The Enzyme Database

Your query returned 29 entries.    printer_iconPrintable version



EC 1.1.1.275     
Accepted name: (+)-trans-carveol dehydrogenase
Reaction: (+)-trans-carveol + NAD+ = (+)-(S)-carvone + NADH + H+
For diagram of carvone biosynthesis, click here
Other name(s): carveol dehydrogenase
Systematic name: (+)-trans-carveol:NAD+ oxidoreductase
Comments: NADP+ cannot replace NAD+. Forms part of the monoterpenoid biosynthesis pathway in Carum carvi (caraway) seeds.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Bouwmeester, H.J., Gershenzon, J., Konings, M.C.J.M. and Croteau, R. Biosynthesis of the monoterpenes limonene and carvone in the fruit of caraway. I. Demonstration of enzyme activities and their changes with development. Plant Physiol. 117 (1998) 901–912. [PMID: 9662532]
[EC 1.1.1.275 created 2003]
 
 
EC 1.1.1.297     
Accepted name: limonene-1,2-diol dehydrogenase
Reaction: menth-8-ene-1,2-diol + NAD+ = 1-hydroxymenth-8-en-2-one + NADH + H+ (general reaction)
(1) (1S,2S,4R)-menth-8-ene-1,2-diol + NAD+ = (1S,4R)-1-hydroxymenth-8-en-2-one + NADH + H+
(2) (1R,2R,4S)-menth-8-ene-1,2-diol + NAD+ = (1R,4S)-1-hydroxymenth-8-en-2-one + NADH + H+
For diagram of limonene catabolism, click here
Glossary: limonene-1,2-diol = menth-8-ene-1,2-diol = 1-methyl-4-(prop-1-en-2-yl)cyclohexane-1,2-diol
Other name(s): NAD+-dependent limonene-1,2-diol dehydrogenase
Systematic name: menth-8-ene-1,2-diol:NAD+ oxidoreductase
Comments: While the enzyme from the Gram-positive bacterium Rhodococcus erythropolis DCL14 can use both (1S,2S,4R)- and (1R,2R,4S)-menth-8-ene-1,2-diol as substrate, activity is higher with (1S,2S,4R)-menth-8-ene-1,2-diol as substrate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  van der Werf, M.J., Swarts, H.J. and de Bont, J.A. Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene. Appl. Environ. Microbiol. 65 (1999) 2092–2102. [PMID: 10224006]
[EC 1.1.1.297 created 2008]
 
 
EC 1.14.13.47      
Transferred entry: (S)-limonene 3-monooxygenase. Now EC 1.14.14.99, (S)-limonene 3-monooxygenase
[EC 1.14.13.47 created 1992, modified 2003, deleted 2018]
 
 
EC 1.14.13.48      
Transferred entry: (S)-limonene 6-monooxygenase. Now classified as EC 1.14.14.51, (S)-limonene 6-monooxygenase
[EC 1.14.13.48 created 1992, modified 2003, deleted 2017]
 
 
EC 1.14.13.49      
Transferred entry: (S)-limonene 7-monooxygenase. Now classified as EC 1.14.14.52, (S)-limonene 7-monooxygenase
[EC 1.14.13.49 created 1992, modified 2003, deleted 2017]
 
 
EC 1.14.13.80      
Transferred entry: (R)-limonene 6-monooxygenase. Now classified as EC 1.14.14.53, (R)-limonene 6-monooxygenase
[EC 1.14.13.80 created 2003, deleted 2017]
 
 
EC 1.14.13.104      
Transferred entry: (+)-menthofuran synthase. Now EC 1.14.14.143, (+)-menthofuran synthase
[EC 1.14.13.104 created 2008, deleted 2018]
 
 
EC 1.14.13.105     
Accepted name: monocyclic monoterpene ketone monooxygenase
Reaction: (1) (–)-menthone + NADPH + H+ + O2 = (4R,7S)-7-isopropyl-4-methyloxepan-2-one + NADP+ + H2O
(2) dihydrocarvone + NADPH + H+ + O2 = 4-isopropenyl-7-methyloxepan-2-one + NADP+ + H2O
(3) (iso)-dihydrocarvone + NADPH + H+ + O2 = 6-isopropenyl-3-methyloxepan-2-one + NADP+ + H2O
(4a) 1-hydroxymenth-8-en-2-one + NADPH + H+ + O2 = 7-hydroxy-4-isopropenyl-7-methyloxepan-2-one + NADP+ + H2O
(4b) 7-hydroxy-4-isopropenyl-7-methyloxepan-2-one = 3-isopropenyl-6-oxoheptanoate (spontaneous)
For diagram of (–)-carvone catabolism, click here, for diagram of limonene catabolism, click here and for diagram of menthol biosynthesis, click here
Other name(s): 1-hydroxy-2-oxolimonene 1,2-monooxygenase; dihydrocarvone 1,2-monooxygenase; MMKMO
Systematic name: (–)-menthone,NADPH:oxygen oxidoreductase
Comments: A flavoprotein (FAD). This Baeyer-Villiger monooxygenase enzyme from the Gram-positive bacterium Rhodococcus erythropolis DCL14 has wide substrate specificity, catalysing the lactonization of a large number of monocyclic monoterpene ketones and substituted cyclohexanones [2]. Both (1R,4S)- and (1S,4R)-1-hydroxymenth-8-en-2-one are metabolized, with the lactone product spontaneously rearranging to form 3-isopropenyl-6-oxoheptanoate [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  van der Werf, M.J., Swarts, H.J. and de Bont, J.A. Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene. Appl. Environ. Microbiol. 65 (1999) 2092–2102. [PMID: 10224006]
2.  Van Der Werf, M.J. Purification and characterization of a Baeyer-Villiger mono-oxygenase from Rhodococcus erythropolis DCL14 involved in three different monocyclic monoterpene degradation pathways. Biochem. J. 347 (2000) 693–701. [PMID: 10769172]
3.  van der Werf, M.J. and Boot, A.M. Metabolism of carveol and dihydrocarveol in Rhodococcus erythropolis DCL14. Microbiology 146 (2000) 1129–1141. [DOI] [PMID: 10832640]
[EC 1.14.13.105 created 2008]
 
 
EC 1.14.13.107     
Accepted name: limonene 1,2-monooxygenase
Reaction: (1) (S)-limonene + NAD(P)H + H+ + O2 = 1,2-epoxymenth-8-ene + NAD(P)+ + H2O
(2) (R)-limonene + NAD(P)H + H+ + O2 = 1,2-epoxymenth-8-ene + NAD(P)+ + H2O
For diagram of limonene catabolism, click here
Glossary: limonene.html">limonene = a monoterpenoid
(S)-limonene = (-)-limonene
(R)-limonene = (+)-limonene
limonene-1,2-epoxide = 1,2-epoxymenth-8-ene = 1-methyl-4-(prop-1-en-2-yl)-7-oxabicyclo[4.1.0]heptane
Systematic name: limonene,NAD(P)H:oxygen oxidoreductase
Comments: A flavoprotein (FAD). Limonene is the most widespread terpene and is formed by more than 300 plants. Rhodococcus erythropolis DCL14, a Gram-positive bacterium, is able to grow on both (S)-limonene and (R)-limonene as the sole source of carbon and energy. NADPH can act instead of NADH, although more slowly. It has not been established if the product formed is optically pure or a mixture of two enantiomers.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, UM-BBD
References:
1.  van der Werf, M.J., Swarts, H.J. and de Bont, J.A. Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene. Appl. Environ. Microbiol. 65 (1999) 2092–2102. [PMID: 10224006]
[EC 1.14.13.107 created 2009]
 
 
EC 1.14.13.207      
Transferred entry: ipsdienol synthase. Now EC 1.14.14.31, ipsdienol synthase
[EC 1.14.13.207 created 2015, deleted 2016]
 
 
EC 1.14.14.31     
Accepted name: ipsdienol synthase
Reaction: myrcene + [reduced NADPH—hemoprotein reductase] + O2 = (R)-ipsdienol + [oxidized NADPH—hemoprotein reductase] + H2O
For diagram of acyclic monoterpenoid biosynthesis, click here
Glossary: myrcene = 7-methyl-3-methyleneocta-1,6-diene
ipsdienol = 2-methyl-6-methyleneocta-2,7-dien-4-ol
Other name(s): myrcene hydroxylase; CYP9T2; CYP9T3
Systematic name: myrcene,NADPH—hemoprotein reductase:O2 oxidoreductase (hydroxylating)
Comments: A cytochrome P-450 heme-thiolate protein. Involved in the insect aggregation pheromone production. Isolated from the pine engraver beetle, Ips pini. A small amount of (S)-ipsdienol is also formed. In vitro it also hydroxylated (+)- and (–)-α-pinene, 3-carene, and (+)-limonene, but not α-phellandrene, (–)-β-pinene, γ-terpinene, or terpinolene.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Sandstrom, P., Welch, W.H., Blomquist, G.J. and Tittiger, C. Functional expression of a bark beetle cytochrome P450 that hydroxylates myrcene to ipsdienol. Insect Biochem. Mol. Biol. 36 (2006) 835–845. [DOI] [PMID: 17046597]
2.  Song, M., Kim, A.C., Gorzalski, A.J., MacLean, M., Young, S., Ginzel, M.D., Blomquist, G.J. and Tittiger, C. Functional characterization of myrcene hydroxylases from two geographically distinct Ips pini populations. Insect Biochem. Mol. Biol. 43 (2013) 336–343. [DOI] [PMID: 23376633]
[EC 1.14.14.31 created 2015 as EC 1.14.13.207, transferred 2016 to EC 1.14.14.31]
 
 
EC 1.14.14.51     
Accepted name: (S)-limonene 6-monooxygenase
Reaction: (S)-limonene + [reduced NADPH—hemoprotein reductase] + O2 = (–)-trans-carveol + [oxidized NADPH—hemoprotein reductase] + H2O
For diagram of perillyl alcohol, isopiperitol and carveol biosynthesis, click here
Glossary: limonene.html">limonene = a monoterpenoid
(S)-limonene = (–)-limonene
Other name(s): (–)-limonene 6-hydroxylase; (–)-limonene 6-monooxygenase; (–)-limonene,NADPH:oxygen oxidoreductase (6-hydroxylating)
Systematic name: (S)-limonene,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (6-hydroxylating)
Comments: A cytochrome P-450 (heme thiolate) enzyme. The enzyme participates in the biosynthesis of (–)-carvone, which is responsible for the aroma of spearmint.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, UM-BBD, CAS registry number: 138066-93-0
References:
1.  Karp, F., Mihaliak, C.A., Harris, J.L. and Croteau, R. Monoterpene biosynthesis: specificity of the hydroxylations of (-)-limonene by enzyme preparations from peppermint (Mentha piperita), spearmint (Mentha spicata), and perilla (Perilla frutescens) leaves. Arch. Biochem. Biophys. 276 (1990) 219–226. [DOI] [PMID: 2297225]
[EC 1.14.14.51 created 1992 as EC 1.14.13.48, modified 2003, transferred 2017 to EC 1.14.14.51]
 
 
EC 1.14.14.52     
Accepted name: (S)-limonene 7-monooxygenase
Reaction: (S)-limonene + [reduced NADPH—hemoprotein reductase] + O2 = (–)-perillyl alcohol + [oxidized NADPH—hemoprotein reductase] + H2O
For diagram of perillyl alcohol, isopiperitol and carveol biosynthesis, click here
Glossary: limonene.html">limonene = a monoterpenoid
(S)-limonene = (–)-limonene
Other name(s): (–)-limonene 7-monooxygenase; (–)-limonene hydroxylase; (–)-limonene monooxygenase; (–)-limonene,NADPH:oxygen oxidoreductase (7-hydroxylating)
Systematic name: (S)-limonene,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (7-hydroxylating)
Comments: A cytochrome P-450 (heme thiolate) enzyme. The enzyme, characterized from the plant Perilla frutescens, participates in the biosynthesis of perillyl aldehyde, the major constituent of the essential oil that accumulates in the glandular trichomes of this plant. Some forms of the enzyme also catalyse the oxidation of (–)-perillyl alcohol to (–)-perillyl aldehyde.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, UM-BBD, CAS registry number: 122653-75-2
References:
1.  Karp, F., Mihaliak, C.A., Harris, J.L. and Croteau, R. Monoterpene biosynthesis: specificity of the hydroxylations of (-)-limonene by enzyme preparations from peppermint (Mentha piperita), spearmint (Mentha spicata), and perilla (Perilla frutescens) leaves. Arch. Biochem. Biophys. 276 (1990) 219–226. [DOI] [PMID: 2297225]
2.  Mau, C.J., Karp, F., Ito, M., Honda, G. and Croteau, R.B. A candidate cDNA clone for (–)-limonene-7-hydroxylase from Perilla frutescens. Phytochemistry 71 (2010) 373–379. [DOI] [PMID: 20079506]
3.  Fujiwara, Y. and Ito, M. Molecular cloning and characterization of a Perilla frutescens cytochrome P450 enzyme that catalyzes the later steps of perillaldehyde biosynthesis. Phytochemistry 134 (2017) 26–37. [DOI] [PMID: 27890582]
[EC 1.14.14.52 created 1992 as EC 1.14.13.49, modified 2003, transferred 2017 to EC 1.14.14.52]
 
 
EC 1.14.14.53     
Accepted name: (R)-limonene 6-monooxygenase
Reaction: (R)-limonene + [reduced NADPH—hemoprotein reductase] + O2 = (+)-trans-carveol + [oxidized NADPH—hemoprotein reductase] + H2O
For diagram of carvone biosynthesis, click here
Glossary: limonene.html">limonene = a monoterpenoid
(R)-limonene = (+)-limonene
Other name(s): (+)-limonene-6-hydroxylase; (+)-limonene 6-monooxygenase
Systematic name: (R)-limonene,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (6-hydroxylating)
Comments: The reaction is stereospecific with over 95% yield of (+)-trans-carveol from (R)-limonene. (S)-Limonene, the substrate for EC 1.14.14.51, (S)-limonene 6-monooxygenase, is not a substrate. Forms part of the carvone biosynthesis pathway in Carum carvi (caraway) seeds.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 221461-49-0
References:
1.  Bouwmeester, H.J., Gershenzon, J., Konings, M.C.J.M. and Croteau, R. Biosynthesis of the monoterpenes limonene and carvone in the fruit of caraway. I. Demonstration of enzyme activities and their changes with development. Plant Physiol. 117 (1998) 901–912. [PMID: 9662532]
2.  Bouwmeester, H.J., Konings, M.C.J.M., Gershenzon, J., Karp, F. and Croteau, R. Cytochrome P-450 dependent (+)-limonene-6-hydroxylation in fruits of caraway (Carum carvi). Phytochemistry 50 (1999) 243–248.
[EC 1.14.14.53 created 2003 as EC 1.14.13.80, transferred 2017 to EC 1.14.14.53]
 
 
EC 1.14.14.99     
Accepted name: (S)-limonene 3-monooxygenase
Reaction: (S)-limonene + [reduced NADPH—hemoprotein reductase] + O2 = (–)-trans-isopiperitenol + [oxidized NADPH—hemoprotein reductase] + H2O
For diagram of perillyl alcohol, isopiperitol and carveol biosynthesis, click here
Glossary: limonene.html">limonene = a monoterpenoid
(S)-limonene = (–)-limonene
Other name(s): (–)-limonene 3-hydroxylase; (–)-limonene 3-monooxygenase; CYP71D15 (gene name)
Systematic name: (S)-limonene,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (3-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein from peppermint (Mentha piperita).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD, CAS registry number: 138066-92-9
References:
1.  Karp, F., Mihaliak, C.A., Harris, J.L. and Croteau, R. Monoterpene biosynthesis: specificity of the hydroxylations of (-)-limonene by enzyme preparations from peppermint (Mentha piperita), spearmint (Mentha spicata), and perilla (Perilla frutescens) leaves. Arch. Biochem. Biophys. 276 (1990) 219–226. [DOI] [PMID: 2297225]
2.  Lupien, S., Karp, F., Wildung, M. and Croteau, R. Regiospecific cytochrome P450 limonene hydroxylases from mint (Mentha) species: cDNA isolation, characterization, and functional expression of (–)-4S-limonene-3-hydroxylase and (–)-4S-limonene-6-hydroxylase. Arch. Biochem. Biophys. 368 (1999) 181–192. [PMID: 10415126]
3.  Wust, M., Little, D.B., Schalk, M. and Croteau, R. Hydroxylation of limonene enantiomers and analogs by recombinant (–)-limonene 3- and 6-hydroxylases from mint (Mentha) species: evidence for catalysis within sterically constrained active sites. Arch. Biochem. Biophys. 387 (2001) 125–136. [PMID: 11368174]
[EC 1.14.14.99 created 1992 as EC 1.14.13.47, modified 2003, transferred 2018 1.14.14.99]
 
 
EC 1.14.14.143     
Accepted name: (+)-menthofuran synthase
Reaction: (+)-pulegone + [reduced NADPH—hemoprotein reductase] + O2 = (+)-menthofuran + [oxidized NADPH—hemoprotein reductase] + H2O
For diagram of (–)-carvone, perillyl aldehyde and pulegone biosynthesis, click here and for mechanism of reaction, click here
Other name(s): menthofuran synthase; (+)-pulegone 9-hydroxylase; (+)-MFS; cytochrome P450 menthofuran synthase
Systematic name: (+)-pulegone,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (9-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein. The conversion of substrate into product involves the hydroxylation of the syn-methyl (C9), intramolecular cyclization to the hemiketal and dehydration to the furan [1]. This is the second cytochrome P-450-mediated step of monoterpene metabolism in peppermint, with the other step being catalysed by EC 1.14.14.99, (S)-limonene 3-monooxygenase [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Bertea, C.M., Schalk, M., Karp, F., Maffei, M. and Croteau, R. Demonstration that menthofuran synthase of mint (Mentha) is a cytochrome P450 monooxygenase: cloning, functional expression, and characterization of the responsible gene. Arch. Biochem. Biophys. 390 (2001) 279–286. [DOI] [PMID: 11396930]
2.  Mahmoud, S.S. and Croteau, R.B. Menthofuran regulates essential oil biosynthesis in peppermint by controlling a downstream monoterpene reductase. Proc. Natl. Acad. Sci. USA 100 (2003) 14481–14486. [DOI] [PMID: 14623962]
[EC 1.14.14.143 created 2008 as EC 1.14.13.104, transferred 2018 to EC 1.14.14.143]
 
 
EC 1.17.99.8     
Accepted name: limonene dehydrogenase
Reaction: (1) (S)-limonene + H2O + acceptor = (–)-perillyl alcohol + reduced acceptor
(2) (R)-limonene + H2O + acceptor = (+)-perillyl alcohol + reduced acceptor
Glossary: limonene = 1-methyl-4-(prop-1-en-2-yl)cyclohex-1-ene
perillyl alcohol = [4-(prop-1-en-2-yl)cyclohex-1-en-1-yl]methanol
(–)-perillyl alcohol = (S)-perillyl alcohol = [(4S)-4-(prop-1-en-2-yl)cyclohex-1-en-1-yl]methanol
(+)-perillyl alcohol = (R)-perillyl alcohol = [(4R)-4-(prop-1-en-2-yl)cyclohex-1-en-1-yl]methanol
(–)-limonene = (S)-limonene = (4S)-1-methyl-4-(prop-1-en-2-yl)cyclohexene
(+)-limonene = (R)-limonene = (4R)-1-methyl-4-(prop-1-en-2-yl)cyclohexene
Other name(s): ctmAB (gene names)
Systematic name: limonene:acceptor oxidoreductase (7-hydroxylating)
Comments: Contains FAD. The enzyme, characterized from the bacterium Castellaniella defragrans 65Phen, hydroxylates the R- and S-enantiomers at a similar rate. The in vivo electron acceptor may be a heterodimeric electron transfer flavoprotein (ETF).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Petasch, J., Disch, E.M., Markert, S., Becher, D., Schweder, T., Huttel, B., Reinhardt, R. and Harder, J. The oxygen-independent metabolism of cyclic monoterpenes in Castellaniella defragrans 65Phen. BMC Microbiol. 14:164 (2014). [PMID: 24952578]
2.  Puentes-Cala, E., Liebeke, M., Markert, S. and Harder, J. Limonene dehydrogenase hydroxylates the allylic methyl group of cyclic monoterpenes in the anaerobic terpene degradation by Castellaniella defragrans. J. Biol. Chem. 293 (2018) 9520–9529. [PMID: 29716998]
[EC 1.17.99.8 created 2020]
 
 
EC 3.3.2.8     
Accepted name: limonene-1,2-epoxide hydrolase
Reaction: 1,2-epoxymenth-8-ene + H2O = menth-8-ene-1,2-diol
For diagram of limonene catabolism, click here
Glossary: limonene.html">limonene = a monoterpenoid
limonene-1,2-epoxide = 1,2-epoxymenth-8-ene
limonene-1,2-diol = menth-8-ene-1,2-diol
Other name(s): limonene oxide hydrolase
Systematic name: 1,2-epoxymenth-8-ene hydrolase
Comments: Involved in the monoterpene degradation pathway of the actinomycete Rhodococcus erythropolis. The enzyme hydrolyses several alicyclic and 1-methyl-substituted epoxides, such as 1-methylcyclohexene oxide, indene oxide and cyclohexene oxide. It differs from the previously described epoxide hydrolases [EC 3.3.2.4 (trans-epoxysuccinate hydrolase), EC 3.3.2.6 (leukotriene-A4 hydrolase), EC 3.3.2.7 (hepoxilin-epoxide hydrolase), EC 3.3.2.9 (microsomal epoxide hydrolase) and EC 3.3.2.10 (soluble epoxide hydrolase)] as it is not inhibited by 2-bromo-4′-nitroacetophenone, diethyl dicarbonate, 4-fluorochalcone oxide or 1,10-phenanthroline. Both enantiomers of menth-8-ene-1,2-diol [i.e. (1R,2R,4S)-menth-8-ene-1,2-diol and (1S,2S,4R)-menth-8-ene-1,2-diol] are metabolized.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, UM-BBD, CAS registry number: 216503-88-7
References:
1.  van der Werf, M.J., Overkamp, K.M. and de Bont, J.A.M. Limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis DCL14 belongs to a novel class of epoxide hydrolases. J. Bacteriol. 180 (1998) 5052–5057. [PMID: 9748436]
2.  Barbirato, F., Verdoes, J.C., de Bont, J.A.M. and van der Werf, M.J. The Rhodococcus erythropolis DCL14 limonene-1,2-epoxide hydrolase gene encodes an enzyme belonging to a novel class of epoxide hydrolases. FEBS Lett. 438 (1998) 293–296. [DOI] [PMID: 9827564]
3.  van der Werf, M.J., Swarts, H.J. and de Bont, J.A. Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene. Appl. Environ. Microbiol. 65 (1999) 2092–2102. [PMID: 10224006]
[EC 3.3.2.8 created 2001]
 
 
EC 4.1.99.10      
Transferred entry: (-)-(4S)-limonene synthase. Now EC 4.2.3.16, (4S)-limonene synthase
[EC 4.1.99.10 created 2000, deleted 2000]
 
 
EC 4.2.3.14      
Deleted entry: pinene synthase. Now covered by EC 4.2.3.119, (-)-α-pinene synthase, and EC 4.2.3.120, (-)-β-pinene synthase
[EC 4.2.3.14 created 2000 as EC 4.1.99.8, transferred 2000 to EC 4.2.3.14, deleted 2012]
 
 
EC 4.2.3.15     
Accepted name: myrcene synthase
Reaction: geranyl diphosphate = myrcene + diphosphate
For diagram of monoterpenoid biosynthesis, click here
Glossary: myrcene = 7-methyl-3-methyleneocta-1,6-diene and is a monoterpenoid
Systematic name: geranyl-diphosphate diphosphate-lyase (myrcene-forming)
Comments: A recombinant enzyme (also known as a monoterpene synthase or cyclase) from the grand fir (Abies grandis) requires Mn2+ and K+ for activity. Mg2+ is essentially ineffective as the divalent metal ion cofactor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 197462-59-2
References:
1.  Bohlmann, J., Steele, C.L. and Croteau, R. Monoterpene synthases from grand fir (Abies grandis). cDNA isolation, characterization, and functional expression of myrcene synthase, (-)-(4S)-limonene synthase, and (-)-(1S,5S)-pinene synthase. J. Biol. Chem. 272 (1997) 21784–21792. [DOI] [PMID: 9268308]
[EC 4.2.3.15 created 2000 as EC 4.1.99.9, transferred 2000 to EC 4.2.3.15]
 
 
EC 4.2.3.16     
Accepted name: (4S)-limonene synthase
Reaction: geranyl diphosphate = (S)-limonene + diphosphate
For diagram of perillyl alcohol, isopiperitol and carveol biosynthesis, click here
Glossary: limonene.html">limonene = a monoterpenoid
(S)-limonene = (-)-limonene
Other name(s): (-)-(4S)-limonene synthase; 4S-(-)-limonene synthase; geranyldiphosphate diphosphate lyase (limonene forming); geranyldiphosphate diphosphate lyase [cyclizing, (4S)-limonene-forming]; geranyl-diphosphate diphosphate-lyase [cyclizing; (-)-(4S)-limonene-forming]
Systematic name: geranyl-diphosphate diphosphate-lyase [cyclizing; (S)-limonene-forming]
Comments: A recombinant enzyme (also known as a monoterpene synthase or cyclase) from the grand fir (Abies grandis) requires Mn2+ and K+ for activity. Mg2+ is essentially ineffective as the divalent metal ion cofactor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 110639-20-8
References:
1.  Bohlmann, J., Steele, C.L. and Croteau, R. Monoterpene synthases from grand fir (Abies grandis). cDNA isolation, characterization, and functional expression of myrcene synthase, (-)-(4S)-limonene synthase, and (-)-(1S,5S)-pinene synthase. J. Biol. Chem. 272 (1997) 21784–21792. [DOI] [PMID: 9268308]
2.  Collby, S.M., Alonso, W.R., Katahira, E.J., McGarvey, D.J. and Croteau, R. 4S-Limonene synthase from the oil glands of spearmint (Mentha spicata). cDNA isolation, characterization, and bacterial expression of the catalytically active monoterpene cyclase. J. Biol. Chem. 268 (1993) 23016–23024. [PMID: 8226816]
3.  Yuba, A., Yazaki, K., Tabata, M., Honda, G. and Croteau, R. cDNA cloning, characterization, and functional expression of 4S-(-)-limonene synthase from Perilla frutescens. Arch. Biochem. Biophys. 332 (1996) 280–287. [DOI] [PMID: 8806736]
[EC 4.2.3.16 created 2000 as EC 4.1.99.10, transferred 2000 to EC 4.2.3.16, modified 2003]
 
 
EC 4.2.3.20     
Accepted name: (R)-limonene synthase
Reaction: geranyl diphosphate = (R)-limonene + diphosphate
For diagram of carvone biosynthesis, click here
Glossary: (R)-limonene = (+)-limonene
Other name(s): (+)-limonene synthase; geranyldiphosphate diphosphate lyase [(+)-(R)-limonene-forming]; geranyl-diphosphate diphosphate-lyase [cyclizing, (+)-(4R)-limonene-forming]
Systematic name: geranyl-diphosphate diphosphate-lyase [cyclizing, (R)-limonene-forming]
Comments: Forms the first step of carvone biosynthesis in caraway. The enzyme from Carum carvi (caraway) seeds requires a divalent metal ion (preferably Mn2+) for catalysis. This enzyme occurs in Citrus, Carum (caraway) and Anethum (dill); (-)-limonene, however, is made in the fir, Abies, and mint, Mentha, by EC 4.2.3.16, (4S)-limonene synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 155807-65-1
References:
1.  Bouwmeester, H.J., Gershenzon, J., Konings, M.C.J.M. and Croteau, R. Biosynthesis of the monoterpenes limonene and carvone in the fruit of caraway. I. Demonstration of enzyme activities and their changes with development. Plant Physiol. 117 (1998) 901–912. [PMID: 9662532]
2.  Lücker, J., El Tamer, M.K., Schwab, W., Verstappen, F.W., van der Plas, L.H., Bouwmeester, H.J. and Verhoeven, H.A. Monoterpene biosynthesis in lemon (Citrus limon). cDNA isolation and functional analysis of four monoterpene synthases. Eur. J. Biochem. 269 (2000) 3160–3171. [DOI] [PMID: 12084056]
3.  Maruyama, T., Ito, M., Kiuchi, F. and Honda, G. Molecular cloning, functional expression and characterization of d-limonene synthase from Schizonepeta tenuifolia. Biol. Pharm. Bull. 24 (2001) 373–377. [PMID: 11305598]
[EC 4.2.3.20 created 2003]
 
 
EC 4.2.3.38     
Accepted name: α-bisabolene synthase
Reaction: (2E,6E)-farnesyl diphosphate = (E)-α-bisabolene + diphosphate
For diagram of bisabolene-derived sesquiterpenoid biosynthesis, click here
Other name(s): bisabolene synthase
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(E)-α-bisabolene-forming]
Comments: This cytosolic sesquiterpenoid synthase requires a divalent cation cofactor (Mg2+ or, to a lesser extent, Mn2+) to neutralize the negative charge of the diphosphate leaving group. While unlikely to encounter geranyl diphosphate (GDP) in vivo as it is localized to plastids, the enzyme can use GDP as a substrate in vitro to produce (+)-(4R)-limonene [cf. EC 4.2.3.20, (R)-limonene synthase]. The enzyme is induced as part of a defense mechanism in the grand fir Abies grandis as a response to stem wounding.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Bohlmann, J., Crock, J., Jetter, R. and Croteau, R. Terpenoid-based defenses in conifers: cDNA cloning, characterization, and functional expression of wound-inducible (E)-α-bisabolene synthase from grand fir (Abies grandis). Proc. Natl. Acad. Sci. USA 95 (1998) 6756–6761. [DOI] [PMID: 9618485]
[EC 4.2.3.38 created 2009]
 
 
EC 4.2.3.105     
Accepted name: tricyclene synthase
Reaction: geranyl diphosphate = tricyclene + diphosphate
For diagram of bornane and related monoterpenoids, click here
Other name(s): TPS3
Systematic name: geranyl-diphosphate diphosphate-lyase (cyclizing; tricyclene-forming)
Comments: The enzyme from Solanum lycopersicum (tomato) gives a mixture of tricyclene, camphene, β-myrcene, limonene, and traces of several other monoterpenoids. See EC 4.2.3.117. (-)-camphene synthase, EC 4.2.3.15, myrcene synthase and EC 4.2.3.16, (4S)-limonene synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Falara, V., Akhtar, T.A., Nguyen, T.T., Spyropoulou, E.A., Bleeker, P.M., Schauvinhold, I., Matsuba, Y., Bonini, M.E., Schilmiller, A.L., Last, R.L., Schuurink, R.C. and Pichersky, E. The tomato terpene synthase gene family. Plant Physiol. 157 (2011) 770–789. [DOI] [PMID: 21813655]
[EC 4.2.3.105 created 2012]
 
 
EC 4.2.3.112     
Accepted name: (+)-α-terpineol synthase
Reaction: geranyl diphosphate + H2O = (+)-α-terpineol + diphosphate
For diagram of menthane monoterpenoid biosynthesis, click here
Systematic name: geranyl-diphosphate diphosphate-lyase [cyclizing, (+)-α-terpineol-forming]
Comments: The enzyme has been characterized from Santalum album (sandalwood). Also forms some (-)-limonene and traces of other monoterpenoids. See EC 4.2.3.16 (4S)-limonene synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Jones, C.G., Keeling, C.I., Ghisalberti, E.L., Barbour, E.L., Plummer, J.A. and Bohlmann, J. Isolation of cDNAs and functional characterisation of two multi-product terpene synthase enzymes from sandalwood, Santalum album L. Arch. Biochem. Biophys. 477 (2008) 121–130. [DOI] [PMID: 18541135]
[EC 4.2.3.112 created 2012]
 
 
EC 4.2.3.117     
Accepted name: (-)-camphene synthase
Reaction: geranyl diphosphate = (-)-camphene + diphosphate
Glossary: (-)-camphene = (1S,4R)-2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane
Other name(s): CS
Systematic name: geranyl-diphosphate diphosphate-lyase [cyclizing, (-)-camphene-forming]
Comments: (-)-Camphene is the major product in Abies grandis (grand fir) with traces of other monoterpenoids [1]. In Pseudotsuga menziesii (Douglas-fir) there are about equal parts of (-)-camphene and (-)-α-pinene with traces of four other monoterpenoids [2,3]. In Solanum lycopersicum (tomato) tricyclene, β-myrcene, limonene, and traces of several other monoterpenoids are also formed [4]. See also EC 4.2.3.15 myrcene synthase, EC 4.2.3.16 (4S)-limonene synthase, EC 4.2.3.119 (-)-α-pinene synthase and EC 4.2.3.105 tricyclene synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Bohlmann, J., Phillips, M., Ramachandiran, V., Katoh, S. and Croteau, R. cDNA cloning, characterization, and functional expression of four new monoterpene synthase members of the Tpsd gene family from grand fir (Abies grandis). Arch. Biochem. Biophys. 368 (1999) 232–243. [DOI] [PMID: 10441373]
2.  Huber, D.P.W., Philippe, R.N., Godard, K.-A., Sturrock, R.N. and Bohlmann, J. Characterization of four terpene synthase cDNAs from methyl jasmonate-induced Douglas-fir, Pseudotsuga menziesii. Phytochemistry 66 (2005) 1427–1439. [DOI] [PMID: 15921711]
3.  Hyatt, D.C. and Croteau, R. Mutational analysis of a monoterpene synthase reaction: altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis. Arch. Biochem. Biophys. 439 (2005) 222–233. [DOI] [PMID: 15978541]
4.  Falara, V., Akhtar, T.A., Nguyen, T.T., Spyropoulou, E.A., Bleeker, P.M., Schauvinhold, I., Matsuba, Y., Bonini, M.E., Schilmiller, A.L., Last, R.L., Schuurink, R.C. and Pichersky, E. The tomato terpene synthase gene family. Plant Physiol. 157 (2011) 770–789. [DOI] [PMID: 21813655]
[EC 4.2.3.117 created 2012]
 
 
EC 4.2.3.119     
Accepted name: (-)-α-pinene synthase
Reaction: geranyl diphosphate = (-)-α-pinene + diphosphate
For diagram of pinene and related monoterpenoids, click here
Glossary: (-)-α-pinene = (1S,5S)-2,6,6-trimethylbicyclo[3.1.1]hept-2-ene
Other name(s): (-)-α-pinene/(-)-camphene synthase; (-)-α-pinene cyclase
Systematic name: geranyl-diphosphate diphosphate-lyase [cyclizing, (-)-α-pinene-forming]
Comments: Cyclase II of Salvia officinalis (sage) gives about equal parts (-)-α-pinene, (-)-β-pinene and (-)-camphene, plus traces of other monoterpenoids. (3S)-Linalyl diphosphate can also be used by the enzyme in preference to (3R)-linalyl diphosphate. The 4-pro-S-hydrogen of geranyl diphosphate is lost. Requires Mg2+ (preferred to Mn2+) [1-6]. The enzyme from Abies grandis (grand fir) gives roughly equal parts (-)-α-pinene and (-)-β-pinene. However the clone ag11 gave 35% (-)-limonene, 24% (-)-α-pinene and 20% (-)-β-phellandrene. It requires Mn2+ and K+ (Mg2+ is ineffective) [7-10]. Synthase I from Pinus taeda (loblolly pine) produces (-)-α-pinene with traces of (-)-β-pinene and requires Mn2+ (preferred to Mg2+) [11,12]. The enzyme from Picea sitchensis (Sika spruce) forms 70% (-)-α-pinene and 30% (-)-β-pinene [13]. The recombinant PmeTPS1 enzyme from Pseudotsuga menziesii (Douglas fir) gave roughly equal proportions of (-)-α-pinene and (-)-camphene plus traces of other monoterpenoids [14]. See also EC 4.2.3.120, (-)-β-pinene synthase; EC 4.2.3.117, (-)-camphene synthase; EC 4.2.3.16, (-)-limonene synthase; and EC 4.2.3.52, (-)-β-phellandrene synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Gambliel, H. and Croteau, R. Pinene cyclases I and II. Two enzymes from sage (Salvia officinalis) which catalyze stereospecific cyclizations of geranyl pyrophosphate to monoterpene olefins of opposite configuration. J. Biol. Chem. 259 (1984) 740–748. [PMID: 6693393]
2.  Croteau, R.B., Wheeler, C.J., Cane, D.E., Ebert, R. and Ha, H.J. Isotopically sensitive branching in the formation of cyclic monoterpenes: proof that (-)-α-pinene and (-)-β-pinene are synthesized by the same monoterpene cyclase via deprotonation of a common intermediate. Biochemistry 26 (1987) 5383–5389. [PMID: 3314988]
3.  Croteau, R., Satterwhite, D.M., Cane, D.E. and Chang, C.C. Biosynthesis of monoterpenes. Enantioselectivity in the enzymatic cyclization of (+)- and (-)-linalyl pyrophosphate to (+)- and (-)-pinene and (+)- and (-)-camphene. J. Biol. Chem. 263 (1988) 10063–10071. [PMID: 3392006]
4.  Croteau, R. and Satterwhite, D.M. Biosynthesis of monoterpenes. Stereochemical implications of acyclic and monocyclic olefin formation by (+)- and (-)-pinene cyclases from sage. J. Biol. Chem. 264 (1989) 15309–15315. [PMID: 2768265]
5.  Pyun, H.J., Wagschal, K.C., Jung, D.I., Coates, R.M. and Croteau, R. Stereochemistry of the proton elimination in the formation of (+)- and (-)-α-pinene by monoterpene cyclases from sage (Salvia officinalis). Arch. Biochem. Biophys. 308 (1994) 488–496. [DOI] [PMID: 8109979]
6.  Lu, S., Xu, R., Jia, J.W., Pang, J., Matsuda, S.P. and Chen, X.Y. Cloning and functional characterization of a β-pinene synthase from Artemisia annua that shows a circadian pattern of expression. Plant Physiol. 130 (2002) 477–486. [DOI] [PMID: 12226526]
7.  Lewinsohn, E., Gijzen, M. and Croteau, R. Wound-inducible pinene cyclase from grand fir: purification, characterization, and renaturation after SDS-PAGE. Arch. Biochem. Biophys. 293 (1992) 167–173. [DOI] [PMID: 1731633]
8.  Bohlmann, J., Steele, C.L. and Croteau, R. Monoterpene synthases from grand fir (Abies grandis). cDNA isolation, characterization, and functional expression of myrcene synthase, (-)-(4S)-limonene synthase, and (-)-(1S,5S)-pinene synthase. J. Biol. Chem. 272 (1997) 21784–21792. [DOI] [PMID: 9268308]
9.  Bohlmann, J., Phillips, M., Ramachandiran, V., Katoh, S. and Croteau, R. cDNA cloning, characterization, and functional expression of four new monoterpene synthase members of the Tpsd gene family from grand fir (Abies grandis). Arch. Biochem. Biophys. 368 (1999) 232–243. [DOI] [PMID: 10441373]
10.  Hyatt, D.C. and Croteau, R. Mutational analysis of a monoterpene synthase reaction: altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis. Arch. Biochem. Biophys. 439 (2005) 222–233. [DOI] [PMID: 15978541]
11.  Phillips, M.A., Savage, T.J. and Croteau, R. Monoterpene synthases of loblolly pine (Pinus taeda) produce pinene isomers and enantiomers. Arch. Biochem. Biophys. 372 (1999) 197–204. [DOI] [PMID: 10562434]
12.  Phillips, M.A., Wildung, M.R., Williams, D.C., Hyatt, D.C. and Croteau, R. cDNA isolation, functional expression, and characterization of (+)-α-pinene synthase and (-)-α-pinene synthase from loblolly pine (Pinus taeda): stereocontrol in pinene biosynthesis. Arch. Biochem. Biophys. 411 (2003) 267–276. [DOI] [PMID: 12623076]
13.  McKay, S.A., Hunter, W.L., Godard, K.A., Wang, S.X., Martin, D.M., Bohlmann, J. and Plant, A.L. Insect attack and wounding induce traumatic resin duct development and gene expression of (-)-pinene synthase in Sitka spruce. Plant Physiol. 133 (2003) 368–378. [DOI] [PMID: 12970502]
14.  Huber, D.P.W., Philippe, R.N., Godard, K.-A., Sturrock, R.N. and Bohlmann, J. Characterization of four terpene synthase cDNAs from methyl jasmonate-induced Douglas-fir, Pseudotsuga menziesii. Phytochemistry 66 (2005) 1427–1439. [DOI] [PMID: 15921711]
[EC 4.2.3.119 created 2012]
 
 
EC 4.2.3.120     
Accepted name: (-)-β-pinene synthase
Reaction: geranyl diphosphate = (-)-β-pinene + diphosphate
For diagram of pinene and related monoterpenoids, click here
Glossary: (-)-β-pinene = (1S,5S)-6,6-dimethyl-2-methylenebicyclo[3.1.1]hept-2-ene
Other name(s): β-geraniolene synthase; (-)-(1S,5S)-pinene synthase; geranyldiphosphate diphosphate lyase (pinene forming)
Systematic name: geranyl-diphosphate diphosphate-lyase [cyclizing, (-)-β-pinene-forming]
Comments: Cyclase II of Salvia officinalis (sage) produces about equal parts (-)-α-pinene, (-)-β-pinene and (-)-camphene, plus traces of other monoterpenoids. The enzyme, which requires Mg2+ (preferred to Mn2+), can also use (3S)-Linalyl diphosphate (preferred to (3R)-linalyl diphosphate) [1-4]. The enzyme from Abies grandis (grand fir) produces roughly equal parts of (-)-α-pinene and (-)-β-pinene [6-9]. Cyclase IV from Pinus contorta (lodgepole pine) produces 63% (-)-β-pinene, 26% 3-carene, and traces of α-pinene [10]. Synthase III from Pinus taeda (loblolly pine) forms (-)-β-pinene with traces of α-pinene and requires Mn2+ and K+ (Mg2+ is ineffective) [11]. A cloned enzyme from Artemisia annua (sweet wormwood) gave (-)-β-pinene with traces of (-)-α-pinene [5]. The enzyme from Picea sitchensis (Sika spruce) forms 30% (-)-β-pinene and 70% (-)-α-pinene [12]. See also EC 4.2.3.119, (-)-α-pinene synthase, EC 4.2.3.117, (-)-camphene synthase, and EC 4.2.3.107 (+)-3-carene synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Croteau, R.B., Wheeler, C.J., Cane, D.E., Ebert, R. and Ha, H.J. Isotopically sensitive branching in the formation of cyclic monoterpenes: proof that (-)-α-pinene and (-)-β-pinene are synthesized by the same monoterpene cyclase via deprotonation of a common intermediate. Biochemistry 26 (1987) 5383–5389. [PMID: 3314988]
2.  Croteau, R. and Satterwhite, D.M. Biosynthesis of monoterpenes. Stereochemical implications of acyclic and monocyclic olefin formation by (+)- and (-)-pinene cyclases from sage. J. Biol. Chem. 264 (1989) 15309–15315. [PMID: 2768265]
3.  Croteau, R., Satterwhite, D.M., Cane, D.E. and Chang, C.C. Biosynthesis of monoterpenes. Enantioselectivity in the enzymatic cyclization of (+)- and (-)-linalyl pyrophosphate to (+)- and (-)-pinene and (+)- and (-)-camphene. J. Biol. Chem. 263 (1988) 10063–10071. [PMID: 3392006]
4.  Pyun, H.J., Wagschal, K.C., Jung, D.I., Coates, R.M. and Croteau, R. Stereochemistry of the proton elimination in the formation of (+)- and (-)-α-pinene by monoterpene cyclases from sage (Salvia officinalis). Arch. Biochem. Biophys. 308 (1994) 488–496. [DOI] [PMID: 8109979]
5.  Lu, S., Xu, R., Jia, J.W., Pang, J., Matsuda, S.P. and Chen, X.Y. Cloning and functional characterization of a β-pinene synthase from Artemisia annua that shows a circadian pattern of expression. Plant Physiol. 130 (2002) 477–486. [DOI] [PMID: 12226526]
6.  Gijzen, M., Lewinsohn, E. and Croteau, R. Characterization of the constitutive and wound-inducible monoterpene cyclases of grand fir (Abies grandis). Arch. Biochem. Biophys. 289 (1991) 267–273. [DOI] [PMID: 1898071]
7.  Lewinsohn, E., Gijzen, M. and Croteau, R. Wound-inducible pinene cyclase from grand fir: purification, characterization, and renaturation after SDS-PAGE. Arch. Biochem. Biophys. 293 (1992) 167–173. [DOI] [PMID: 1731633]
8.  Bohlmann, J., Steele, C.L. and Croteau, R. Monoterpene synthases from grand fir (Abies grandis). cDNA isolation, characterization, and functional expression of myrcene synthase, (-)-(4S)-limonene synthase, and (-)-(1S,5S)-pinene synthase. J. Biol. Chem. 272 (1997) 21784–21792. [DOI] [PMID: 9268308]
9.  Hyatt, D.C. and Croteau, R. Mutational analysis of a monoterpene synthase reaction: altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis. Arch. Biochem. Biophys. 439 (2005) 222–233. [DOI] [PMID: 15978541]
10.  Savage, T.J., Ichii, H., Hume, S.D., Little, D.B. and Croteau, R. Monoterpene synthases from gymnosperms and angiosperms: stereospecificity and inactivation by cysteinyl- and arginyl-directed modifying reagents. Arch. Biochem. Biophys. 320 (1995) 257–265. [DOI] [PMID: 7625832]
11.  Phillips, M.A., Savage, T.J. and Croteau, R. Monoterpene synthases of loblolly pine (Pinus taeda) produce pinene isomers and enantiomers. Arch. Biochem. Biophys. 372 (1999) 197–204. [DOI] [PMID: 10562434]
12.  McKay, S.A., Hunter, W.L., Godard, K.A., Wang, S.X., Martin, D.M., Bohlmann, J. and Plant, A.L. Insect attack and wounding induce traumatic resin duct development and gene expression of (-)-pinene synthase in Sitka spruce. Plant Physiol. 133 (2003) 368–378. [DOI] [PMID: 12970502]
[EC 4.2.3.120 created 2012]
 
 


Data © 2001–2020 IUBMB
Web site © 2005–2020 Andrew McDonald