The Enzyme Database

Your query returned 5 entries.    printer_iconPrintable version



EC 1.1.1.318     
Accepted name: eugenol synthase
Reaction: eugenol + a carboxylate + NADP+ = a coniferyl ester + NADPH + H+
Other name(s): LtCES1; EGS1; EGS2
Systematic name: eugenol:NADP+ oxidoreductase (coniferyl ester reducing)
Comments: The enzyme acts in the opposite direction. The enzymes from the plants Ocimum basilicum (sweet basil) [1,3], Clarkia breweri and Petunia hybrida [4] only accept coniferyl acetate and form eugenol. The enzyme from Pimpinella anisum (anise) forms anol (from 4-coumaryl acetate) in vivo, although the recombinant enzyme can form eugenol from coniferyl acetate [5]. The enzyme from Larrea tridentata (creosote bush) also forms chavicol from a coumaryl ester and can use NADH [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Koeduka, T., Fridman, E., Gang, D.R., Vassão, D.G., Jackson, B.L., Kish, C.M., Orlova, I., Spassova, S.M., Lewis, N.G., Noel, J.P., Baiga, T.J., Dudareva, N. and Pichersky, E. Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester. Proc. Natl. Acad. Sci. USA 103 (2006) 10128–10133. [DOI] [PMID: 16782809]
2.  Vassão, D.G., Kim, S.J., Milhollan, J.K., Eichinger, D., Davin, L.B. and Lewis, N.G. A pinoresinol-lariciresinol reductase homologue from the creosote bush (Larrea tridentata) catalyzes the efficient in vitro conversion of p-coumaryl/coniferyl alcohol esters into the allylphenols chavicol/eugenol, but not the propenylphenols p-anol/isoeugenol. Arch. Biochem. Biophys. 465 (2007) 209–218. [DOI] [PMID: 17624297]
3.  Louie, G.V., Baiga, T.J., Bowman, M.E., Koeduka, T., Taylor, J.H., Spassova, S.M., Pichersky, E. and Noel, J.P. Structure and reaction mechanism of basil eugenol synthase. PLoS One 2 (2007) e993. [DOI] [PMID: 17912370]
4.  Koeduka, T., Louie, G.V., Orlova, I., Kish, C.M., Ibdah, M., Wilkerson, C.G., Bowman, M.E., Baiga, T.J., Noel, J.P., Dudareva, N. and Pichersky, E. The multiple phenylpropene synthases in both Clarkia breweri and Petunia hybrida represent two distinct protein lineages. Plant J. 54 (2008) 362–374. [DOI] [PMID: 18208524]
5.  Koeduka, T., Baiga, T.J., Noel, J.P. and Pichersky, E. Biosynthesis of t-anethole in anise: characterization of t-anol/isoeugenol synthase and an O-methyltransferase specific for a C7-C8 propenyl side chain. Plant Physiol. 149 (2009) 384–394. [DOI] [PMID: 18987218]
[EC 1.1.1.318 created 2012]
 
 
EC 1.1.1.319     
Accepted name: isoeugenol synthase
Reaction: isoeugenol + acetate + NADP+ = coniferyl acetate + NADPH + H+
Other name(s): IGS1; t-anol/isoeugenol synthase 1
Systematic name: eugenol:NADP+ oxidoreductase (coniferyl acetate reducing)
Comments: The enzyme acts in the opposite direction. In Ocimum basilicum (sweet basil), Clarkia breweri and Petunia hybrida only isoeugenol is formed [1,2]. However in Pimpinella anisum (anise) only anol is formed in vivo, although the cloned enzyme does produce isoeugenol [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Koeduka, T., Fridman, E., Gang, D.R., Vassão, D.G., Jackson, B.L., Kish, C.M., Orlova, I., Spassova, S.M., Lewis, N.G., Noel, J.P., Baiga, T.J., Dudareva, N. and Pichersky, E. Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester. Proc. Natl. Acad. Sci. USA 103 (2006) 10128–10133. [DOI] [PMID: 16782809]
2.  Koeduka, T., Louie, G.V., Orlova, I., Kish, C.M., Ibdah, M., Wilkerson, C.G., Bowman, M.E., Baiga, T.J., Noel, J.P., Dudareva, N. and Pichersky, E. The multiple phenylpropene synthases in both Clarkia breweri and Petunia hybrida represent two distinct protein lineages. Plant J. 54 (2008) 362–374. [DOI] [PMID: 18208524]
3.  Koeduka, T., Baiga, T.J., Noel, J.P. and Pichersky, E. Biosynthesis of t-anethole in anise: characterization of t-anol/isoeugenol synthase and an O-methyltransferase specific for a C7-C8 propenyl side chain. Plant Physiol. 149 (2009) 384–394. [DOI] [PMID: 18987218]
[EC 1.1.1.319 created 2012]
 
 
EC 1.13.11.88     
Accepted name: isoeugenol monooxygenase
Reaction: isoeugenol + O2 = vanillin + acetaldehyde
Glossary: isoeugenol = 2-methoxy-4-(prop-1-en-1-yl)phenol
Other name(s): iem (gene name)
Systematic name: isoeugenol:oxygen 7,8-oxidoreductase (bond-cleaving)
Comments: Contains Fe(II). The enzyme, charcterised from the bacteria Pseudomonas putida and Pseudomonas nitroreducens, catalyses the epoxidation of the double bond in the side chain of isoeugenol, followed by a second oxygenation and cleavage of the side chain in the form of acetaldehyde.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Shimoni, E., Ravid, U. and Shoham, Y. Isolation of a Bacillus sp. capable of transforming isoeugenol to vanillin. J. Biotechnol. 78 (2000) 1–9. [PMID: 10702906]
2.  Yamada, M., Okada, Y., Yoshida, T. and Nagasawa, T. Biotransformation of isoeugenol to vanillin by Pseudomonas putida IE27 cells. Appl. Microbiol. Biotechnol. 73 (2007) 1025–1030. [PMID: 16944125]
3.  Yamada, M., Okada, Y., Yoshida, T. and Nagasawa, T. Purification, characterization and gene cloning of isoeugenol-degrading enzyme from Pseudomonas putida IE27. Arch. Microbiol. 187 (2007) 511–517. [PMID: 17516050]
4.  Ryu, J.Y., Seo, J., Unno, T., Ahn, J.H., Yan, T., Sadowsky, M.J. and Hur, H.G. Isoeugenol monooxygenase and its putative regulatory gene are located in the eugenol metabolic gene cluster in Pseudomonas nitroreducens Jin1. Arch. Microbiol. 192 (2010) 201–209. [PMID: 20091296]
5.  Ryu, J.Y., Seo, J., Park, S., Ahn, J.H., Chong, Y., Sadowsky, M.J. and Hur, H.G. Characterization of an isoeugenol monooxygenase (iem) from Pseudomonas nitroreducens Jin1 that transforms isoeugenol to vanillin. Biosci. Biotechnol. Biochem. 77 (2013) 289–294. [PMID: 23391906]
[EC 1.13.11.88 created 2019]
 
 
EC 2.1.1.146     
Accepted name: (iso)eugenol O-methyltransferase
Reaction: S-adenosyl-L-methionine + isoeugenol = S-adenosyl-L-homocysteine + isomethyleugenol
For diagram of reaction, click here
Systematic name: S-adenosyl-L-methionine:isoeugenol O-methyltransferase
Comments: Acts on eugenol and chavicol as well as isoeugenol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 191744-33-9
References:
1.  Wang, J. and Pichersky, E. Characterization of S-adenosyl-L-methionine:(iso)eugenol O-methyltransferase involved in floral scent production in Clarkia breweri. Arch. Biochem. Biophys. 349 (1998) 153–160. [DOI] [PMID: 9439593]
2.  Gang, D.R., Lavid, N., Zubieta, C., Chen, F., Beuerle, T., Lewinsohn, E., Noel, J.P. and Pichersky, E. Characterization of phenylpropene O-methyltransferases from sweet basil: facile change of substrate specificity and convergent evolution within a plant O-methyltransferase family. Plant Cell 14 (2002) 505–519. [DOI] [PMID: 11884690]
[EC 2.1.1.146 created 2002]
 
 
EC 2.1.1.279     
Accepted name: trans-anol O-methyltransferase
Reaction: (1) S-adenosyl-L-methionine + trans-anol = S-adenosyl-L-homocysteine + trans-anethole
(2) S-adenosyl-L-methionine + isoeugenol = S-adenosyl-L-homocysteine + isomethyleugenol
Glossary: trans-anol = 4-[(1E)-prop-1-en-1-yl]phenol
trans-anethole = 1-methoxy-4-[(1E)-prop-1-en-1-yl]benzene
Other name(s): AIMT1; S-adenosyl-L-methionine:t-anol/isoeugenol O-methyltransferase; t-anol O-methyltransferase
Systematic name: S-adenosyl-L-methionine:trans-anol O-methyltransferase
Comments: The enzyme from anise (Pimpinella anisum) is highly specific for substrates in which the double bond in the propenyl side chain is located between C7 and C8, and, in contrast to EC 2.1.1.146, (iso)eugenol O-methyltransferase, does not have activity with eugenol or chavicol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Koeduka, T., Baiga, T.J., Noel, J.P. and Pichersky, E. Biosynthesis of t-anethole in anise: characterization of t-anol/isoeugenol synthase and an O-methyltransferase specific for a C7-C8 propenyl side chain. Plant Physiol. 149 (2009) 384–394. [DOI] [PMID: 18987218]
[EC 2.1.1.279 created 2013]
 
 


Data © 2001–2020 IUBMB
Web site © 2005–2020 Andrew McDonald