click here
Glossary: ginsenoside Rb1 = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rb2 = 3β-[β-D-glucopyranosyl-(1→2)-β-D glucopyranosyloxy]-20-[α-L-arabinopyranosyl-(1→6)-β-D glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rb3 = 3β-[β-D-glucopyranosyl-(1→2)-β-D glucopyranosyloxy]-20-[β-D-xylopyranosyl-(1→6)-β-D glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rc = 3β-[β-D-glucopyranosyl-(1→2)-β-D glucopyranosyloxy]-20-[α-L-arabinofuranosyl-(1→6)-β-D glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rd = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-(β-D-glucopyranosyloxy)dammar-24-en-12β-ol
ginsenoside F2 = 3β,20-bis(β-D-glucopyranosyloxy)dammar-24-en-12β-ol
ginsenoside C-K = 20β-(β-D-glucopyranosyloxy)dammar-24-ene-3β,12β-diol
ginsenoside Rh2 = 3β-(β-D-glucopyranosyloxy)dammar-24-ene-12β,20-diol
Systematic name: ginsenoside glucohydrolase
Comments: Ginsenosidase type I is slightly activated by Mg2+ or Ca2+ [1]. The enzyme hydrolyses the 3-O-β-D-(1→2)-glucosidic bond, the 3-O-β-D-glucopyranosyl bond and the 20-O-β-D-(1→6)-glycosidic bond of protopanaxadiol-type ginsenosides. It usually leaves a single glucosyl residue attached at position 20 and one or no glucosyl residues at position 3. Starting with a ginsenoside that is glycosylated at both positions (e.g. ginsenoside Rb1, Rb2, Rb3, Rc or Rd), the most common products are ginsenoside F2 and ginsenoside C-K, with low amounts of ginsenoside Rh2.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yu, H., Zhang, C., Lu, M., Sun, F., Fu, Y. and Jin, F. Purification and characterization of new special ginsenosidase hydrolyzing multi-glycisides of protopanaxadiol ginsenosides, ginsenosidase type I. Chem Pharm Bull (Tokyo) 55 (2007) 231–235. [PMID: 17268094]
[EC 3.2.1.193 created 2014]
 
 
EC 3.2.1.195     
Accepted name: 20-O-multi-glycoside ginsenosidase
Reaction: a protopanaxadiol-type ginsenoside with two glycosyl residues at position 20 + H2O = a protopanaxadiol-type ginsenoside with a single glucosyl residue at position 20 + a monosaccharide
For diagram of protopanaxadiol ginsenosides ginsenosidases, click here
Glossary: ginsenoside Rb1 = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rb2 = 3β-[β-D-glucopyranosyl-(1→2)-β-D glucopyranosyloxy]-20-[α-L-arabinopyranosyl-(1→6)-β-D glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rb3 = 3β-[β-D-glucopyranosyl-(1→2)-β-D glucopyranosyloxy]-20-[β-D-xylopyranosyl-(1→6)-β-D glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rc = 3β-[β-D-glucopyranosyl-(1→2)-β-D glucopyranosyloxy]-20-[α-L-arabinofuranosyl-(1→6)-β-D glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rd = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-(β-D-glucopyranosyloxy)dammar-24-en-12β-ol
ginsenoside Rg3 = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-(β-D-glucopyranosyloxy)dammar-24-ene-12β,20-diol
Other name(s): ginsenosidase type II (erroneous)
Systematic name: protopanaxadiol-type ginsenoside 20-β-D-glucohydrolase
Comments: The 20-O-multi-glycoside ginsenosidase catalyses the hydrolysis of the 20-O-α-(1→6)-glycosidic bond and the 20-O-β-(1→6)-glycosidic bond of protopanaxadiol-type ginsenosides. The enzyme usually leaves a single glucosyl residue attached at position 20, although it can cleave the remaining glucosyl residue with a lower efficiency. Starting with a ginsenoside that is glycosylated at positions 3 and 20, such as ginsenosides Rb1, Rb2, Rb3 and Rc, the most common product is ginsenoside Rd, with a low amount of ginsenoside Rg3 also formed.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yu, H., Liu, Q., Zhang, C., Lu, M., Fu, Y., Im, W.-T., Lee, S.-T. and Jin, F. A new ginsenosidase from Aspergillus strain hydrolyzing 20-O-multi-glycoside of PPD ginsenoside. Process Biochem. 44 (2009) 772–775.
[EC 3.2.1.195 created 2014]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald