The Enzyme Database

Displaying entries 1-50 of 166.

<< Previous | Next >>    printer_iconPrintable version

EC 1.1.1.22     
Accepted name: UDP-glucose 6-dehydrogenase
Reaction: UDP-α-D-glucose + 2 NAD+ + H2O = UDP-α-D-glucuronate + 2 NADH + 2 H+
For diagram of the biosynthesis of UDP-α-D-glucose, UDP-α-D-galactose and UDP-α-D-glucuronate, click here
Other name(s): UDP-glucose dehydrogenase; uridine diphosphoglucose dehydrogenase; UDPG dehydrogenase; UDPG:NAD oxidoreductase; UDP-α-D-glucose:NAD oxidoreductase; UDP-glucose:NAD+ oxidoreductase; uridine diphosphate glucose dehydrogenase; UDP-D-glucose dehydrogenase; uridine diphosphate D-glucose dehydrogenase
Systematic name: UDP-α-D-glucose:NAD+ 6-oxidoreductase
Comments: Also acts on UDP-α-D-2-deoxyglucose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-26-6
References:
1.  Druzhinina, T.N., Kusov, Y.Y., Shibaev, V.N., Kochetkov, N.K., Biely, P., Kucar, S. and Bauer, S. Uridine diphosphate 2-deoxyglucose. Chemical synthesis, enzymic oxidation and epimerization. Biochim. Biophys. Acta 381 (1975) 301–307. [DOI] [PMID: 1091296]
2.  Maxwell, E.S., Kalckar, H.M. and Strominger, J.L. Some properties of uridine diphosphoglucose dehydrogenase. Arch. Biochem. Biophys. 65 (1956) 2–10. [DOI] [PMID: 13373402]
3.  Strominger, J.L. and Mapson, L.W. Uridine diphosphoglucose dehydrogenase of pea seedlings. Biochem. J. 66 (1957) 567–572. [PMID: 13459898]
4.  Strominger, J.L., Maxwell, E.S., Axelrod, J. and Kalckar, H.M. Enzymatic formation of uridine diphosphogluconic acid. J. Biol. Chem. 224 (1957) 79–90. [PMID: 13398389]
[EC 1.1.1.22 created 1961]
 
 
EC 1.1.1.48     
Accepted name: D-galactose 1-dehydrogenase
Reaction: D-galactose + NAD+ = D-galactono-1,4-lactone + NADH + H+
Other name(s): D-galactose dehydrogenase; β-galactose dehydrogenase (ambiguous); NAD+-dependent D-galactose dehydrogenase
Systematic name: D-galactose:NAD+ 1-oxidoreductase
Comments: This enzyme is part of the De Ley-Doudoroff pathway, which is used by some bacteria during growth on D-galactose.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9028-54-0
References:
1.  De Ley, J. and Doudoroff, M. The metabolism of D-galactose in Pseudomonas saccharophila. J. Biol. Chem. 227 (1957) 745–757. [PMID: 13462997]
2.  Hu, A.S.L. and Cline, A.L. The regulation of some sugar dehydrogenases in a pseudomonad. Biochim. Biophys. Acta 93 (1964) 237–245. [DOI] [PMID: 14251301]
[EC 1.1.1.48 created 1961, modified 2011]
 
 
EC 1.1.1.117     
Accepted name: D-arabinose 1-dehydrogenase [NAD(P)+]
Reaction: D-arabinose + NAD(P)+ = D-arabinono-1,4-lactone + NAD(P)H + H+
For diagram of D-arabinose catabolism, click here
Other name(s): D-arabinose 1-dehydrogenase [NAD(P)]
Systematic name: D-arabinose:NAD(P)+ 1-oxidoreductase
Comments: Also acts on L-galactose, 6-deoxy- and 3,6-dideoxy-L-galactose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37250-48-9
References:
1.  Cline, A.L. and Hu, A.S.L. The isolation of three sugar dehydrogenases from a psuedomonad. J. Biol. Chem. 240 (1965) 4488–4492. [PMID: 5845847]
2.  Cline, A.L. and Hu, A.S.L. Enzymatic characterization and comparison of three sugar dehydrogenases from a pseudomonad. J. Biol. Chem. 240 (1965) 4493–4497. [PMID: 5845848]
3.  Cline, A.L. and Hu, A.S.L. Some physical properties of three sugar dehydrogenases from a pseudomonad. J. Biol. Chem. 240 (1965) 4498–4502. [PMID: 5845849]
[EC 1.1.1.117 created 1972]
 
 
EC 1.1.1.120     
Accepted name: galactose 1-dehydrogenase (NADP+)
Reaction: D-galactose + NADP+ = D-galactono-1,5-lactone + NADPH + H+
Other name(s): D-galactose dehydrogenase (NADP+); galactose 1-dehydrogenase (NADP)
Systematic name: D-galactose:NADP+ 1-oxidoreductase
Comments: Also acts on L-arabinose, 6-deoxy- and 2-deoxy-D-galactose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37250-51-4
References:
1.  Cline, A.L. and Hu, A.S.L. The isolation of three sugar dehydrogenases from a psuedomonad. J. Biol. Chem. 240 (1965) 4488–4492. [PMID: 5845847]
2.  Cline, A.L. and Hu, A.S.L. Enzymatic characterization and comparison of three sugar dehydrogenases from a pseudomonad. J. Biol. Chem. 240 (1965) 4493–4497. [PMID: 5845848]
3.  Cline, A.L. and Hu, A.S.L. Some physical properties of three sugar dehydrogenases from a pseudomonad. J. Biol. Chem. 240 (1965) 4498–4502. [PMID: 5845849]
4.  Schiwara, H.W. and Domagk, G.F. Über den Abbau der Desoxyzucker durch Bakterienenzyme. V. Anreicherung und Charakterisierung einer NADP-abhängigen Abequosedehydrogenase aus Pseudomonas putida. Hoppe-Seyler's Z. Physiol. Chem. 349 (1968) 1321–1329. [PMID: 4387016]
[EC 1.1.1.120 created 1972]
 
 
EC 1.1.1.121     
Accepted name: aldose 1-dehydrogenase (NAD+)
Reaction: D-aldose + NAD+ = D-aldonolactone + NADH + H+
Other name(s): aldose dehydrogenase; D-aldohexose dehydrogenase; aldose 1-dehydrogenase
Systematic name: D-aldose:NAD+ 1-oxidoreductase
Comments: Acts on D-glucose, 2-deoxy- and 6-deoxy-D-glucose, D-galactose, 6-deoxy-D-galactose, 2-deoxy-L-arabinose and D-xylose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9076-61-3
References:
1.  Cline, A.L. and Hu, A.S.L. The isolation of three sugar dehydrogenases from a psuedomonad. J. Biol. Chem. 240 (1965) 4488–4492. [PMID: 5845847]
2.  Cline, A.L. and Hu, A.S.L. Enzymatic characterization and comparison of three sugar dehydrogenases from a pseudomonad. J. Biol. Chem. 240 (1965) 4493–4497. [PMID: 5845848]
3.  Cline, A.L. and Hu, A.S.L. Some physical properties of three sugar dehydrogenases from a pseudomonad. J. Biol. Chem. 240 (1965) 4498–4502. [PMID: 5845849]
[EC 1.1.1.121 created 1972]
 
 
EC 1.1.1.186     
Accepted name: dTDP-galactose 6-dehydrogenase
Reaction: dTDP-D-galactose + 2 NADP+ + H2O = dTDP-D-galacturonate + 2 NADPH + 2 H+
Other name(s): thymidine-diphosphate-galactose dehydrogenase
Systematic name: dTDP-D-galactose:NADP+ 6-oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Katan, R. and Avigad, G. NADP dependent oxidation of TDP-glucose by an enzyme system from sugar beets. Biochem. Biophys. Res. Commun. 24 (1966) 18–24. [DOI] [PMID: 4381717]
[EC 1.1.1.186 created 1984, modified 2002]
 
 
EC 1.1.1.200     
Accepted name: aldose-6-phosphate reductase (NADPH)
Reaction: D-sorbitol 6-phosphate + NADP+ = D-glucose 6-phosphate + NADPH + H+
Other name(s): aldose 6-phosphate reductase; NADP-dependent aldose 6-phosphate reductase; A6PR; aldose-6-P reductase; aldose-6-phosphate reductase; alditol 6-phosphate:NADP 1-oxidoreductase; aldose-6-phosphate reductase (NADPH2)
Systematic name: D-aldose-6-phosphate:NADP+ 1-oxidoreductase
Comments: In the reverse reaction, acts also on D-galactose 6-phosphate and, more slowly, on D-mannose 6-phosphate and 2-deoxy-D-glucose 6-phosphate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 76901-04-7
References:
1.  Negm, F.B. and Loescher, W.H. Characterization and partial-purification of aldose-6-phosphate reductase (alditol-6-phosphate-NADP 1-oxidoreductase) from apple leaves. Plant Physiol. 67 (1981) 139–142. [PMID: 16661614]
[EC 1.1.1.200 created 1984]
 
 
EC 1.1.1.316     
Accepted name: L-galactose 1-dehydrogenase
Reaction: L-galactose + NAD+ = L-galactono-1,4-lactone + NADH + H+
Other name(s): L-GalDH; L-galactose dehydrogenase
Systematic name: L-galactose:NAD+ 1-oxidoreductase
Comments: The enzyme catalyses a step in the ascorbate biosynthesis in higher plants (Smirnoff-Wheeler pathway). The activity with NADP+ is less than 10% of the activity with NAD+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Mieda, T., Yabuta, Y., Rapolu, M., Motoki, T., Takeda, T., Yoshimura, K., Ishikawa, T. and Shigeoka, S. Feedback inhibition of spinach L-galactose dehydrogenase by L-ascorbate. Plant Cell Physiol. 45 (2004) 1271–1279. [DOI] [PMID: 15509850]
2.  Gatzek, S., Wheeler, G.L. and Smirnoff, N. Antisense suppression of L-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated L-galactose synthesis. Plant J. 30 (2002) 541–553. [DOI] [PMID: 12047629]
3.  Wheeler, G.L., Jones, M.A. and Smirnoff, N. The biosynthetic pathway of vitamin C in higher plants. Nature 393 (1998) 365–369. [DOI] [PMID: 9620799]
4.  Oh, M.M., Carey, E.E. and Rajashekar, C.B. Environmental stresses induce health-promoting phytochemicals in lettuce. Plant Physiol. Biochem. 47 (2009) 578–583. [DOI] [PMID: 19297184]
[EC 1.1.1.316 created 2011]
 
 
EC 1.1.1.341     
Accepted name: CDP-abequose synthase
Reaction: CDP-α-D-abequose + NADP+ = CDP-4-dehydro-3,6-dideoxy-α-D-glucose + NADPH + H+
For diagram of CDP-abequose, CDP-ascarylose, CDP-paratose and CDP-tyrelose biosynthesis, click here
Glossary: CDP-α-D-abequose = CDP-3,6-dideoxy-α-D-xylo-hexose
Other name(s): rfbJ (gene name)
Systematic name: CDP-α-D-abequose:NADP+ 4-oxidoreductase
Comments: Isolated from Yersinia pseudotuberculosis [1,3] and Salmonella enterica [1,2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kessler, A.C., Brown, P.K., Romana, L.K. and Reeves, P.R. Molecular cloning and genetic characterization of the rfb region from Yersinia pseudotuberculosis serogroup IIA, which determines the formation of the 3,6-dideoxyhexose abequose. J. Gen. Microbiol. 137 (1991) 2689–2695. [DOI] [PMID: 1724263]
2.  Wyk, P. and Reeves, P. Identification and sequence of the gene for abequose synthase, which confers antigenic specificity on group B salmonellae: homology with galactose epimerase. J. Bacteriol. 171 (1989) 5687–5693. [DOI] [PMID: 2793832]
3.  Thorson, J.S., Lo, S.F., Ploux, O., He, X. and Liu, H.W. Studies of the biosynthesis of 3,6-dideoxyhexoses: molecular cloning and characterization of the asc (ascarylose) region from Yersinia pseudotuberculosis serogroup VA. J. Bacteriol. 176 (1994) 5483–5493. [DOI] [PMID: 8071227]
[EC 1.1.1.341 created 2012]
 
 
EC 1.1.1.359     
Accepted name: aldose 1-dehydrogenase [NAD(P)+]
Reaction: an aldopyranose + NAD(P)+ = an aldono-1,5-lactone + NAD(P)H + H+
For diagram of L-fucose catabolism, click here
Systematic name: an aldopyranose:NAD(P)+ 1-oxidoreductase
Comments: The enzyme from the archaeon Sulfolobus solfataricus shows broad specificity towards aldoses (D-glucose, D-galactose, D-xylose, L-arabinose, 6-deoxy-D-glucose, D-fucose) and can utilize NAD+ and NADP+ with similar catalytic efficiency. It is involved in aldose catabolism via the branched variant of the Entner-Doudoroff pathway.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Giardina, P., de Biasi, M.G., de Rosa, M., Gambacorta, A. and Buonocore, V. Glucose dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus. Biochem. J. 239 (1986) 517–522. [PMID: 3827812]
2.  Smith, L.D., Budgen, N., Bungard, S.J., Danson, M.J. and Hough, D.W. Purification and characterization of glucose dehydrogenase from the thermoacidophilic archaebacterium Thermoplasma acidophilum. Biochem. J. 261 (1989) 973–977. [PMID: 2803257]
3.  Lamble, H.J., Heyer, N.I., Bull, S.D., Hough, D.W. and Danson, M.J. Metabolic pathway promiscuity in the archaeon Sulfolobus solfataricus revealed by studies on glucose dehydrogenase and 2-keto-3-deoxygluconate aldolase. J. Biol. Chem. 278 (2003) 34066–34072. [DOI] [PMID: 12824170]
4.  Theodossis, A., Milburn, C.C., Heyer, N.I., Lamble, H.J., Hough, D.W., Danson, M.J. and Taylor, G.L. Preliminary crystallographic studies of glucose dehydrogenase from the promiscuous Entner-Doudoroff pathway in the hyperthermophilic archaeon Sulfolobus solfataricus. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 61 (2005) 112–115. [DOI] [PMID: 16508107]
5.  Milburn, C.C., Lamble, H.J., Theodossis, A., Bull, S.D., Hough, D.W., Danson, M.J. and Taylor, G.L. The structural basis of substrate promiscuity in glucose dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus. J. Biol. Chem. 281 (2006) 14796–14804. [DOI] [PMID: 16556607]
6.  Haferkamp, P., Kutschki, S., Treichel, J., Hemeda, H., Sewczyk, K., Hoffmann, D., Zaparty, M. and Siebers, B. An additional glucose dehydrogenase from Sulfolobus solfataricus: fine-tuning of sugar degradation. Biochem. Soc. Trans. 39 (2011) 77–81. [DOI] [PMID: 21265750]
[EC 1.1.1.359 created 2013]
 
 
EC 1.1.1.360     
Accepted name: glucose/galactose 1-dehydrogenase
Reaction: (1) D-glucopyranose + NADP+ = D-glucono-1,5-lactone + NADPH + H+
(2) D-galactopyranose + NADP+ = D-galactono-1,5-lactone + NADPH + H+
For diagram of the Entner-Doudoroff Pathway, click here
Other name(s): GdhA; dual-specific glucose/galactose dehydrogenase; glucose (galactose) dehydrogenase; glucose/galactose dehydrogenase
Systematic name: D-glucose/D-galactose 1-dehydrogenase (NADPH)
Comments: A zinc protein. The enzyme from the archaeon Picrophilus torridus is involved in glucose and galactose catabolism via the nonphosphorylative variant of the Entner-Doudoroff pathway. It shows 20-fold higher activity with NADP+ compared to NAD+. The oxidation of D-glucose and D-galactose is catalysed at a comparable rate (cf. EC 1.1.1.119, glucose 1-dehydrogenase (NADP+) and EC 1.1.1.120, galactose 1-dehydrogenase (NADP+)).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Angelov, A., Futterer, O., Valerius, O., Braus, G.H. and Liebl, W. Properties of the recombinant glucose/galactose dehydrogenase from the extreme thermoacidophile, Picrophilus torridus. FEBS J. 272 (2005) 1054–1062. [DOI] [PMID: 15691337]
2.  Milburn, C.C., Lamble, H.J., Theodossis, A., Bull, S.D., Hough, D.W., Danson, M.J. and Taylor, G.L. The structural basis of substrate promiscuity in glucose dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus. J. Biol. Chem. 281 (2006) 14796–14804. [DOI] [PMID: 16556607]
[EC 1.1.1.360 created 2013]
 
 
EC 1.1.1.376     
Accepted name: L-arabinose 1-dehydrogenase [NAD(P)+]
Reaction: α-L-arabinopyranose + NAD(P)+ = L-arabinono-1,4-lactone + NAD(P)H + H+
For diagram of L-Arabinose catabolism, click here
Other name(s): L-arabino-aldose dehydrogenase
Systematic name: α-L-arabinopyranose:NAD(P)+ 1-oxidoreductase
Comments: The enzymes from the bacterium Azospirillum brasilense and the archaeon Haloferax volcanii are part of the L-arabinose degradation pathway and prefer NADP+ over NAD+. In vitro the enzyme from Azospirillum brasilense shows also high catalytic efficiency with D-galactose. The enzyme is specific for α-L-arabinopyranose [3,4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Novick, N.J. and Tyler, M.E. Partial purification and properties of an L-arabinose dehydrogenase from Azospirillum brasilense. Can. J. Microbiol. 29 (1983) 242–246.
2.  Watanabe, S., Kodaki, T. and Makino, K. Cloning, expression, and characterization of bacterial L-arabinose 1-dehydrogenase involved in an alternative pathway of L-arabinose metabolism. J. Biol. Chem. 281 (2006) 2612–2623. [DOI] [PMID: 16326697]
3.  Johnsen, U., Sutter, J.M., Zaiss, H. and Schonheit, P. L-Arabinose degradation pathway in the haloarchaeon Haloferax volcanii involves a novel type of L-arabinose dehydrogenase. Extremophiles 17 (2013) 897–909. [DOI] [PMID: 23949136]
4.  Aro-Karkkainen, N., Toivari, M., Maaheimo, H., Ylilauri, M., Pentikainen, O.T., Andberg, M., Oja, M., Penttila, M., Wiebe, M.G., Ruohonen, L. and Koivula, A. L-arabinose/D-galactose 1-dehydrogenase of Rhizobium leguminosarum bv. trifolii characterised and applied for bioconversion of L-arabinose to L-arabonate with Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 98 (2014) 9653–9665. [DOI] [PMID: 25236800]
[EC 1.1.1.376 created 2014, modified 2022]
 
 
EC 1.1.1.389     
Accepted name: 2-dehydro-3-deoxy-L-galactonate 5-dehydrogenase
Reaction: 2-dehydro-3-deoxy-L-galactonate + NAD+ = 3-deoxy-D-glycero-2,5-hexodiulosonate + NADH + H+
Systematic name: 2-dehydro-3-deoxy-L-galactonate:NAD+ 5-oxidoreductase
Comments: The enzyme, characterized from agarose-degrading bacteria, is involved in a degradation pathway for 3,6-anhydro-α-L-galactopyranose, a major component of the polysaccharides of red macroalgae.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lee, S.B., Cho, S.J., Kim, J.A., Lee, S.Y., Kim, S.M. and Lim, H.S. Metabolic pathway of 3,6-anhydro-L-galactose in agar-degrading microorganisms. Biotechnol. Bioprocess Eng. 19 (2014) 866–878.
[EC 1.1.1.389 created 2015]
 
 
EC 1.1.1.414     
Accepted name: L-galactonate 5-dehydrogenase
Reaction: L-galactonate + NAD+ = D-tagaturonate + NADH + H+
Other name(s): lgoD (gene name); lgaC (gene name)
Systematic name: L-galactonate:NAD+ 5-oxidoreductase
Comments: The enzyme, reported from the human gut bacteria Escherichia coli and Bacteroides vulgatus, participates in an L-galactonate degradation pathway.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Cooper, R.A. The pathway for L-galactonate catabolism in Escherichia coli K-12. FEBS Lett. 103 (1979) 216–220. [PMID: 381020]
2.  Kuivanen, J. and Richard, P. The yjjN of E. coli codes for an L-galactonate dehydrogenase and can be used for quantification of L-galactonate and L-gulonate. Appl. Biochem. Biotechnol. 173 (2014) 1829–1835. [PMID: 24861318]
3.  Hobbs, M.E., Williams, H.J., Hillerich, B., Almo, S.C. and Raushel, F.M. L-Galactose metabolism in Bacteroides vulgatus from the human gut microbiota. Biochemistry 53 (2014) 4661–4670. [DOI] [PMID: 24963813]
[EC 1.1.1.414 created 2018]
 
 
EC 1.1.1.431     
Accepted name: D-xylose reductase (NADPH)
Reaction: xylitol + NADP+ = D-xylose + NADPH + H+
Other name(s): XYL1 (gene name, ambiguous); xyl1 (gene name, ambiguous); xyrA (gene name); xyrB (gene name)
Systematic name: xylitol:NADP+ oxidoreductase
Comments: Xylose reductases catalyse the reduction of xylose to xylitol, the initial reaction in the fungal D-xylose degradation pathway. Most of the enzymes exhibit a strict requirement for NADPH (e.g. the enzymes from Saccharomyces cerevisiae, Aspergillus niger, Trichoderma reesei, Candida tropicalis, Saitozyma flava, and Candida intermedia). Some D-xylose reductases have dual cosubstrate specificity, though they still prefer NADPH to NADH (cf. EC 1.1.1.307, D-xylose reductase [NAD(P)H]). Very rarely the enzyme prefers NADH (cf. EC 1.1.1.430, D-xylose reductase (NADH)).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Bolen, P.L. and Detroy, R.W. Induction of NADPH-linked D-xylose reductase and NAD-linked xylitol dehydrogenase activities in Pachysolen tannophilus by D-xylose, L-arabinose, or D-galactose. Biotechnol. Bioeng. 27 (1985) 302–307. [DOI] [PMID: 18553673]
2.  Suzuki, T., Yokoyama, S., Kinoshita, Y., Yamada, H., Hatsu, M., Takamizawa, K. and Kawai, K. Expression of xyrA gene encoding for D-xylose reductase of Candida tropicalis and production of xylitol in Escherichia coli. J. Biosci. Bioeng. 87 (1999) 280–284. [DOI] [PMID: 16232468]
3.  Nidetzky, B., Mayr, P., Hadwiger, P. and Stutz, A.E. Binding energy and specificity in the catalytic mechanism of yeast aldose reductases. Biochem. J. 344 Pt 1 (1999) 101–107. [PMID: 10548539]
4.  Mayr, P., Bruggler, K., Kulbe, K.D. and Nidetzky, B. D-Xylose metabolism by Candida intermedia: isolation and characterisation of two forms of aldose reductase with different coenzyme specificities. J. Chromatogr. B Biomed. Sci. Appl. 737 (2000) 195–202. [DOI] [PMID: 10681056]
5.  Sene, L., Felipe, M.G., Silva, S.S. and Vitolo, M. Preliminary kinetic characterization of xylose reductase and xylitol dehydrogenase extracted from Candida guilliermondii FTI 20037 cultivated in sugarcane bagasse hydrolysate for xylitol production. Appl. Biochem. Biotechnol. 91-93 (2001) 671–680. [DOI] [PMID: 11963895]
6.  Jeong, E.Y., Sopher, C., Kim, I.S. and Lee, H. Mutational study of the role of tyrosine-49 in the Saccharomyces cerevisiae xylose reductase. Yeast 18 (2001) 1081–1089. [DOI] [PMID: 11481678]
7.  Chroumpi, T., Peng, M., Aguilar-Pontes, M.V., Muller, A., Wang, M., Yan, J., Lipzen, A., Ng, V., Grigoriev, I.V., Makela, M.R. and de Vries, R.P. Revisiting a ‘simple’ fungal metabolic pathway reveals redundancy, complexity and diversity. Microb. Biotechnol. 14 (2021) 2525–2537. [DOI] [PMID: 33666344]
8.  Terebieniec, A., Chroumpi, T., Dilokpimol, A., Aguilar-Pontes, M.V., Makela, M.R. and de Vries, R.P. Characterization of D-xylose reductase, XyrB, from Aspergillus niger. Biotechnol Rep (Amst) 30:e00610 (2021). [DOI] [PMID: 33842213]
[EC 1.1.1.431 created 2022]
 
 
EC 1.1.2.11     
Accepted name: glucoside 3-dehydrogenase (cytochrome c)
Reaction: a D-glucoside + a ferric c-type cytochrome = a 3-dehydro-D-glucoside + a ferrous c-type cytochrome
Other name(s): D-glucoside 3-dehydrogenase (ambiguous); D-aldohexopyranoside dehydrogenase (ambiguous); D-aldohexoside:cytochrome c oxidoreductase; hexopyranoside-cytochrome c oxidoreductase
Systematic name: a D-glucoside:ferric c-type cytochrome 3-oxidoreductase
Comments: This bacterial enzyme acts on D-glucose, D-galactose, D-glucosides and D-galactosides, but the best substrates are disaccharides with a glucose moiety at the non-reducing end. It consists of two subunits, a catalytic subunit that contains an FAD cofactor and an iron-sulfur cluster, and a "hitch-hiker" subunit containing a signal peptide for translocation into the periplasm. A dedicated c-type cytochrome protein serves as an electron acceptor, transferring the electrons from the catalytic subunit to the cell's electron transfer chain. cf. EC 1.1.99.13, glucoside 3-dehydrogenase (acceptor).
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc
References:
1.  Hayano, K. and Fukui, S. Purification and properties of 3-ketosucrose-forming enzyme from the cells of Agrobacterium tumefaciens. J. Biol. Chem. 242 (1967) 3665–3672. [PMID: 6038493]
2.  Nakamura, L.K. and Tyler, D.D. Induction of D-aldohexoside:cytochrome c oxidoreductase in Agrobacterium tumefaciens. J. Bacteriol. 129 (1977) 830–835. [DOI] [PMID: 838689]
3.  Takeuchi, M., Ninomiya, K., Kawabata, K., Asano, N., Kameda, Y. and Matsui, K. Purification and properties of glucoside 3-dehydrogenase from Flavobacterium saccharophilum. J. Biochem. 100 (1986) 1049–1055. [DOI] [PMID: 3818559]
4.  Takeuchi, M., Asano, N., Kameda, Y. and Matsui, K. Physiological role of glucoside 3-dehydrogenase and cytochrome c551 in the sugar oxidizing system of Flavobacterium saccharophilum. J. Biochem. 103 (1988) 938–943. [DOI] [PMID: 2844746]
5.  Tsugawa, W., Horiuchi, S., Tanaka, M., Wake, H. and Sode, K. Purification of a marine bacterial glucose dehydrogenase from Cytophaga marinoflava and its application for measurement of 1,5-anhydro-D-glucitol. Appl. Biochem. Biotechnol. 56 (1996) 301–310. [DOI] [PMID: 8984902]
6.  Kojima, K., Tsugawa, W. and Sode, K. Cloning and expression of glucose 3-dehydrogenase from Halomonas sp. α-15 in Escherichia coli. Biochem. Biophys. Res. Commun. 282 (2001) 21–27. [DOI] [PMID: 11263965]
7.  Zhang, J.F., Zheng, Y.G., Xue, Y.P. and Shen, Y.C. Purification and characterization of the glucoside 3-dehydrogenase produced by a newly isolated Stenotrophomonas maltrophilia CCTCC M 204024. Appl. Microbiol. Biotechnol. 71 (2006) 638–645. [DOI] [PMID: 16292530]
8.  Zhang, J.F., Chen, W.Q. and Chen, H. Gene cloning and expression of a glucoside 3-dehydrogenase from Sphingobacterium faecium ZJF-D6, and used it to produce N-p-nitrophenyl-3-ketovalidamine. World J. Microbiol. Biotechnol. 33:21 (2017). [DOI] [PMID: 28044272]
9.  Miyazaki, R., Yamazaki, T., Yoshimatsu, K., Kojima, K., Asano, R., Sode, K. and Tsugawa, W. Elucidation of the intra- and inter-molecular electron transfer pathways of glucoside 3-dehydrogenase. Bioelectrochemistry 122 (2018) 115–122. [DOI] [PMID: 29625423]
[EC 1.1.2.11 created 2022]
 
 
EC 1.1.3.5     
Accepted name: hexose oxidase
Reaction: D-glucose + O2 = D-glucono-1,5-lactone + H2O2
Systematic name: D-hexose:oxygen 1-oxidoreductase
Comments: A copper glycoprotein. Also oxidizes D-galactose, D-mannose, maltose, lactose and cellobiose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-75-5
References:
1.  Bean, R.C. and Hassid, W.Z. Carbohydrate oxidase from a red alga Iridophycus flaccidum. J. Biol. Chem. 218 (1956) 425–436. [PMID: 13278350]
2.  Bean, R.C., Porter, G.G. and Steinberg, B.M. Carbohydrate metabolism of citrus fruit. II. Oxidation of sugars by an aerodehydrogenase from young orange fruit. J. Biol. Chem. 236 (1961) 1235–1240. [PMID: 13688220]
3.  Sullivan, J.D. and Ikawa, M. Purification and characterization of hexose oxidase from the red alga Chondrus crispus. Biochim. Biophys. Acta 309 (1973) 11–22. [DOI] [PMID: 4708670]
[EC 1.1.3.5 created 1961, modified 1976]
 
 
EC 1.1.3.9     
Accepted name: galactose oxidase
Reaction: D-galactose + O2 = D-galacto-hexodialdose + H2O2
Other name(s): D-galactose oxidase; β-galactose oxidase
Systematic name: D-galactose:oxygen 6-oxidoreductase
Comments: A copper protein.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-79-9
References:
1.  Avigad, G., Amaral, D., Asensio, C. and Horecker, B.L. The D-galactose oxidase of Polyporus circinatus. J. Biol. Chem. 237 (1962) 2736–2743. [PMID: 13863403]
[EC 1.1.3.9 created 1965]
 
 
EC 1.1.3.11     
Accepted name: L-sorbose oxidase
Reaction: L-sorbose + O2 = 5-dehydro-D-fructose + H2O2
Systematic name: L-sorbose:oxygen 5-oxidoreductase
Comments: Also acts on D-glucose, D-galactose and D-xylose, but not on D-fructose. 2,6-Dichloroindophenol can act as acceptor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37250-81-0
References:
1.  Yamada, Y., Iizuka, K., Aida, K. and Uemura, T. Enzymatic studies on the oxidation of sugar and sugar alcohol. 3. Purification and properties of L-sorbose oxidase from Trametes sanguinea. J. Biochem. (Tokyo) 62 (1967) 223–229. [PMID: 5586487]
[EC 1.1.3.11 created 1972]
 
 
EC 1.1.3.13     
Accepted name: alcohol oxidase
Reaction: a primary alcohol + O2 = an aldehyde + H2O2
Other name(s): ethanol oxidase; alcohol:oxygen oxidoreductase
Systematic name: alcohol:oxygen oxidoreductase (H2O2-forming)
Comments: The enzymes from the fungi Candida methanosorbosa and several Basidiomycetes species contain an FAD cofactor [1,3]. The enzyme from the phytopathogenic fungi Colletotrichum graminicola and Colletotrichum gloeosporioides utilize a mononuclear copper-radical mechanism [4]. The enzyme acts on primary alcohols and unsaturated alcohols, and has much lower activity with branched-chain and secondary alcohols.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9073-63-6
References:
1.  Janssen, F.W. and Ruelius, H.W. Alcohol oxidase, a flavoprotein from several Basidiomycetes species. Crystallization by fractional precipitation with polyethylene glycol. Biochim. Biophys. Acta 151 (1968) 330–342. [DOI] [PMID: 5636370]
2.  Nishida, A., Ishihara, T. and Hiroi, T. Studies on enzymes related to lignan biodegradation. Baiomasu Henkan Keikaku Kenkyu Hokoku (1987) 38–59. (in Japanese)
3.  Suye, S. Purification and properties of alcohol oxidase from Candida methanosorbosa M-2003. Curr. Microbiol. 34 (1997) 374–377. [PMID: 9142745]
4.  Yin, D.T., Urresti, S., Lafond, M., Johnston, E.M., Derikvand, F., Ciano, L., Berrin, J.G., Henrissat, B., Walton, P.H., Davies, G.J. and Brumer, H. Structure-function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family. Nat. Commun. 6:10197 (2015). [DOI] [PMID: 26680532]
[EC 1.1.3.13 created 1972]
 
 
EC 1.1.99.18     
Accepted name: cellobiose dehydrogenase (acceptor)
Reaction: cellobiose + acceptor = cellobiono-1,5-lactone + reduced acceptor
Other name(s): cellobiose dehydrogenase; cellobiose oxidoreductase; Phanerochaete chrysosporium cellobiose oxidoreductase; CBOR; cellobiose oxidase; cellobiose:oxygen 1-oxidoreductase; CDH; cellobiose:(acceptor) 1-oxidoreductase
Systematic name: cellobiose:acceptor 1-oxidoreductase
Comments: Also acts, more slowly, on cello-oligosaccharides, lactose and D-glucosyl-1,4-β-D-mannose. The enzyme from the white rot fungus Phanerochaete chrysosporium is unusual in having two redoxin domains, one containing a flavin and the other a protoheme group. It transfers reducing equivalents from cellobiose to two types of redox acceptor: two-electron oxidants, including redox dyes, benzoquinones, and molecular oxygen, and one-electron oxidants, including semiquinone species, iron(II) complexes, and the model acceptor cytochrome c [9]. 2,6-Dichloroindophenol can act as acceptor in vitro.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 54576-85-1
References:
1.  Coudray, M.-R., Canebascini, G. and Meier, H. Characterization of a cellobiose dehydrogenase in the cellulolytic fungus porotrichum (Chrysosporium) thermophile. Biochem. J. 203 (1982) 277–284. [PMID: 7103940]
2.  Dekker, R.F.H. Induction and characterization of a cellobiose dehydrogenase produced by a species of Monilia. J. Gen. Microbiol. 120 (1980) 309–316.
3.  Dekker, R.F.H. Cellobiose dehydrogenase produced by Monilia sp. Methods Enzymol. 160 (1988) 454–463.
4.  Habu, N., Samejima, M., Dean, J.F. and Eriksson, K.E. Release of the FAD domain from cellobiose oxidase by proteases from cellulolytic cultures of Phanerochaete chrysosporium. FEBS Lett. 327 (1993) 161–164. [DOI] [PMID: 8392950]
5.  Baminger, U., Subramaniam, S.S., Renganathan, V. and Haltrich, D. Purification and characterization of cellobiose dehydrogenase from the plant pathogen Sclerotium (Athelia) rolfsii. Appl. Environ. Microbiol. 67 (2001) 1766–1774. [DOI] [PMID: 11282631]
6.  Hallberg, B.M., Henriksson, G., Pettersson, G. and Divne, C. Crystal structure of the flavoprotein domain of the extracellular flavocytochrome cellobiose dehydrogenase. J. Mol. Biol. 315 (2002) 421–434. [DOI] [PMID: 11786022]
7.  Ayers, A.R., Ayers, S.B. and Eriksson, K.-E. Cellobiose oxidase, purification and partial characterization of a hemoprotein from Sporotrichum pulverulentum. Eur. J. Biochem. 90 (1978) 171–181. [DOI] [PMID: 710416]
8.  Ayers, A.R. and Eriksson, K.-E. Cellobiose oxidase from Sporotrichum pulverulentum. Methods Enzymol. 89 (1982) 129–135. [PMID: 7144569]
9.  Mason, M.G., Nicholls, P., Divne, C., Hallberg, B.M., Henriksson, G. and Wilson, M.T. The heme domain of cellobiose oxidoreductase: a one-electron reducing system. Biochim. Biophys. Acta 1604 (2003) 47–54. [DOI] [PMID: 12686420]
[EC 1.1.99.18 created 1983, modified 2002 (EC 1.1.5.1 created 1983, incorporated 2002, EC 1.1.3.25 created 1986, incorporated 2005)]
 
 
EC 1.1.99.28     
Accepted name: glucose-fructose oxidoreductase
Reaction: D-glucose + D-fructose = D-gluconolactone + D-glucitol
Systematic name: D-glucose:D-fructose oxidoreductase
Comments: D-mannose, D-xylose, D-galactose, 2-deoxy-D-glucose and L-arabinose will function as aldose substrates, but with low affinities. The ketose substrate must be in the open-chain form. The apparent affinity for fructose is low, because little of the fructose substrate is in the open-chain form. Xylulose and glycerone (dihydroxyacetone) will replace fructose, but they are poor substrates. The enzyme from Zymomonas mobilis contains tightly bound NADP+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 94949-35-6
References:
1.  Zachariou, M. and Scopes, R.K. Glucose-fructose oxidoreductase: a new enzyme isolated from Zymomonas mobilis that is responsible for sorbitol production. J. Bacteriol. 167 (1986) 863–869. [DOI] [PMID: 3745122]
2.  Hardman, M.J. and Scopes, R.K. The kinetics of glucose-fructose oxidoreductase from Zymomonas mobilis. Eur. J. Biochem. 173 (1988) 203–209. [DOI] [PMID: 3356190]
3.  Kanagasundaram, V. and Scopes, R.K. Cloning, sequence analysis and expression of the structural gene encoding glucose-fructose oxidoreductase. J. Bacteriol. 174 (1992) 1439–1447. [DOI] [PMID: 1537789]
[EC 1.1.99.28 created 1999]
 
 
EC 1.1.99.29     
Accepted name: pyranose dehydrogenase (acceptor)
Reaction: (1) a pyranose + acceptor = a pyranos-2-ulose (or a pyranos-3-ulose or a pyranos-2,3-diulose) + reduced acceptor
(2) a pyranoside + acceptor = a pyranosid-3-ulose (or a pyranosid-3,4-diulose) + reduced acceptor
Glossary: ferricenium ion = bis(η5-cyclopentadienyl)iron(1+)
Other name(s): pyranose dehydrogenase; pyranose-quinone oxidoreductase; quinone-dependent pyranose dehydrogenase; PDH
Systematic name: pyranose:acceptor oxidoreductase
Comments: Requires FAD. A number of aldoses and ketoses in pyranose form, as well as glycosides, gluco-oligosaccharides, sucrose and lactose can act as a donor. 1,4-Benzoquinone or ferricenium ion (ferrocene oxidized by removal of one electron) can serve as acceptor. Unlike EC 1.1.3.10, pyranose oxidase, this fungal enzyme does not interact with O2 and exhibits extremely broad substrate tolerance with variable regioselectivity (C-3, C-2 or C-3 + C-2 or C-3 + C-4) for (di)oxidation of different sugars. D-Glucose is exclusively or preferentially oxidized at C-3 (depending on the enzyme source), but can also be oxidized at C-2 + C-3. The enzyme also acts on 1→4-α- and 1→4-β-gluco-oligosaccharides, non-reducing gluco-oligosaccharides and L-arabinose, which are not substrates of EC 1.1.3.10. Sugars are oxidized in their pyranose but not in their furanose form.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 190606-21-4
References:
1.  Volc, J., Kubátová, E., Wood, D. and Daniel, G. Pyranose 2-dehydrogenase, a novel sugar oxidoreductase from the basidiomycete fungus Agaricus bisporus. Arch. Microbiol. 167 (1997) 119–125. [PMID: 9042751]
2.  Volc, J., Sedmera, P., Halada, P., Přikyrlová, V. and Daniel, G. C-2 and C-3 oxidation of D-Glc, and C-2 oxidation of D-Gal by pyranose dehydrogenase from Agaricus bisporus. Carbohydr. Res. 310 (1998) 151–156.
3.  Volc, J., Sedmera, P., Halada, P., Přikyrlová, V. and Haltrich, D. Double oxidation of D-xylose to D-glycero-pentos-2,3-diulose (2,3-diketo-D-xylose) by pyranose dehydrogenase from the mushroom Agaricus bisporus. Carbohydr. Res. 329 (2000) 219–225. [DOI] [PMID: 11086703]
4.  Volc, J., Kubátová, E., Daniel, G., Sedmera, P. and Haltrich, D. Screening of basidiomycete fungi for the quinone-dependent sugar C-2/C-3 oxidoreductase, pyranose dehydrogenase, and properties of the enzyme from Macrolepiota rhacodes. Arch. Microbiol. 176 (2001) 178–186. [PMID: 11511865]
5.  Volc, J., Sedmera, P., Halada, P., Daniel, G., Přikyrlová, V. and Haltrich, D. C-3 oxidation of non-reducing sugars by a fungal pyranose dehydrogenase: spectral characterization. J. Mol. Catal., B Enzym. 17 (2002) 91–100.
[EC 1.1.99.29 created 2004]
 
 
EC 1.1.99.35     
Accepted name: soluble quinoprotein glucose dehydrogenase
Reaction: D-glucose + acceptor = D-glucono-1,5-lactone + reduced acceptor
Other name(s): soluble glucose dehydrogenase; sGDH; glucose dehydrogenase (PQQ-dependent)
Systematic name: D-glucose:acceptor oxidoreductase
Comments: Soluble periplasmic enzyme containing a tightly-bound PQQ cofactor that is bound to a calcium ion. As the electron acceptor is not known, the enzyme has been assayed with Wurster's Blue or phenazine methosulfate. It has negligible sequence or structure similarity to other quinoproteins. It catalyses an exceptionally high rate of oxidation of a wide range of aldose sugars, including D-glucose, galactose, arabinose and xylose, and also the disaccharides lactose, cellobiose and maltose. It has been described only in Acinetobacter calcoaceticus.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Geiger, O. and Gorisch, H. Crystalline quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus. Biochemistry 25 (1986) 6043–6048.
2.  Dokter, P., Frank, J. and Duine, J.A. Purification and characterization of quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus L.M.D. 79.41. Biochem. J. 239 (1986) 163–167. [PMID: 3800975]
3.  Cleton-Jansen, A.M., Goosen, N., Wenzel, T.J. and van de Putte, P. Cloning of the gene encoding quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus: evidence for the presence of a second enzyme. J. Bacteriol. 170 (1988) 2121–2125. [DOI] [PMID: 2834325]
4.  Matsushita, K., Shinagawa, E., Adachi, O. and Ameyama, M. Quinoprotein D-glucose dehydrogenase of the Acinetobacter calcoaceticus respiratory chain: membrane-bound and soluble forms are different molecular species. Biochemistry 28 (1989) 6276–6280. [PMID: 2551369]
5.  Oubrie, A. and Dijkstra, B.W. Structural requirements of pyrroloquinoline quinone dependent enzymatic reactions. Protein Sci. 9 (2000) 1265–1273. [DOI] [PMID: 10933491]
6.  Matsushita, K., Toyama, H., Ameyama, M., Adachi, O., Dewanti, A. and Duine, J.A. Soluble and membrane-bound quinoprotein D-glucose dehydrogenases of the Acinetobacter calcoaceticus : the binding process of PQQ to the apoenzymes. Biosci. Biotechnol. Biochem. 59 (1995) 1548–1555.
[EC 1.1.99.35 created 2010]
 
 
EC 1.1.99.36     
Accepted name: alcohol dehydrogenase (nicotinoprotein)
Reaction: ethanol + acceptor = acetaldehyde + reduced acceptor
Other name(s): NDMA-dependent alcohol dehydrogenase; nicotinoprotein alcohol dehydrogenase; np-ADH; ethanol:N,N-dimethyl-4-nitrosoaniline oxidoreductase
Systematic name: ethanol:acceptor oxidoreductase
Comments: Contains Zn2+. Nicotinoprotein alcohol dehydrogenases are unique medium-chain dehydrogenases/reductases (MDR) alcohol dehydrogenases that have a tightly bound NAD+/NADH cofactor that does not dissociate during the catalytic process. Instead, the cofactor is regenerated by a second substrate or electron carrier. While the in vivo electron acceptor is not known, N,N-dimethyl-4-nitrosoaniline (NDMA), which is reduced to 4-(hydroxylamino)-N,N-dimethylaniline, can serve this function in vitro. The enzyme from the Gram-positive bacterium Amycolatopsis methanolica can accept many primary alcohols as substrates, including benzylalcohol [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Van Ophem, P.W., Van Beeumen, J. and Duine, J.A. Nicotinoprotein [NAD(P)-containing] alcohol/aldehyde oxidoreductases. Purification and characterization of a novel type from Amycolatopsis methanolica. Eur. J. Biochem. 212 (1993) 819–826. [DOI] [PMID: 8385013]
2.  Piersma, S.R., Visser, A.J., de Vries, S. and Duine, J.A. Optical spectroscopy of nicotinoprotein alcohol dehydrogenase from Amycolatopsis methanolica: a comparison with horse liver alcohol dehydrogenase and UDP-galactose epimerase. Biochemistry 37 (1998) 3068–3077. [DOI] [PMID: 9485460]
3.  Schenkels, P. and Duine, J.A. Nicotinoprotein (NADH-containing) alcohol dehydrogenase from Rhodococcus erythropolis DSM 1069: an efficient catalyst for coenzyme-independent oxidation of a broad spectrum of alcohols and the interconversion of alcohols and aldehydes. Microbiology 146 (2000) 775–785. [DOI] [PMID: 10784035]
4.  Piersma, S.R., Norin, A., de Vries, S., Jornvall, H. and Duine, J.A. Inhibition of nicotinoprotein (NAD+-containing) alcohol dehydrogenase by trans-4-(N,N-dimethylamino)-cinnamaldehyde binding to the active site. J. Protein Chem. 22 (2003) 457–461. [PMID: 14690248]
5.  Norin, A., Piersma, S.R., Duine, J.A. and Jornvall, H. Nicotinoprotein (NAD+ -containing) alcohol dehydrogenase: structural relationships and functional interpretations. Cell. Mol. Life Sci. 60 (2003) 999–1006. [DOI] [PMID: 12827287]
[EC 1.1.99.36 created 2010]
 
 
EC 1.2.1.92     
Accepted name: 3,6-anhydro-α-L-galactose dehydrogenase
Reaction: 3,6-anhydro-α-L-galactopyranose + NAD(P)+ + H2O = 3,6-anhydro-L-galactonate + NAD(P)H + H+
Systematic name: 3,6-anhydro-α-L-galactopyranose:NAD(P)+ 1-oxidoredutase
Comments: The enzyme, characterized from the marine bacterium Vibrio sp. EJY3, is involved in a degradation pathway for 3,6-anhydro-α-L-galactose, a major component of the polysaccharides produced by red macroalgae, such as agarose and porphyran.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yun, E.J., Lee, S., Kim, H.T., Pelton, J.G., Kim, S., Ko H,-J., Choi I,-G. and Kim, K.H. The novel catabolic pathway of 3,6-anhydro-L-galactose, the main component of red macroalgae, in a marine bacterium. Environ. Microbiol. 17 (2014) 1677–1688. [DOI] [PMID: 25156229]
[EC 1.2.1.92 created 2014]
 
 
EC 2.3.1.79     
Accepted name: maltose O-acetyltransferase
Reaction: acetyl-CoA + maltose = CoA + 6-O-acetyl-α-D-glucopyranosyl-(1→4)-D-glucose
Other name(s): maltose transacetylase; maltose O-acetyltransferase; MAT
Systematic name: acetyl-CoA:maltose O-acetyltransferase
Comments: Not identical with EC 2.3.1.18, galactoside O-acetyltransferase. The acetyl group is added exclusively to the C6 position of glucose and to the C6 position of the non-reducing glucose residue of maltose [3]. Other substrates of this enzyme are glucose, which is a better substrate than maltose [2], and mannose and frucose, which are poorer substrates than maltose [2]. Isopropyl-β-thio-galactose, which is a good substrate for EC 2.3.1.118 is a poor substrate for this enzyme [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 81295-47-8
References:
1.  Freundlieb, S. and Boos, W. Maltose transacetylase of Escherichia coli: a preliminary report. Ann. Microbiol. (Paris) 133A (1982) 181–189. [PMID: 7041741]
2.  Brand, B. and Boos, W. Maltose transacetylase of Escherichia coli. Mapping and cloning of its structural, gene, mac, and characterization of the enzyme as a dimer of identical polypeptides with a molecular weight of 20,000. J. Biol. Chem. 266 (1991) 14113–14118. [PMID: 1856235]
3.  Lo Leggio, L., Dal Degan, F., Poulsen, P., Andersen, S.M. and Larsen, S. The structure and specificity of Escherichia coli maltose acetyltransferase give new insight into the LacA family of acyltransferases. Biochemistry 42 (2003) 5225–5235. [DOI] [PMID: 12731863]
[EC 2.3.1.79 created 1984]
 
 
EC 2.3.1.197     
Accepted name: dTDP-3-amino-3,6-dideoxy-α-D-galactopyranose 3-N-acetyltransferase
Reaction: acetyl-CoA + dTDP-3-amino-3,6-dideoxy-α-D-galactopyranose = CoA + dTDP-3-acetamido-3,6-dideoxy-α-D-galactopyranose
For diagram of dTDP-Fuc3NAc and dTDP-Fuc4NAc biosynthesis, click here
Other name(s): FdtC; dTDP-D-Fucp3N acetylase
Systematic name: acetyl-CoA:dTDP-3-amino-3,6-dideoxy-α-D-galactopyranose 3-N-acetyltransferase
Comments: The product, dTDP-3-acetamido-3,6-dideoxy-α-D-galactose, is a component of the glycan chain of the crystalline bacterial cell surface layer protein (S-layer glycoprotein) of Aneurinibacillus thermoaerophilus.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Pfoestl, A., Hofinger, A., Kosma, P. and Messner, P. Biosynthesis of dTDP-3-acetamido-3,6-dideoxy-α-D-galactose in Aneurinibacillus thermoaerophilus L420-91T. J. Biol. Chem. 278 (2003) 26410–26417. [DOI] [PMID: 12740380]
[EC 2.3.1.197 created 2012]
 
 
EC 2.3.1.210     
Accepted name: dTDP-4-amino-4,6-dideoxy-D-galactose acyltransferase
Reaction: acetyl-CoA + dTDP-4-amino-4,6-dideoxy-α-D-galactose = CoA + dTDP-4-acetamido-4,6-dideoxy-α-D-galactose
For diagram of dTDP-Fuc3NAc and dTDP-Fuc4NAc biosynthesis, click here
Glossary: dTDP-4-amino-4,6-dideoxy-α-D-galactose = dTDP-α-D-fucosamine
Other name(s): TDP-fucosamine acetyltransferase; WecD; RffC
Systematic name: acetyl-CoA:dTDP-4-amino-4,6-dideoxy-α-D-galactose N-acetyltransferase
Comments: The product, TDP-4-acetamido-4,6-dideoxy-D-galactose, is utilized in the biosynthesis of enterobacterial common antigen (ECA).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Hung, M.N., Rangarajan, E., Munger, C., Nadeau, G., Sulea, T. and Matte, A. Crystal structure of TDP-fucosamine acetyltransferase (WecD) from Escherichia coli, an enzyme required for enterobacterial common antigen synthesis. J. Bacteriol. 188 (2006) 5606–5617. [DOI] [PMID: 16855251]
[EC 2.3.1.210 created 2012]
 
 
EC 2.4.1.22     
Accepted name: lactose synthase
Reaction: UDP-α-D-galactose + D-glucose = UDP + lactose
Other name(s): UDP-galactose—glucose galactosyltransferase; N-acetyllactosamine synthase; uridine diphosphogalactose-glucose galactosyltransferase; lactose synthetase; UDP-galactose:D-glucose 4-β-D-galactotransferase; UDP-galactose:D-glucose 4-β-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:D-glucose 4-β-D-galactosyltransferase
Comments: The enzyme is a complex of two proteins, A and B. In the absence of the B protein (α-lactalbumin), the enzyme catalyses the transfer of galactose from UDP-α-D-galactose to N-acetylglucosamine (EC 2.4.1.90 N-acetyllactosamine synthase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9030-11-9
References:
1.  Fitzgerald, D.K., Brodbeck, U., Kiyosawa, I., Mawal, R., Colvin, B. and Ebner, K.E. α-Lactalbumin and the lactose synthetase reaction. J. Biol. Chem. 245 (1970) 2103–2108. [PMID: 5440844]
2.  Hill, R.L. and Brew, K. Lactose synthetase. Adv. Enzymol. Relat. Areas Mol. Biol. 43 (1975) 411–490. [PMID: 812340]
3.  Watkins, W.M. and Hassid, W.Z. The synthesis of lactose by particulate enzyme preparations from guinea pig and bovine mammary glands. J. Biol. Chem. 237 (1962) 1432–1440. [PMID: 14005251]
[EC 2.4.1.22 created 1965]
 
 
EC 2.4.1.23     
Accepted name: sphingosine β-galactosyltransferase
Reaction: UDP-α-D-galactose + sphingosine = UDP + psychosine
Other name(s): psychosine—UDP galactosyltransferase; galactosyl-sphingosine transferase; psychosine-uridine diphosphate galactosyltransferase; UDP-galactose:sphingosine O-galactosyl transferase; uridine diphosphogalactose-sphingosine β-galactosyltransferase; UDP-galactose:sphingosine 1-β-galactotransferase; UDP-galactose:sphingosine 1-β-galactosyltransferase
Systematic name: UDP-α-D-galactose:sphingosine 1-β-galactosyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9032-90-0
References:
1.  Cleland, W.W. and Kennedy, E.P. The enzymatic synthesis of psychosine. J. Biol. Chem. 235 (1960) 45–51. [PMID: 13810623]
[EC 2.4.1.23 created 1965]
 
 
EC 2.4.1.37     
Accepted name: fucosylgalactoside 3-α-galactosyltransferase
Reaction: UDP-α-D-galactose + α-L-fucosyl-(1→2)-D-galactosyl-R = UDP + α-D-galactosyl-(1→3)-[α-L-fucosyl(1→2)]-D-galactosyl-R (where R can be OH, an oligosaccharide or a glycoconjugate)
Other name(s): UDP-galactose:O-α-L-fucosyl(1→2)D-galactose α-D-galactosyltransferase; UDPgalactose:glycoprotein-α-L-fucosyl-(1,2)-D-galactose 3-α-D-galactosyltransferase; [blood group substance] α-galactosyltransferase; blood-group substance B-dependent galactosyltransferase; glycoprotein-fucosylgalactoside α-galactosyltransferase; histo-blood group B transferase; histo-blood substance B-dependent galactosyltransferase; UDP-galactose:α-L-fucosyl-1,2-D-galactoside 3-α-D-galactosyltransferase; UDP-galactose:α-L-fucosyl-(1→2)-D-galactoside 3-α-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:α-L-fucosyl-(1→2)-D-galactoside 3-α-D-galactosyltransferase
Comments: Acts on blood group substance, and can use a number of 2-fucosyl-galactosides as acceptors.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37257-33-3
References:
1.  Race, C., Ziderman, D. and Watkins, W.M. An α-D-galactosyltransferase associated with the blood-group B character. Biochem. J. 107 (1968) 733–735. [PMID: 16742598]
[EC 2.4.1.37 created 1972, modified 1999, modified 2002]
 
 
EC 2.4.1.38     
Accepted name: β-N-acetylglucosaminylglycopeptide β-1,4-galactosyltransferase
Reaction: UDP-α-D-galactose + N-acetyl-β-D-glucosaminylglycopeptide = UDP + β-D-galactosyl-(1→4)-N-acetyl-β-D-glucosaminylglycopeptide
Other name(s): UDP-galactose—glycoprotein galactosyltransferase; glycoprotein 4-β-galactosyl-transferase; β-N-acetyl-β1-4-galactosyltransferase; thyroid glycoprotein β-galactosyltransferase; glycoprotein β-galactosyltransferase; thyroid galactosyltransferase; uridine diphosphogalactose-glycoprotein galactosyltransferase; β-N-acetylglucosaminyl-glycopeptide β-1,4-galactosyltransferase; GalT; UDP-galactose:N-acetyl-β-D-glucosaminylglycopeptide β-1,4-galactosyltransferase; UDP-galactose:N-acetyl-β-D-glucosaminylglycopeptide 4-β-galactosyltransferase
Systematic name: UDP-α-D-galactose:N-acetyl-β-D-glucosaminylglycopeptide 4-β-galactosyltransferase
Comments: Terminal N-acetyl-β-D-glucosaminyl residues in polysaccharides, glycoproteins and glycopeptides can act as acceptor. High activity is shown towards such residues in branched-chain polysaccharides when these are linked by β-1,6-links to galactose residues; lower activity towards residues linked to galactose by β-1,3-links. A component of EC 2.4.1.22 (lactose synthase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37237-43-7
References:
1.  Beyer, T.A., Sadler, J.E., Rearick, J.I., Paulson, J.C. and Hill, R.L. Glucosyltransferases and their uses in assessing oligosaccharide structure and structure-function relationship. Adv. Enzymol. 52 (1981) 23–175. [PMID: 6784450]
2.  Blanken, W.M., Hooghwinkel, G.J.M. and van den Eijnden, D.H. Biosynthesis of blood-group I and i substances. Specificity of bovine colostrum β-N-acetyl-D-glucosaminide β1→4 galactosyltransferase. Eur. J. Biochem. 127 (1982) 547–552. [DOI] [PMID: 6816588]
3.  Blanken, W.M. and van den Eijnden, D.H. Biosynthesis of terminal Gal α 1→3Gal β 1→4GlcNAc-R oligosaccharide sequences on glycoconjugates. Purification and acceptor specificity of a UDP-Gal:N-acetyllactosaminide α 1→3-galactosyltransferase from calf thymus. J. Biol. Chem. 260 (1985) 12927–12934. [PMID: 3932335]
4.  Spiro, M.H. and Spiro, R.G. Glycoprotein biosynthesis: studies on thyroglobulin. Thyroid galactosyltransferase. J. Biol. Chem. 243 (1968) 6529–6537. [PMID: 5726898]
[EC 2.4.1.38 created 1972, modified 1976, modified 1980, modified 1986]
 
 
EC 2.4.1.40     
Accepted name: glycoprotein-fucosylgalactoside α-N-acetylgalactosaminyltransferase
Reaction: UDP-N-acetyl-α-D-galactosamine + glycoprotein-α-L-fucosyl-(1→2)-D-galactose = UDP + glycoprotein-N-acetyl-α-D-galactosaminyl-(1→3)-[α-L-fucosyl-(1→2)]-D-galactose
Other name(s): A-transferase; histo-blood group A glycosyltransferase (Fucα1→2Galα1→3-N-acetylgalactosaminyltransferase); UDP-GalNAc:Fucα1→2Galα1→3-N-acetylgalactosaminyltransferase; α-3-N-acetylgalactosaminyltransferase; blood-group substance α-acetyltransferase; blood-group substance A-dependent acetylgalactosaminyltransferase; fucosylgalactose acetylgalactosaminyltransferase; histo-blood group A acetylgalactosaminyltransferase; histo-blood group A transferase; UDP-N-acetyl-D-galactosamine:α-L-fucosyl-1,2-D-galactose 3-N-acetyl-D-galactosaminyltransferase; UDP-N-acetyl-D-galactosamine:glycoprotein-α-L-fucosyl-(1,2)-D-galactose 3-N-acetyl-D-galactosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-galactosamine:glycoprotein-α-L-fucosyl-(1→2)-D-galactose 3-N-acetyl-D-galactosaminyltransferase
Comments: Acts on blood group substance, and can use a number of 2-fucosyl-galactosides as acceptors.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9067-69-0
References:
1.  Kobata, A., Grollman, E.F. and Ginsburg, V. An enzymic basis for blood type A in humans. Arch. Biochem. Biophys. 124 (1968) 609–612. [DOI] [PMID: 5661629]
2.  Takeya, A., Hosomi, O. and Ishiura, M. Complete purification and characterization of α-3-N-acetylgalactosaminyltransferase encoded by the human blood group A gene. J. Biochem. (Tokyo) 107 (1990) 360–368. [PMID: 2341371]
3.  Yates, A.D., Feeney, J., Donald, A.S.R. and Watkins, W.M. Characterization of a blood-group A-active tetrasaccharide synthesized by a blood-group-B gene-specified glycosyltransferase. Carbohydr. Res. 130 (1984) 251–260. [DOI] [PMID: 6434182]
[EC 2.4.1.40 created 1972, modified 1999]
 
 
EC 2.4.1.44     
Accepted name: lipopolysaccharide 3-α-galactosyltransferase
Reaction: UDP-α-D-galactose + lipopolysaccharide = UDP + 3-α-D-galactosyl-[lipopolysaccharide glucose]
Other name(s): UDP-galactose:lipopolysaccharide α,3-galactosyltransferase; UDP-galactose:polysaccharide galactosyltransferase; uridine diphosphate galactose:lipopolysaccharide α-3-galactosyltransferase; uridine diphosphogalactose-lipopolysaccharide α,3-galactosyltransferase; UDP-galactose:lipopolysaccharide 3-α-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:lipopolysaccharide 3-α-D-galactosyltransferase
Comments: Transfers α-D-galactosyl residues to D-glucose in the partially completed core of lipopolysaccharide [cf. EC 2.4.1.56 (lipopolysaccharide N-acetylglucosaminyltransferase), EC 2.4.1.58 (lipopolysaccharide glucosyltransferase I) and EC 2.4.1.73 (lipopolysaccharide glucosyltransferase II)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9073-98-7
References:
1.  Endo, A. and Rothfield, L. Studies of a phospholipid-requiring bacterial enzyme. I. Purification and properties of uridine diphosphate galactose: lipopolysaccharide α-3-galactosyl transferase. Biochemistry 8 (1969) 3500–3507. [PMID: 4898284]
2.  Wollin, R., Creeger, E.S., Rothfield, L.I., Stocker, B.A.D. and Lindberg, A.A. Salmonella typhimurium mutants defective in UDP-D-galactose:lipopolysaccharide α-1,6-D-galactosyltransferase. Structural, immunochemical, and enzymologic studies of rfaB mutants. J. Biol. Chem. 258 (1983) 3769–3774. [PMID: 6403519]
[EC 2.4.1.44 created 1972, modified 2002]
 
 
EC 2.4.1.45      
Deleted entry: 2-hydroxyacylsphingosine 1-β-galactosyltransferase, now included with EC 2.4.1.47, N-acylsphingosine galactosyltransferase
[EC 2.4.1.45 created 1972, deleted 2016]
 
 
EC 2.4.1.46     
Accepted name: monogalactosyldiacylglycerol synthase
Reaction: UDP-α-D-galactose + a 1,2-diacyl-sn-glycerol = UDP + a 1,2-diacyl-3-O-(β-D-galactosyl)-sn-glycerol
For diagram of galactosyl diacylglycerol, click here
Other name(s): uridine diphosphogalactose-1,2-diacylglycerol galactosyltransferase; UDP-galactose:diacylglycerol galactosyltransferase; MGDG synthase; UDP galactose-1,2-diacylglycerol galactosyltransferase; UDP-galactose-diacylglyceride galactosyltransferase; UDP-galactose:1,2-diacylglycerol 3-β-D-galactosyltransferase; 1β-MGDG; 1,2-diacylglycerol 3-β-galactosyltransferase; UDP-galactose:1,2-diacyl-sn-glycerol 3-β-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:1,2-diacyl-sn-glycerol 3-β-D-galactosyltransferase
Comments: This enzyme adds only one galactosyl group to the diacylglycerol; EC 2.4.1.241, digalactosyldiacylglycerol synthase, adds a galactosyl group to the product of the above reaction. There are three isoforms in Arabidopsis that can be divided into two types, A-type (MGD1) and B-type (MGD2 and MGD3). MGD1 is the isoform responsible for the bulk of monogalactosyldiacylglycerol (MGDG) synthesis in Arabidopsis [4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37277-55-7
References:
1.  Veerkamp, J.H. Biochemical changes in Bifidobacterium bifidum var. pennsylvanicus after cell-wall inhibition. VI. Biosynthesis of the galactosyldiglycerides. Biochim. Biophys. Acta 348 (1974) 23–34. [DOI] [PMID: 4838219]
2.  Wenger, D.A., Petipas, J.W. and Pieringer, R.A. The metabolism of glyceride glycolipids. II. Biosynthesis of monogalactosyl diglyceride from uridine diphosphate galactose and diglyceride in brain. Biochemistry 7 (1968) 3700–3707. [PMID: 5681471]
3.  Miège, C., Maréchal, E., Shimojima, M., Awai, K., Block, M.A., Ohta, H., Takamiya, K., Douce, R. and Joyard, J. Biochemical and topological properties of type A MGDG synthase, a spinach chloroplast envelope enzyme catalyzing the synthesis of both prokaryotic and eukaryotic MGDG. Eur. J. Biochem. 265 (1999) 990–1001. [DOI] [PMID: 10518794]
4.  Benning, C. and Ohta, H. Three enzyme systems for galactoglycerolipid biosynthesis are coordinately regulated in plants. J. Biol. Chem. 280 (2005) 2397–2400. [DOI] [PMID: 15590685]
[EC 2.4.1.46 created 1972, modified 2003, modified 2005]
 
 
EC 2.4.1.47     
Accepted name: N-acylsphingosine galactosyltransferase
Reaction: UDP-α-D-galactose + a ceramide = UDP + a β-D-galactosylceramide
Glossary: a ceramide = an N-acylsphingosine
Other name(s): UGT8 (gene name); CGT (gene name); UDP galactose-N-acylsphingosine galactosyltransferase; uridine diphosphogalactose-acylsphingosine galactosyltransferase; UDP-galactose:N-acylsphingosine D-galactosyltransferase; UDP-α-D-galactose:N-acylsphingosine D-galactosyltransferase; 2-hydroxyacylsphingosine 1-β-galactosyltransferase
Systematic name: UDP-α-D-galactose:N-acylsphingosine β-D-galactosyltransferase (configuration-inverting)
Comments: This membrane-bound, endoplasmic reticulum-located enzyme catalyses the last step in the synthesis of galactocerebrosides, which are abundant sphingolipids of the myelin membrane of the central nervous system and peripheral nervous system. It has a strong preference for ceramides that contain hydroxylated fatty acids.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37277-56-8
References:
1.  Fujino, Y. and Nakano, M. Enzymic synthesis of cerebroside from ceramide and uridine diphosphate galactose. Biochem. J. 113 (1969) 573–575. [PMID: 5807218]
2.  Morell, P. and Radin, N.S. Synthesis of cerebroside by brain from uridine diphosphate galactose and ceramide containing hydroxy fatty acid. Biochemistry 8 (1969) 506–512. [PMID: 5793706]
3.  Morell, P., Costantino-Ceccarini, E. and Radin, N.S. The biosynthesis by brain microsomes of cerebrosides containing nonhydroxy fatty acids. Arch. Biochem. Biophys. 141 (1970) 738–748. [DOI] [PMID: 5497154]
4.  Basu, S., Schultz, A., Basu, M. and Roseman, S. Enzymatic synthesis of galactocerebroside by a galactosyltransferase from embryonic chicken brain. J. Biol. Chem. 243 (1971) 4272–4279. [PMID: 5090043]
5.  Akanuma, H. and Kishimoto, Y. Synthesis of ceramides and cerebrosides containing both α-hydroxy and nonhydroxy fatty acids from lignoceroyl-CoA by rat brain microsomes. J. Biol. Chem. 254 (1979) 1050–1060. [PMID: 762114]
6.  Koul, O. and Jungalwala, F.B. UDP-galactose:ceramide galactosyltransferase of rat central-nervous-system myelin. Biochem. J. 194 (1981) 633–637. [PMID: 7306007]
7.  Schulte, S. and Stoffel, W. Ceramide UDP-galactosyltransferase from myelinating rat brain: purification, cloning, and expression. Proc. Natl. Acad. Sci. USA 90 (1993) 10265–10269. [DOI] [PMID: 7694285]
8.  Sprong, H., Kruithof, B., Leijendekker, R., Slot, J.W., van Meer, G. and van der Sluijs, P. UDP-galactose:ceramide galactosyltransferase is a class I integral membrane protein of the endoplasmic reticulum. J. Biol. Chem. 273 (1998) 25880–25888. [DOI] [PMID: 9748263]
9.  Fewou, S.N., Bussow, H., Schaeren-Wiemers, N., Vanier, M.T., Macklin, W.B., Gieselmann, V. and Eckhardt, M. Reversal of non-hydroxy:α-hydroxy galactosylceramide ratio and unstable myelin in transgenic mice overexpressing UDP-galactose:ceramide galactosyltransferase. J. Neurochem. 94 (2005) 469–481. [DOI] [PMID: 15998297]
[EC 2.4.1.47 created 1972]
 
 
EC 2.4.1.48     
Accepted name: heteroglycan α-mannosyltransferase
Reaction: GDP-mannose + heteroglycan = GDP + 2(or 3)-α-D-mannosyl-heteroglycan
Other name(s): GDP mannose α-mannosyltransferase; guanosine diphosphomannose-heteroglycan α-mannosyltransferase
Systematic name: GDP-mannose:heteroglycan 2-(or 3-)-α-D-mannosyltransferase
Comments: The acceptor is a heteroglycan primer containing mannose, galactose and xylose. 1,2- and 1,3-mannosyl bonds are formed.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37277-57-9
References:
1.  Ankel, H., Ankel, E., Schutzbach, J. and Garancis, J.C. Mannosyl transfer in Cryptococcus laurentii. J. Biol. Chem. 245 (1970) 3945–3955. [PMID: 5492958]
[EC 2.4.1.48 created 1972]
 
 
EC 2.4.1.50     
Accepted name: procollagen galactosyltransferase
Reaction: UDP-α-D-galactose + [procollagen]-(5R)-5-hydroxy-L-lysine = UDP + [procollagen]-(5R)-5-O-(β-D-galactosyl)-5-hydroxy-L-lysine
Other name(s): hydroxylysine galactosyltransferase; collagen galactosyltransferase; collagen hydroxylysyl galactosyltransferase; UDP galactose-collagen galactosyltransferase; uridine diphosphogalactose-collagen galactosyltransferase; UDPgalactose:5-hydroxylysine-collagen galactosyltransferase; UDP-galactose:procollagen-5-hydroxy-L-lysine D-galactosyltransferase; UDP-α-D-galactose:procollagen-5-hydroxy-L-lysine D-galactosyltransferase
Systematic name: UDP-α-D-galactose:[procollagen]-(5R)-5-hydroxy-L-lysine 5-β-D-galactosyltransferase (configuration-inverting)
Comments: Involved in the synthesis of carbohydrate units in the complement system (cf. EC 2.4.1.66 procollagen glucosyltransferase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-07-3
References:
1.  Bosmann, H.B. and Eylar, E.H. Glycoprotein biosynthesis: the biosynthesis of the hydroxylysine-galactose linkage in collagen. Biochem. Biophys. Res. Commun. 33 (1968) 340–346. [DOI] [PMID: 5722225]
2.  Kivirikko, K.I. and Myllyla, R. In: Hall, D.A. and Jackson, D.S. (Ed.), International Review of Connective Tissue Research, vol. 8, Academic Press, New York, 1979, p. 23.
3.  Schegg, B., Hulsmeier, A.J., Rutschmann, C., Maag, C. and Hennet, T. Core glycosylation of collagen is initiated by two β(1-O)galactosyltransferases. Mol. Cell Biol. 29 (2009) 943–952. [DOI] [PMID: 19075007]
[EC 2.4.1.50 created 1972, modified 1983]
 
 
EC 2.4.1.56     
Accepted name: lipopolysaccharide N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + lipopolysaccharide = UDP + N-acetyl-α-D-glucosaminyllipopolysaccharide
Other name(s): UDP-N-acetylglucosamine-lipopolysaccharide N-acetylglucosaminyltransferase; uridine diphosphoacetylglucosamine-lipopolysaccharide acetylglucosaminyltransferase; UDP-N-acetyl-D-glucosamine:lipopolysaccharide N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:lipopolysaccharide N-acetyl-D-glucosaminyltransferase
Comments: Transfers N-acetylglucosaminyl residues to a D-galactose residue in the partially completed lipopolysaccharide core [cf. EC 2.4.1.44 (lipopolysaccharide 3-α-galactosyltransferase), EC 2.4.1.58 (lipopolysaccharide glucosyltransferase I) and EC 2.4.1.73 (lipopolysaccharide glucosyltransferase II)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37277-64-8
References:
1.  Osborn, M.J. and D'Ari, L. Enzymatic incorporation of N-acetylglucosamine into cell wall lipopolysaccharide in a mutant strain of Salmonella typhimurium. Biochem. Biophys. Res. Commun. 16 (1964) 568–575. [DOI] [PMID: 5332855]
[EC 2.4.1.56 created 1972]
 
 
EC 2.4.1.58     
Accepted name: lipopolysaccharide glucosyltransferase I
Reaction: UDP-glucose + lipopolysaccharide = UDP + D-glucosyl-lipopolysaccharide
Other name(s): UDP-glucose:lipopolysaccharide glucosyltransferase I; lipopolysaccharide glucosyltransferase; uridine diphosphate glucose:lipopolysaccharide glucosyltransferase I; uridine diphosphoglucose-lipopolysaccharide glucosyltransferase
Systematic name: UDP-glucose:lipopolysaccharide glucosyltransferase
Comments: Transfers glucosyl residues to the backbone portion of lipopolysaccharide [cf. EC 2.4.1.44 (lipopolysaccharide 3-α-galactosyltransferase, EC 2.4.1.56 (lipopolysaccharide N-acetylglucosaminyltransferase) and EC 2.4.1.73 (lipopolysaccharide glucosyltransferase II)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9074-00-4
References:
1.  Müller, E., Hinckley, A. and Rothfield, L. Studies of phospholipid-requiring bacterial enzymes. 3. Purification and properties of uridine diphosphate glucose:lipopolysaccharide glucosyltransferase I. J. Biol. Chem. 247 (1972) 2614–2622. [PMID: 4553445]
2.  Rothfield, L., Osborn, M.J. and Horecker, B.L. Biosynthesis of bacterial lipopolysaccharide. II. Incorporation of glucose and galactose catalyzed by particulate and soluble enzymes in salmonella. J. Biol. Chem. 239 (1964) 2788–2795. [PMID: 14217875]
[EC 2.4.1.58 created 1972]
 
 
EC 2.4.1.60     
Accepted name: CDP-abequose:α-D-Man-(1→4)-α-L-Rha-(1→3)-α-D-Gal-PP-Und α-1,3-abequosyltransferase
Reaction: CDP-α-D-abequose + α-D-Man-(1→4)-α-L-Rha-(1→3)-α-D-Gal-PP-Und = CDP + α-D-Abe-(1→3)-α-D-Man-(1→4)-α-L-Rha-(1→3)-α-D-Gal-PP-Und
Glossary: D-abequose = 3,6-deoxy-D-xylo-hexose = 3,6-deoxy-D-galactose = 3-deoxy-D-fucose
α-D-Man-(1→4)-α-L-Rha-(1→3)-α-D-Gal-PP-Und = α-D-mannopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
α-D-Abe-(1→3)-α-D-Man-(1→4)-α-L-Rha-(1→3)-α-D-Gal-PP-Und = α-D-abequopyranosyl-(1→3)-α-D-mannopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): wbaV (gene name); rfbV (gene name); trihexose diphospholipid abequosyltransferase; abequosyltransferase (ambiguous); CDP-α-D-abequose:Man(α1→4)Rha(α1→3)Gal(β-1)-diphospholipid D-abequosyltransferase
Systematic name: CDP-α-D-abequose:α-D-mannopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol 3III-α-abequosyltransferase (configuration retaining)
Comments: The enzyme from Salmonella participates in the biosynthesis of the repeat unit of O antigens produced by strains that belong to the A, B and D1-D3 groups. The enzyme is able to transfer abequose, paratose, or tyvelose, depending on the availability of the specific dideoxyhexose in a particular strain.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37277-67-1
References:
1.  Osborn, M.J. and Weiner, I.M. Biosynthesis of a bacterial lipopolysaccharide. VI. Mechanism of incorporation of abequose into the O-antigen of Salmonella typhimurium. J. Biol. Chem. 243 (1968) 2631–2639. [PMID: 4297268]
2.  Liu, D., Lindqvist, L. and Reeves, P.R. Transferases of O-antigen biosynthesis in Salmonella enterica: dideoxyhexosyltransferases of groups B and C2 and acetyltransferase of group C2. J. Bacteriol. 177 (1995) 4084–4088. [DOI] [PMID: 7541787]
[EC 2.4.1.60 created 1972, modified 2012, modified 2021]
 
 
EC 2.4.1.62     
Accepted name: ganglioside galactosyltransferase
Reaction: UDP-α-D-galactose + an N-acetyl-β-D-galactosaminyl-(1→4)-[α-N-acetylneuraminyl-(2→3)]-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide = UDP + a β-D-galactosyl-(1→3)-N-acetyl-β-D-galactosaminyl-(1→4)-[α-N-acetylneuraminyl-(2→3)]-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide
For diagram of ganglioside biosynthesis, click here
Glossary: N-acetyl-β-D-galactosaminyl-(1→4)-[α-N-acetylneuraminyl-(2→3)]-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide = ganglioside GM2
a β-D-galactosyl-(1→3)-N-acetyl-β-D-galactosaminyl-(1→4)-[α-N-acetylneuraminyl-(2→3)]-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide = gangloside GM1a
Other name(s): UDP-galactose—ceramide galactosyltransferase; uridine diphosphogalactose-ceramide galactosyltransferase; UDP galactose-LAC Tet-ceramide α-galactosyltransferase; UDP-galactose-GM2 galactosyltransferase; uridine diphosphogalactose-GM2 galactosyltransferase; uridine diphosphate D-galactose:glycolipid galactosyltransferase; UDP-galactose:N-acetylgalactosaminyl-(N-acetylneuraminyl) galactosyl-glucosyl-ceramide galactosyltransferase; UDP-galactose-GM2 ganglioside galactosyltransferase; GM1-synthase; UDP-galactose:N-acetyl-D-galactosaminyl-(N-acetylneuraminyl)-D-galactosyl-D-glucosyl-N-acylsphingosine β-1,3-D-galactosyltransferase; UDP-galactose:N-acetyl-D-galactosaminyl-(N-acetylneuraminyl)-D-galactosyl-(1→4)-β-D-glucosyl-N-acylsphingosine 3-β-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:N-acetyl-β-D-galactosaminyl-(1→4)-[α-N-acetylneuraminyl-(2→3)]-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide 3-β-D-galactosyltransferase
Comments: The substrate is also known as gangloside GM2, the product as gangloside GM1a
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37217-28-0
References:
1.  Basu, S., Kaufman, B. and Roseman, S. Conversion of Tay-Sachs ganglioside to monosialoganglioside by brain uridine diphosphate D-galactose: glycolipid galactosyltransferase. J. Biol. Chem. 240 (1965) 4115–4117. [PMID: 5842076]
2.  Yip, G.B. and Dain, J.A. The enzymic synthesis of ganglioside. II. UDP-galactose: N-acetylgalactosaminyl-(N-acetylneuraminyl)galactosyl-glucosyl-ceramide galactosyltransferase in rat brain. Biochim. Biophys. Acta 206 (1970) 252–260. [DOI] [PMID: 4987145]
3.  Yip, M.C.M. and Dain, J.A. Frog brain uridine diphosphate galactose-N-acetylgalactosaminyl-N-acetylneuraminylgalactosylglucosylceramide galactosyltransferase. Biochem. J. 118 (1970) 247–252. [PMID: 5484669]
[EC 2.4.1.62 created 1972, modified 2013]
 
 
EC 2.4.1.65     
Accepted name: 3-galactosyl-N-acetylglucosaminide 4-α-L-fucosyltransferase
Reaction: GDP-β-L-fucose + β-D-galactosyl-(1→3)-N-acetyl-β-D-glucosaminyl-R = GDP + β-D-galactosyl-(1→3)-[α-L-fucosyl-(1→4)]-N-acetyl-β-D-glucosaminyl-R
For diagram of reaction, click here
Other name(s): (Lea)-dependent (α-3/4)-fucosyltransferase; α(1,3/1,4) fucosyltransferase III; α-(1→4)-L-fucosyltransferase; α-4-L-fucosyltransferase; β-acetylglucosaminylsaccharide fucosyltransferase; FucT-II; Lewis α-(1→3/4)-fucosyltransferase; Lewis blood group α-(1→3/4)-fucosyltransferase; Lewis(Le) blood group gene-dependent α-(1→3/4)-L-fucosyltransferase; blood group Lewis α-4-fucosyltransferase; blood-group substance Lea-dependent fucosyltransferase; guanosine diphosphofucose-β-acetylglucosaminylsaccharide 4-α-L-fucosyltransferase; guanosine diphosphofucose-glycoprotein 4-α-L-fucosyltransferase; guanosine diphosphofucose-glycoprotein 4-α-fucosyltransferase; 3-α-galactosyl-N-acetylglucosaminide 4-α-L-fucosyltransferase; GDP-β-L-fucose:3-β-D-galactosyl-N-acetyl-D-glucosaminyl-R 4I-α-L-fucosyltransferase; GDP-L-fucose:3-β-D-galactosyl-N-acetyl-D-glucosaminyl-R 4I-α-L-fucosyltransferase
Systematic name: GDP-β-L-fucose:β-D-galactosyl-(1→3)-N-acetyl-β-D-glucosaminyl-R 4I-α-L-fucosyltransferase (configuration-inverting)
Comments: This enzyme is the product of the Lewis blood group gene. Normally acts on a glycoconjugate where R (see reaction) is a glycoprotein or glycolipid. Although it is a 4-fucosyltransferase, it has a persistent 3-fucosyltransferase activity towards the glucose residue in free lactose. This enzyme fucosylates on O-4 of an N-acetylglucosamine that carries a galactosyl group on O-3, unlike EC 2.4.1.152, 4-galactosyl-N-acetylglucosaminide 3-α-L-fucosyltransferase, which fucosylates on O-3 of an N-acetylglucosamine that carries a galactosyl group on O-4. Enzymes catalysing the 4-α-fucosylation of the GlcNAc in β-D-Gal-(1→3)-β-GlcNAc sequences (with some activity also as 3-α-fucosyltransferases) are present in plants, where the function in vivo is the modification of N-glycans. In addition, the fucTa gene of Helicobacter strain UA948 encodes a fucosyltransferase with both 3-α- and 4-α-fucosyltransferase activities.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37277-69-3
References:
1.  Prieels, J.-P., Monnom, D., Dolmans, M., Beyer, T.A. and Hill, R.L. Co-purification of the Lewis blood group N-acetylglucosaminide α1→4 fucosyltransferase and an N-acetylglucosaminide α1→3 fucosyltransferase from human milk. J. Biol. Chem. 256 (1981) 10456–10463. [PMID: 7287719]
2.  Rasko, D.A., Wang, G., Palcic, M.M. and Taylor, D.E. Cloning and characterization of the α(1,3/4) fucosyltransferase of Helicobacter pylori. J. Biol. Chem. 275 (2000) 4988–4994. [DOI] [PMID: 10671538]
3.  Wilson, I.B.H. Identification of a cDNA encoding a plant Lewis-type α1,4-fucosyltransferase. Glycoconj. J. 18 (2001) 439–447. [PMID: 12084979]
4.  Ma, B., Wang, G., Palcic, M.M., Hazes, B. and Taylor, D.E. C-terminal amino acids of Helicobacter pylori α1,3/4 fucosyltransferases determine type I and type II transfer. J. Biol. Chem. 278 (2003) 21893–21900. [DOI] [PMID: 12676935]
[EC 2.4.1.65 created 1972, modified 2001, modified twice 2002]
 
 
EC 2.4.1.73     
Accepted name: lipopolysaccharide glucosyltransferase II
Reaction: UDP-glucose + lipopolysaccharide = UDP + α-D-glucosyl-lipopolysaccharide
Other name(s): uridine diphosphoglucose-galactosylpolysaccharide glucosyltransferase
Systematic name: UDP-glucose:galactosyl-lipopolysaccharide α-D-glucosyltransferase
Comments: Transfers glucosyl residues to the D-galactosyl-D-glucosyl side-chains in the partially completed core of lipopolysaccharides. cf. EC 2.4.1.44 (lipopolysaccharide 3-α-galactosyltransferase), EC 2.4.1.56 (lipopolysaccharide N-acetylglucosaminyltransferase) and EC 2.4.1.58 (lipopolysaccharide glucosyltransferase I).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 51004-27-4
References:
1.  Edstrom, R.D. and Heath, E.C. The biosynthesis of cell wall lipopolysaccharide in Escherichia coli. VI. Enzymatic transfer of galactose, glucose, N-acetylglucosamine, and colitose into the polymer. J. Biol. Chem. 242 (1967) 3581–3588. [PMID: 5341482]
[EC 2.4.1.73 created 1972]
 
 
EC 2.4.1.74     
Accepted name: glycosaminoglycan galactosyltransferase
Reaction: UDP-α-D-galactose + glycosaminoglycan = UDP + D-galactosylglycosaminoglycan
Other name(s): uridine diphosphogalactose-mucopolysaccharide galactosyltransferase; UDP-galactose:glycosaminoglycan D-galactosyltransferase
Systematic name: UDP-α-D-galactose:glycosaminoglycan D-galactosyltransferase
Comments: Involved in the biosynthesis of galactose-containing glycosaminoglycan of the ameboid protozoan Dictyostelium discoideum.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 51004-28-5
References:
1.  Sussman, M. and Osborn, M.J. UDP-glucose polysaccharide transferase in the cellular slime mold Dictyostelium discoideum: appearance and dissappearance of activity during cell differentiation. Proc. Natl. Acad. Sci. USA 52 (1964) 81–87. [PMID: 14192661]
[EC 2.4.1.74 created 1972, modified 1980]
 
 
EC 2.4.1.86     
Accepted name: N-acetyl-β-D-glucosaminide β-(1,3)-galactosyltransferase
Reaction: UDP-α-D-galactose + N-acetyl-β-D-glucosaminyl-R = UDP + β-D-galactosyl-(1→3)-N-acetyl-β-D-glucosaminyl-R
For diagram of lactotetraosylceramide biosynthesis, click here
Other name(s): B3GALT1 (gene name); uridine diphosphogalactose-acetyl-glucosaminylgalactosylglucosylceramide galactosyltransferase; GalT-4; UDP-galactose:N-acetyl-D-glucosaminyl-1,3-D-galactosyl-1,4-D-glucosylceramide β-D-galactosyltransferase; UDP-galactose:N-acetyl-D-glucosaminyl-(1→3)-D-galactosyl-(1→4)-D-glucosylceramide 3-β-D-galactosyltransferase; UDP-galactose:N-acetyl-β-D-glucosaminyl-(1→3)-β-D-galactosyl-(1→4)-β-D-glucosylceramide 3-β-D-galactosyltransferase; UDP-galactose:N-acetyl-β-D-glucosaminyl-(1→3)-β-D-galactosyl-(1→4)-β-D-glucosyl(1↔1)ceramide 3-β-D-galactosyltransferase; UDP-galactose:N-acetyl-β-D-glucosaminyl-(1→3)-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide 3-β-D-galactosyltransferase; glucosaminylgalactosylglucosylceramide β-galactosyltransferase; UDP-α-D-galactose:N-acetyl-β-D-glucosaminyl-(1→3)-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide 3-β-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:N-acetyl-β-D-glucosaminyl-R 3-β-D-galactosyltransferase
Comments: The enzyme transfers galactose from UDP-α-D-galactose to the 3-position of substrates with a non-reducing terminal N-acetyl-β-D-glucosamine (β-GlcNAc) residue. It can act on both glycolipids and glycoproteins, generating a structure known as the type 1 histo-blood group antigen precursor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9073-46-5
References:
1.  Basu, M. and Basu, S. Enzymatic synthesis of a tetraglycosylceramide by a galactosyltransferase from rabbit bone marrow. J. Biol. Chem. 247 (1972) 1489–1495. [PMID: 4335001]
2.  Basu, M., Presper, K.A., Basu, S., Hoffman, L.M. and Brooks, S.E. Differential activities of glycolipid glycosyltransferases in Tay-Sachs disease: studies in cultured cells from cerebrum. Proc. Natl. Acad. Sci. USA 76 (1979) 4270–4274. [DOI] [PMID: 291963]
3.  Amado, M., Almeida, R., Carneiro, F., Levery, S.B., Holmes, E.H., Nomoto, M., Hollingsworth, M.A., Hassan, H., Schwientek, T., Nielsen, P.A., Bennett, E.P. and Clausen, H. A family of human β3-galactosyltransferases. Characterization of four members of a UDP-galactose:β-N-acetyl-glucosamine/β-nacetyl-galactosamine β-1,3-galactosyltransferase family. J. Biol. Chem. 273 (1998) 12770–12778. [DOI] [PMID: 9582303]
4.  Amado, M., Almeida, R., Schwientek, T. and Clausen, H. Identification and characterization of large galactosyltransferase gene families: galactosyltransferases for all functions. Biochim. Biophys. Acta 1473 (1999) 35–53. [DOI] [PMID: 10580128]
5.  Bardoni, A., Valli, M. and Trinchera, M. Differential expression of β1,3galactosyltransferases in human colon cells derived from adenocarcinomas or normal mucosa. FEBS Lett. 451 (1999) 75–80. [DOI] [PMID: 10356986]
[EC 2.4.1.86 created 1976, modified 2017]
 
 
EC 2.4.1.87     
Accepted name: N-acetyllactosaminide 3-α-galactosyltransferase
Reaction: UDP-α-D-galactose + β-D-galactosyl-(1→4)-β-N-acetyl-D-glucosaminyl-R = UDP + α-D-galactosyl-(1→3)-β-D-galactosyl-(1→4)-β-N-acetylglucosaminyl-R (where R can be OH, an oligosaccharide or a glycoconjugate)
Other name(s): α-galactosyltransferase; UDP-Gal:β-D-Gal(1,4)-D-GlcNAc α(1,3)-galactosyltransferase; UDP-Gal:N-acetyllactosaminide α(1,3)-galactosyltransferase; UDP-Gal:N-acetyllactosaminide α-1,3-D-galactosyltransferase; UDP-Gal:Galβ1→4GlcNAc-R α1→3-galactosyltransferase; UDP-galactose-acetyllactosamine α-D-galactosyltransferase; UDPgalactose:β-D-galactosyl-β-1,4-N-acetyl-D-glucosaminyl-glycopeptide α-1,3-D-galactosyltransferase; glucosaminylglycopeptide α-1,3-galactosyltransferase; uridine diphosphogalactose-acetyllactosamine α1→3-galactosyltransferase; uridine diphosphogalactose-acetyllactosamine galactosyltransferase; uridine diphosphogalactose-galactosylacetylglucosaminylgalactosylglucosylceramide galactosyltransferase; β-D-galactosyl-N-acetylglucosaminylglycopeptide α-1,3-galactosyltransferase; UDP-galactose:N-acetyllactosaminide 3-α-D-galactosyltransferase; UDP-galactose:β-D-galactosyl-1,4-β-N-acetyl-D-glucosaminyl-R 3-α-D-galactosyltransferase; UDP-galactose:β-D-galactosyl-(1→4)-β-N-acetyl-D-glucosaminyl-R 3-α-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:β-D-galactosyl-(1→4)-β-N-acetyl-D-glucosaminyl-R 3-α-D-galactosyltransferase
Comments: Acts on β-galactosyl-1,4-N-acetylglucosaminyl termini on asialo-α1-acid glycoprotein and N-acetyllactosamine (β-D-galactosyl-1,4-N-acetyl-β-D-glucosamine), but not on 2′-fucosylated-N-acetyllactosamine. The non-reducing terminal N-acetyllactosamine residues of glycoproteins can also act as acceptor. Now includes EC 2.4.1.124 and EC 2.4.1.151.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 128449-51-4
References:
1.  Basu, M. and Basu, S. Enzymatic synthesis of a blood group B-related pentaglycosylceramide by an α-galactosyltransferase from rabbit bone marrow. J. Biol. Chem. 248 (1973) 1700–1706. [PMID: 4632915]
2.  Blanken, W.M. and van den Eijnden, D.H. Biosynthesis of terminal Gal α 1→3Gal β 1→4GlcNAc-R oligosaccharide sequences on glycoconjugates. Purification and acceptor specificity of a UDP-Gal:N-acetyllactosaminide α 1→3-galactosyltransferase from calf thymus. J. Biol. Chem. 260 (1985) 12927–12934. [PMID: 3932335]
3.  Blake, D.A. and Goldstein, I.J. An α-D-galactosyltransferase activity in Ehrlich ascites tumor cells. Biosynthesis and characterization of a trisaccharide (α-D-galactose-(1→3)-N-acetyllactosamine). J. Biol. Chem. 256 (1981) 5387–5393. [PMID: 6787040]
[EC 2.4.1.87 created 1976, modified 1989, modified 2002 (EC 2.4.1.124 created 1984, incorporated 2002, EC 2.4.1.151 created 1984, incorporated 2002)]
 
 
EC 2.4.1.90     
Accepted name: N-acetyllactosamine synthase
Reaction: UDP-α-D-galactose + N-acetyl-D-glucosamine = UDP + N-acetyllactosamine
Other name(s): UDP-galactoseN-acetylglucosamine β-D-galactosyltransferase; uridine diphosphogalactose-acetylglucosamine galactosyltransferase; β-1,4-galactosyltransferase; acetyllactosamine synthetase; lactosamine synthase; lactosamine synthetase; lactose synthetase A protein; N-acetyllactosamine synthetase; UDP-galactose N-acetylglucosamine β-4-galactosyltransferase; UDP-galactose-acetylglucosamine galactosyltransferase; UDP-galactose-N-acetylglucosamine β-1,4-galactosyltransferase; UDP-galactose-N-acetylglucosamine galactosyltransferase; β1-4-galactosyltransferase; UDP-Gal:N-acetylglucosamine β1-4-galactosyltransferase; β1-4GalT; NAL synthetase; UDP-β-1,4-galactosyltransferase; Gal-T; UDP-galactose:N-acetylglucosaminide β1-4-galactosyltransferase; UDPgalactose:N-acetylglucosaminyl(β1-4)galactosyltransferase; β-N-acetylglucosaminide β1-4-galactosyltransferase; UDP-galactose:N-acetyl-D-glucosamine 4-β-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:N-acetyl-D-glucosamine 4-β-D-galactosyltransferase
Comments: The reaction is catalysed by a component of EC 2.4.1.22 (lactose synthase), which is identical with EC 2.4.1.38 (β-N-acetylglucosaminyl-glycopeptide β-1,4-galactosyltransferase), and by an enzyme from the Golgi apparatus of animal tissues. Formerly listed also as EC 2.4.1.98.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9054-94-8
References:
1.  Deshmukh, D.S., Bear, W.D. and Soifer, D. Isolation and characterization of an enriched Golgi fraction from rat brain. Biochim. Biophys. Acta 542 (1978) 284–295. [DOI] [PMID: 99178]
2.  Helting, T. and Erbing, B. Galactosyl transfer in mouse mastocytoma: purification and properties of N-acetyllactosamine synthetase. Biochim. Biophys. Acta 293 (1973) 94–104. [DOI] [PMID: 4631039]
3.  Hill, R.L. and Brew, K. Lactose synthetase. Adv. Enzymol. Relat. Areas Mol. Biol. 43 (1975) 411–490. [PMID: 812340]
4.  Humphreys-Beher, M.G. Isolation and characterization of UDP-galactose:N-acetylglucosamine 4 β-galactosyltransferase activity induced in rat parotid glands treated with isoproterenol. J. Biol. Chem. 259 (1984) 5797–5802. [PMID: 6201486]
5.  Schachter, H., Jabbal, I., Hudgin, R.L., Pinteric, L., McGuire, E.J. and Roseman, S. Intracellular localization of liver sugar nucleotide glycoprotein glycosyltransferases in a Golgi-rich fraction. J. Biol. Chem. 245 (1970) 1090–1100. [PMID: 4392041]
[EC 2.4.1.90 created 1976 (EC 2.4.1.98 created 1980, incorporated 1984)]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald