The Enzyme Database

Your query returned 14 entries.    printer_iconPrintable version

EC 2.3.1.241     
Accepted name: Kdo2-lipid IVA acyltransferase
Reaction: a fatty acyl-[acyl-carrier protein] + an α-Kdo-(2→4)-α-Kdo-(2→6)-[lipid IVA] = an α-Kdo-(2→4)-α-Kdo-(2→6)-(acyl)-[lipid IVA] + an [acyl-carrier protein]
For diagram of Kdo-Kdo-Lipid IVA metabolism, click here
Glossary: Kdo = 3-deoxy-D-manno-oct-2-ulopyranosylonic acid
a lipid IVA = 2-deoxy-2-{[(3R)-3-hydroxyacyl]amino}-3-O-[(3R)-3-hydroxyacyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxyacyl]-2-{[(3R)-3-hydroxyacyl]amino}-1-O-phospho-α-D-glucopyranose
an α-Kdo-(2→4)-α-Kdo-(2→6)-(acyl)-[lipid IVA] = 3-deoxy-α-D-manno-oct-2-ulopyranosyl-(2→4)-3-deoxy-α-D-manno-oct-2-ulopyranosyl-(2→6)-2-deoxy-2-{[(3R)-3-(acyloxy)acyl]amino}-3-O-[(3R)-3-hydroxyacyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxyacyl]-2-{[(3R)-3-hydroxyacyl]amino}-1-O-phosphono-α-D-glucopyranose
Other name(s): LpxL; htrB (gene name); dodecanoyl-[acyl-carrier protein]:α-Kdo-(2→4)-α-Kdo-(2→6)-lipid IVA O-dodecanoyltransferase; lauroyl-[acyl-carrier protein]:Kdo2-lipid IVA O-lauroyltransferase; (Kdo)2-lipid IVA lauroyltransferase; α-Kdo-(2→4)-α-(2→6)-lipid IVA lauroyltransferase; dodecanoyl-[acyl-carrier protein]:Kdo2-lipid IVA O-dodecanoyltransferase; Kdo2-lipid IVA lauroyltransferase
Systematic name: fatty acyl-[acyl-carrier protein]:α-Kdo-(2→4)-α-Kdo-(2→6)-[lipid IVA] O-acyltransferase
Comments: The enzyme is involved in the biosynthesis of the phosphorylated outer membrane glycolipid lipid A. It transfers an acyl group to the 3-O position of the 3R-hydroxyacyl already attached to the nitrogen of the non-reducing glucosamine molecule. The enzyme from the bacterium Escherichia coli is specific for lauryl (C12) acyl groups, giving the enzyme its previous accepted name. However, enzymes from different species accept highly variable substrates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Clementz, T., Bednarski, J.J. and Raetz, C.R. Function of the htrB high temperature requirement gene of Escherichia coli in the acylation of lipid A: HtrB catalyzed incorporation of laurate. J. Biol. Chem. 271 (1996) 12095–12102. [DOI] [PMID: 8662613]
2.  van der Ley, P., Steeghs, L., Hamstra, H.J., ten Hove, J., Zomer, B. and van Alphen, L. Modification of lipid A biosynthesis in Neisseria meningitidis lpxL mutants: influence on lipopolysaccharide structure, toxicity, and adjuvant activity. Infect. Immun. 69 (2001) 5981–5990. [DOI] [PMID: 11553534]
3.  McLendon, M.K., Schilling, B., Hunt, J.R., Apicella, M.A. and Gibson, B.W. Identification of LpxL, a late acyltransferase of Francisella tularensis. Infect. Immun. 75 (2007) 5518–5531. [DOI] [PMID: 17724076]
4.  Six, D.A., Carty, S.M., Guan, Z. and Raetz, C.R. Purification and mutagenesis of LpxL, the lauroyltransferase of Escherichia coli lipid A biosynthesis. Biochemistry 47 (2008) 8623–8637. [DOI] [PMID: 18656959]
5.  Fathy Mohamed, Y., Hamad, M., Ortega, X.P. and Valvano, M.A. The LpxL acyltransferase is required for normal growth and penta-acylation of lipid A in Burkholderia cenocepacia. Mol. Microbiol. 104 (2017) 144–162. [DOI] [PMID: 28085228]
[EC 2.3.1.241 created 2014, modified 2021]
 
 
EC 2.3.1.242     
Accepted name: Kdo2-lipid IVA palmitoleoyltransferase
Reaction: a (9Z)-hexadec-9-enoyl-[acyl-carrier protein] + Kdo2-lipid IVA = (9Z)-hexadec-9-enoyl-Kdo2-lipid IVA + an [acyl-carrier protein]
For diagram of Kdo-Kdo-Lipid IVA metabolism, click here
Glossary: Kdo = 3-deoxy-D-manno-oct-2-ulopyranosylonic acid
lipid IVA = 2-deoxy-2-[(3R)-3-hydroxytetradecanamido]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranosyl phosphate
Kdo2-lipid IVA = α-Kdo-(2→4)-α-Kdo-(2→6)-lipid IVA
(9Z)-hexadec-9-enoyl = palmitoleoyl
(9Z)-hexadec-9-enoyl-Kdo2-lipid IVA = α-Kdo-(2→4)-α-Kdo-(2→6)-2-deoxy-2-{(3R)-3-[(9Z)-hexadec-9-enoyl]tetradecanamido}-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranosyl phosphate
Other name(s): LpxP; palmitoleoyl-acyl carrier protein-dependent acyltransferase; cold-induced palmitoleoyl transferase; palmitoleoyl-[acyl-carrier protein]:Kdo2-lipid IVA O-palmitoleoyltransferase; (Kdo)2-lipid IVA palmitoleoyltransferase; α-Kdo-(2→4)-α-(2→6)-lipid IVA palmitoleoyltransferase
Systematic name: (9Z)-hexadec-9-enoyl-[acyl-carrier protein]:Kdo2-lipid IVA O-palmitoleoyltransferase
Comments: The enzyme, characterized from the bacterium Escherichia coli, is induced upon cold shock and is involved in the formation of a cold-adapted variant of the outer membrane glycolipid lipid A.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Carty, S.M., Sreekumar, K.R. and Raetz, C.R. Effect of cold shock on lipid A biosynthesis in Escherichia coli. Induction At 12 degrees C of an acyltransferase specific for palmitoleoyl-acyl carrier protein. J. Biol. Chem. 274 (1999) 9677–9685. [DOI] [PMID: 10092655]
2.  Vorachek-Warren, M.K., Carty, S.M., Lin, S., Cotter, R.J. and Raetz, C.R. An Escherichia coli mutant lacking the cold shock-induced palmitoleoyltransferase of lipid A biosynthesis: absence of unsaturated acyl chains and antibiotic hypersensitivity at 12 degrees C. J. Biol. Chem. 277 (2002) 14186–14193. [DOI] [PMID: 11830594]
[EC 2.3.1.242 created 2014]
 
 
EC 2.3.1.243     
Accepted name: acyl-Kdo2-lipid IVA acyltransferase
Reaction: a fatty acyl-[acyl-carrier protein] + an α-Kdo-(2→4)-α-Kdo-(2→6)-(acyl)-[lipid IVA] = an α-Kdo-(2→4)-α-Kdo-(2→6)-(acyl)2-[lipid IVA] + an [acyl-carrier protein]
For diagram of Kdo-Kdo-Lipid IVA metabolism, click here
Glossary: Kdo = 3-deoxy-D-manno-oct-2-ulopyranosylonic acid
a lipid IVA = 2-deoxy-2-{[(3R)-3-hydroxyacyl]amino}-3-O-[(3R)-3-hydroxyacyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxyacyl]-2-{[(3R)-3-hydroxyacyl]amino}-1-O-phospho-α-D-glucopyranose
an α-Kdo-(2→4)-α-Kdo-(2→6)-(acyl)-[lipid IVA] = 3-deoxy-α-D-manno-oct-2-ulopyranosyl-(2→4)-3-deoxy-α-D-manno-oct-2-ulopyranosyl-(2→6)-2-deoxy-2-{[(3R)-3-(acyloxy)acyl]amino}-3-O-[(3R)-3-hydroxyacyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxyacyl]-2-{[(3R)-3-hydroxyacyl]amino}-1-O-phosphono-α-D-glucopyranose
an α-Kdo-(2→4)-α-Kdo-(2→6)-(acyl)2-[lipid IVA] = 3-deoxy-α-D-manno-oct-2-ulopyranosyl-(2→4)-3-deoxy-α-D-manno-oct-2-ulopyranosyl-(2→6)-2-deoxy-2-{[(3R)-3-(acyloxy)acyl]amino}-3-O-[(3R)-3-(acyloxy)acyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxyacyl]-2-{[(3R)-3-hydroxyacyl]amino}-1-O-phospho-α-D-glucopyranose
Other name(s): lpxM (gene name); MsbB acyltransferase; myristoyl-[acyl-carrier protein]:α-Kdo-(2→4)-α-Kdo-(2→6)-(dodecanoyl)-lipid IVA O-myristoyltransferase; tetradecanoyl-[acyl-carrier protein]:dodecanoyl-Kdo2-lipid IVA O-tetradecanoyltransferase; lauroyl-Kdo2-lipid IVA myristoyltransferase
Systematic name: fatty acyl-[acyl-carrier protein]:α-Kdo-(2→4)-α-Kdo-(2→6)-(acyl)-[lipid IVA] O-acyltransferase
Comments: The enzyme is involved in the biosynthesis of the phosphorylated outer membrane glycolipid lipid A. It transfers an acyl group to the 3-O position of the 3R-hydroxyacyl already attached at the 2-O position of the non-reducing glucosamine molecule. The enzyme from the bacterium Escherichia coli is specific for myristoyl (C14) acyl groups, giving the enzyme its previous accepted name. However, enzymes from different species accept highly variable substrates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Clementz, T., Zhou, Z. and Raetz, C.R. Function of the Escherichia coli msbB gene, a multicopy suppressor of htrB knockouts, in the acylation of lipid A. Acylation by MsbB follows laurate incorporation by HtrB. J. Biol. Chem. 272 (1997) 10353–10360. [DOI] [PMID: 9099672]
2.  Dovala, D., Rath, C.M., Hu, Q., Sawyer, W.S., Shia, S., Elling, R.A., Knapp, M.S. and Metzger, L.E., 4th. Structure-guided enzymology of the lipid A acyltransferase LpxM reveals a dual activity mechanism. Proc. Natl. Acad. Sci. USA 113 (2016) E6064–E6071. [DOI] [PMID: 27681620]
[EC 2.3.1.243 created 2014, modified 2021]
 
 
EC 2.3.1.251     
Accepted name: lipid IVA palmitoyltransferase
Reaction: (1) 1-palmitoyl-2-acyl-sn-glycero-3-phosphocholine + hexa-acyl lipid A = 2-acyl-sn-glycero-3-phosphocholine + hepta-acyl lipid A
(2) 1-palmitoyl-2-acyl-sn-glycero-3-phosphocholine + lipid IIA = 2-acyl-sn-glycero-3-phosphocholine + lipid IIB
(3) 1-palmitoyl-2-acyl-sn-glycero-3-phosphocholine + lipid IVA = 2-acyl-sn-glycero-3-phosphocholine + lipid IVB
For diagram of lipid IVB biosynthesis, click here
Glossary: palmitoyl = hexadecanoyl
hexa-acyl lipid A = 2-deoxy-2-[(3R)-3-(tetradecanoyloxy)tetradecanamido]-3-O-[(3R)-3-(dodecanoyloxy)tetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranosyl phosphate
hepta-acyl lipid A = 2-deoxy-2-[(3R)-3-(tetradecanoyloxy)tetradecanamido]-3-O-[(3R)-3-(dodecanoyloxy)tetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-(hexadecanoyloxy)tetradecanamido]-α-D-glucopyranosyl phosphate
lipid IIA = 4-amino-4-deoxy-β-L-arabinopyranosyl 2-deoxy-2-[(3R)-3-hydroxytetradecanamido]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranose phosphate
lipid IIB = 4-amino-4-deoxy-β-L-arabinopyranosyl 2-deoxy-2-[(3R)-3-hydroxytetradecanamido]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-(hexadecanoyloxy)tetradecanamido]-α-D-glucopyranosyl phosphate
lipid IVA = 2-deoxy-2-[(3R)-3-hydroxytetradecanamido]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranose phosphate
lipid IVB = 2-deoxy-2-[(3R)-3-hydroxytetradecanamido]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-(hexadecanoyloxy)tetradecanamido]-α-D-glucopyranosyl phosphate
Other name(s): PagP; crcA (gene name)
Systematic name: 1-palmitoyl-2-acyl-sn-glycero-3-phosphocholine:lipid-IVA palmitoyltransferase
Comments: Isolated from the bacteria Escherichia coli and Salmonella typhimurium. The enzyme prefers phosphatidylcholine with a palmitoyl group at the sn-1 position and palmitoyl or stearoyl groups at the sn-2 position. There is some activity with corresponding phosphatidylserines but only weak activity with other diacylphosphatidyl compounds. The enzyme also acts on Kdo-(2→4)-Kdo-(2→6)-lipid IVA.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Bishop, R.E., Gibbons, H.S., Guina, T., Trent, M.S., Miller, S.I. and Raetz, C.R. Transfer of palmitate from phospholipids to lipid A in outer membranes of gram-negative bacteria. EMBO J. 19 (2000) 5071–5080. [DOI] [PMID: 11013210]
2.  Cuesta-Seijo, J.A., Neale, C., Khan, M.A., Moktar, J., Tran, C.D., Bishop, R.E., Pomes, R. and Prive, G.G. PagP crystallized from SDS/cosolvent reveals the route for phospholipid access to the hydrocarbon ruler. Structure 18 (2010) 1210–1219. [DOI] [PMID: 20826347]
[EC 2.3.1.251 created 2015]
 
 
EC 2.4.2.43     
Accepted name: lipid IVA 4-amino-4-deoxy-L-arabinosyltransferase
Reaction: (1) 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate + α-Kdo-(2→4)-α-Kdo-(2→6)-lipid A = α-Kdo-(2→4)-α-Kdo-(2→6)-[4-P-L-Ara4N]-lipid A + ditrans,octacis-undecaprenyl phosphate
(2) 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate + lipid IVA = lipid IIA + ditrans,octacis-undecaprenyl phosphate
(3) 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate + α-Kdo-(2→4)-α-Kdo-(2→6)-lipid IVA = 4′-α-L-Ara4N-α-Kdo-(2→4)-α-Kdo-(2→6)-lipid IVA + ditrans,octacis-undecaprenyl phosphate
For diagram of lipid IIA biosynthesis, click here
Glossary: lipid IVA = 2-deoxy-2-{[(3R)-3-hydroxytetradecanoyl]amino}-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-{[(3R)-3-hydroxytetradecanoyl]amino}-1-O-phosphono-α-D-glucopyranose
lipid IIA = 4-amino-4-deoxy-β-L-arabinopyranosyl 2-deoxy-2-{[(3R)-3-hydroxytetradecanoyl]amino}-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-{[(3R)-3-hydroxytetradecanoyl]amino}-α-D-glucopyranosyl phosphate
α-Kdo-(2→4)-α-Kdo-(2→6)-lipid IVA = (3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→4)-(3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→6)-2-deoxy-2-{[(3R)-3-hydroxytetradecanoyl]amino}-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phosphono-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-{[(3R)-3-hydroxytetradecanoyl]amino}-1-O-phosphono-α-D-glucopyranose
4′-α-L-Ara4N-α-Kdo-(2→4)-α-Kdo-(2→6)-lipid IVA = 4-amino-4-deoxy-α-L-arabinopyranosyl 2-deoxy-2-[(3R)-3-hydroxytetradecanamido]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-phospho-β-D-glucopyranosy-(1→6)-2-deoxy-2-[(3R)-3-hydroxytetradecanamido]-3-O-[(3R)-3-hydroxytetradecanoyl]-α-D-glucopyranosyl phosphate
lipid A = lipid A of Escherichia coli = 2-deoxy-2-{[(3R)-3-(dodecanoyloxy)tetradecanoyl]amino}-3-O-[(3R)-3-(tetradecanoyloxy)tetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-{[(3R)-3-hydroxytetradecanoyl]amino}-1-O-phosphono-α-D-glucopyranose
α-Kdo-(2→4)-α-Kdo-(2→6)-lipid A = (3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→4)-(3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→6)-2-deoxy-2-{[(3R)-3-(dodecanoyloxy)tetradecanoyl]amino}-3-O-[(3R)-3-(tetradecanoyloxy)tetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-{[(3R)-3-hydroxytetradecanoyl]amino}-1-O-phosphono-α-D-glucopyranose
α-Kdo-(2→4)-α-Kdo-(2→6)-[4′-P-α-L-Ara4N]-lipid A = (3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→4)-(3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→6)-2-deoxy-2-{[(3R)-3-(dodecanoyloxy)tetradecanoyl]amino}-3-O-[(3R)-3-(tetradecanoyloxy)tetradecanoyl]-4-O-(4-amino-4-deoxy-α-L-arabinopyranosyl)phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-{[(3R)-3-hydroxytetradecanoyl]amino}-1-O-phosphono-α-D-glucopyranose
Other name(s): undecaprenyl phosphate-α-L-Ara4N transferase; 4-amino-4-deoxy-L-arabinose lipid A transferase; polymyxin resistance protein PmrK; arnT (gene name)
Systematic name: 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl-phosphate:lipid IVA 4-amino-4-deoxy-L-arabinopyranosyltransferase
Comments: Integral membrane protein present in the inner membrane of certain Gram negative endobacteria. In strains that do not produce 3-deoxy-D-manno-octulosonic acid (Kdo), the enzyme adds a single arabinose unit to the 1-phosphate moiety of the tetra-acylated lipid A precursor, lipid IVA. In the presence of a Kdo disaccharide, the enzyme primarily adds an arabinose unit to the 4-phosphate of lipid A molecules. The Salmonella typhimurium enzyme can add arabinose units to both positions.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Trent, M.S., Ribeiro, A.A., Lin, S., Cotter, R.J. and Raetz, C.R. An inner membrane enzyme in Salmonella and Escherichia coli that transfers 4-amino-4-deoxy-L-arabinose to lipid A: induction on polymyxin-resistant mutants and role of a novel lipid-linked donor. J. Biol. Chem. 276 (2001) 43122–43131. [DOI] [PMID: 11535604]
2.  Trent, M.S., Ribeiro, A.A., Doerrler, W.T., Lin, S., Cotter, R.J. and Raetz, C.R. Accumulation of a polyisoprene-linked amino sugar in polymyxin-resistant Salmonella typhimurium and Escherichia coli: structural characterization and transfer to lipid A in the periplasm. J. Biol. Chem. 276 (2001) 43132–43144. [DOI] [PMID: 11535605]
3.  Zhou, Z., Ribeiro, A.A., Lin, S., Cotter, R.J., Miller, S.I. and Raetz, C.R. Lipid A modifications in polymyxin-resistant Salmonella typhimurium: PMRA-dependent 4-amino-4-deoxy-L-arabinose, and phosphoethanolamine incorporation. J. Biol. Chem. 276 (2001) 43111–43121. [DOI] [PMID: 11535603]
4.  Bretscher, L.E., Morrell, M.T., Funk, A.L. and Klug, C.S. Purification and characterization of the L-Ara4N transferase protein ArnT from Salmonella typhimurium. Protein Expr. Purif. 46 (2006) 33–39. [DOI] [PMID: 16226890]
5.  Impellitteri, N.A., Merten, J.A., Bretscher, L.E. and Klug, C.S. Identification of a functionally important loop in Salmonella typhimurium ArnT. Biochemistry 49 (2010) 29–35. [DOI] [PMID: 19947657]
[EC 2.4.2.43 created 2010, modified 2011]
 
 
EC 2.4.99.12     
Accepted name: lipid IVA 3-deoxy-D-manno-octulosonic acid transferase
Reaction: CMP-β-Kdo + a lipid IVA + CMP-β-Kdo = CMP + an α-Kdo-(2→6)-[lipid IVA]
For diagram of Kdo4-Lipid IVA biosynthesis, click here
Glossary: CMP-β-Kdo = CMP-3-deoxy-β-D-manno-octulosonate = CMP-3-deoxy-β-D-manno-oct-2-ulopyranosylonate
a lipid IVA = 2-deoxy-2-{[(3R)-3-hydroxyacyl]amino}-3-O-[(3R)-3-hydroxyacyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxyacyl]-2-{[(3R)-3-hydroxyacyl]amino}-1-O-phospho-α-D-glucopyranose
Other name(s): waaA (gene name); kdtA (gene name); 3-deoxy-D-manno-oct-2-ulosonic acid transferase; 3-deoxy-manno-octulosonic acid transferase; lipid IVA KDO transferase; CMP-3-deoxy-D-manno-oct-2-ulosonate:lipid IVA 3-deoxy-D-manno-oct-2-ulosonate transferase; KDO transferase
Systematic name: CMP-3-deoxy-β-D-manno-oct-2-ulosonate:[lipid IVA] 3-deoxy-D-manno-oct-2-ulosonate transferase (configuration-inverting)
Comments: The enzyme from Escherichia coli is bifunctional and transfers two 3-deoxy-D-manno-oct-2-ulosonate residues to lipid IVA (cf. EC 2.4.99.13 [(Kdo)-lipid IVA 3-deoxy-D-manno-octulosonic acid transferase]) [1]. The monofunctional enzymes from Bordetella pertusis, Aquifex aeolicus and Haemophilus influenzae catalyse the transfer of a single 3-deoxy-D-manno-oct-2-ulosonate residue from CMP-3-deoxy-D-manno-oct-2-ulosonate to lipid IVA [2-4]. The enzymes from Chlamydia transfer three or more 3-deoxy-D-manno-oct-2-ulosonate residues and generate genus-specific epitopes [5].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Belunis, C.J. and Raetz, C.R. Biosynthesis of endotoxins. Purification and catalytic properties of 3-deoxy-D-manno-octulosonic acid transferase from Escherichia coli. J. Biol. Chem. 267 (1992) 9988–9997. [PMID: 1577828]
2.  Isobe, T., White, K.A., Allen, A.G., Peacock, M., Raetz, C.R. and Maskell, D.J. Bordetella pertussis waaA encodes a monofunctional 2-keto-3-deoxy-D-manno-octulosonic acid transferase that can complement an Escherichia coli waaA mutation. J. Bacteriol. 181 (1999) 2648–2651. [DOI] [PMID: 10198035]
3.  Mamat, U., Schmidt, H., Munoz, E., Lindner, B., Fukase, K., Hanuszkiewicz, A., Wu, J., Meredith, T.C., Woodard, R.W., Hilgenfeld, R., Mesters, J.R. and Holst, O. WaaA of the hyperthermophilic bacterium Aquifex aeolicus is a monofunctional 3-deoxy-D-manno-oct-2-ulosonic acid transferase involved in lipopolysaccharide biosynthesis. J. Biol. Chem. 284 (2009) 22248–22262. [DOI] [PMID: 19546212]
4.  White, K.A., Kaltashov, I.A., Cotter, R.J. and Raetz, C.R. A mono-functional 3-deoxy-D-manno-octulosonic acid (Kdo) transferase and a Kdo kinase in extracts of Haemophilus influenzae. J. Biol. Chem. 272 (1997) 16555–16563. [DOI] [PMID: 9195966]
5.  Lobau, S., Mamat, U., Brabetz, W. and Brade, H. Molecular cloning, sequence analysis, and functional characterization of the lipopolysaccharide biosynthetic gene kdtA encoding 3-deoxy-α-D-manno-octulosonic acid transferase of Chlamydia pneumoniae strain TW-183. Mol. Microbiol. 18 (1995) 391–399. [DOI] [PMID: 8748024]
[EC 2.4.99.12 created 2010, modified 2011]
 
 
EC 2.4.99.13     
Accepted name: (Kdo)-lipid IVA 3-deoxy-D-manno-octulosonic acid transferase
Reaction: CMP-β-Kdo + an α-Kdo-(2→6)-[lipid IVA] = CMP + an α-Kdo-(2→4)-α-Kdo-(2→6)-[lipid IVA]
For diagram of Kdo4-Lipid IVA biosynthesis, click here
Glossary: CMP-β-Kdo = CMP-3-deoxy-β-D-manno-oct-2-ulopyranosylonate
a lipid IVA = 2-deoxy-2-{[(3R)-3-hydroxyacyl]amino}-3-O-[(3R)-3-hydroxyacyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxyacyl]-2-{[(3R)-3-hydroxyacyl]amino}-1-O-phospho-α-D-glucopyranose
Other name(s): waaA (gene name); kdtA (gene name); 3-deoxy-D-manno-oct-2-ulosonic acid transferase; 3-deoxy-manno-octulosonic acid transferase; (KDO)-lipid IVA 3-deoxy-D-manno-octulosonic acid transferase; CMP-3-deoxy-D-manno-oct-2-ulosonate:(Kdo)-lipid IVA 3-deoxy-D-manno-oct-2-ulosonate transferase; Kdo transferase (ambiguous)
Systematic name: CMP-3-deoxy-β-D-manno-oct-2-ulosonate:α-Kdo-(2→6)-[lipid IVA] 3-deoxy-D-manno-oct-2-ulosonate transferase (configuration-inverting)
Comments: The enzyme from Escherichia coli is bifunctional and transfers two 3-deoxy-D-manno-oct-2-ulosonate residues to lipid IVA (cf. EC 2.4.99.12 [lipid IVA 3-deoxy-D-manno-octulosonic acid transferase]) [1]. The enzymes from Chlamydia transfer three or more 3-deoxy-D-manno-oct-2-ulosonate residues and generate genus-specific epitopes [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Belunis, C.J. and Raetz, C.R. Biosynthesis of endotoxins. Purification and catalytic properties of 3-deoxy-D-manno-octulosonic acid transferase from Escherichia coli. J. Biol. Chem. 267 (1992) 9988–9997. [PMID: 1577828]
2.  Lobau, S., Mamat, U., Brabetz, W. and Brade, H. Molecular cloning, sequence analysis, and functional characterization of the lipopolysaccharide biosynthetic gene kdtA encoding 3-deoxy-α-D-manno-octulosonic acid transferase of Chlamydia pneumoniae strain TW-183. Mol. Microbiol. 18 (1995) 391–399. [DOI] [PMID: 8748024]
3.  Schmidt, H., Hansen, G., Singh, S., Hanuszkiewicz, A., Lindner, B., Fukase, K., Woodard, R.W., Holst, O., Hilgenfeld, R., Mamat, U. and Mesters, J.R. Structural and mechanistic analysis of the membrane-embedded glycosyltransferase WaaA required for lipopolysaccharide synthesis. Proc. Natl. Acad. Sci. USA 109 (2012) 6253–6258. [DOI] [PMID: 22474366]
[EC 2.4.99.13 created 2010, modified 2011, modified 2021]
 
 
EC 2.4.99.14     
Accepted name: (Kdo)2-lipid IVA (2-8) 3-deoxy-D-manno-octulosonic acid transferase
Reaction: α-Kdo-(2→4)-α-Kdo-(2→6)-lipid IVA + CMP-β-Kdo = α-Kdo-(2→8)-α-Kdo-(2→4)-α-Kdo-(2→6)-lipid IVA + CMP
For diagram of Kdo4-Lipid IVA biosynthesis, click here
Glossary: (Kdo)2-lipid IVA = α-Kdo-(2→4)-α-Kdo-(2→6)-lipid IVA = (3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→4)-(3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→6)-2-deoxy-2-{[(3R)-3-hydroxytetradecanoyl]amino}-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phosphono-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-{[(3R)-3-hydroxytetradecanoyl]amino}-1-O-phosphono-α-D-glucopyranose
(Kdo)3-lipid IVA = α-Kdo-(2→8)-α-Kdo-(2→4)-α-Kdo-(2→6)-lipid IVA = (3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→8)-(3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→4)-(3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→6)-2-deoxy-2-{[(3R)-3-hydroxytetradecanoyl]amino}-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phosphono-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-{[(3R)-3-hydroxytetradecanoyl]amino}-1-O-phosphono-α-D-glucopyranose
CMP-β-Kdo = CMP-3-deoxy-β-D-manno-oct-2-ulopyranosylonate
Other name(s): Kdo transferase; waaA (gene name); kdtA (gene name); 3-deoxy-D-manno-oct-2-ulosonic acid transferase; 3-deoxy-manno-octulosonic acid transferase; (KDO)2-lipid IVA (2-8) 3-deoxy-D-manno-octulosonic acid transferase
Systematic name: CMP-3-deoxy-D-manno-oct-2-ulosonate:(Kdo)2-lipid IVA 3-deoxy-D-manno-oct-2-ulosonate transferase [(2→8) glycosidic bond-forming]
Comments: The enzymes from Chlamydia transfer three or more 3-deoxy-D-manno-oct-2-ulosonate residues and generate genus-specific epitopes.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lobau, S., Mamat, U., Brabetz, W. and Brade, H. Molecular cloning, sequence analysis, and functional characterization of the lipopolysaccharide biosynthetic gene kdtA encoding 3-deoxy-α-D-manno-octulosonic acid transferase of Chlamydia pneumoniae strain TW-183. Mol. Microbiol. 18 (1995) 391–399. [DOI] [PMID: 8748024]
2.  Mamat, U., Baumann, M., Schmidt, G. and Brade, H. The genus-specific lipopolysaccharide epitope of Chlamydia is assembled in C. psittaci and C. trachomatis by glycosyltransferases of low homology. Mol. Microbiol. 10 (1993) 935–941. [DOI] [PMID: 7523826]
3.  Belunis, C.J., Mdluli, K.E., Raetz, C.R. and Nano, F.E. A novel 3-deoxy-D-manno-octulosonic acid transferase from Chlamydia trachomatis required for expression of the genus-specific epitope. J. Biol. Chem. 267 (1992) 18702–18707. [PMID: 1382060]
[EC 2.4.99.14 created 2010, modified 2011]
 
 
EC 2.4.99.15     
Accepted name: (Kdo)3-lipid IVA (2-4) 3-deoxy-D-manno-octulosonic acid transferase
Reaction: α-Kdo-(2→8)-α-Kdo-(2→4)-α-Kdo-(2→6)-lipid IVA + CMP-β-Kdo = α-Kdo-(2→8)-[α-Kdo-(2→4)]-α-Kdo-(2→4)-α-Kdo-(2→6)-lipid IVA + CMP
For diagram of Kdo4-Lipid IVA biosynthesis, click here
Glossary: (Kdo)3-lipid IVA = α-Kdo-(2→8)-α-Kdo-(2→4)-α-Kdo-(2→6)-lipid IVA = (3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→8)-(3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→4)-(3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→6)-2-deoxy-2-{[(3R)-3-hydroxytetradecanoyl]amino}-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phosphono-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-{[(3R)-3-hydroxytetradecanoyl]amino}-1-O-phosphono-α-D-glucopyranose
(Kdo)4-lipid IVA = α-Kdo-(2→8)-[α-Kdo-(2→4)]-α-Kdo-(2→4)-α-Kdo-(2→6)-lipid IVA = (3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→8)-[(3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→4)]-(3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→4)-(3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→6)-2-deoxy-2-{[(3R)-3-hydroxytetradecanoyl]amino}-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phosphono-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-{[(3R)-3-hydroxytetradecanoyl]amino}-1-O-phosphono-α-D-glucopyranose
CMP-β-Kdo = CMP-3-deoxy-β-D-manno-oct-2-ulopyranosylonate
Other name(s): Kdo transferase; waaA (gene name); kdtA (gene name); 3-deoxy-D-manno-oct-2-ulosonic acid transferase; 3-deoxy-manno-octulosonic acid transferase; (KDO)3-lipid IVA (2-4) 3-deoxy-D-manno-octulosonic acid transferase
Systematic name: CMP-3-deoxy-D-manno-oct-2-ulosonate:(Kdo)3-lipid IVA 3-deoxy-D-manno-oct-2-ulosonate transferase [(2→4) glycosidic bond-forming]
Comments: The enzyme from Chlamydia psittaci transfers four Kdo residues to lipid A, forming a branched tetrasaccharide with the structure α-Kdo-(2,8)-[α-Kdo-(2,4)]-α-Kdo-(2,4)-α-Kdo (cf. EC 2.4.99.12 [lipid IVA 3-deoxy-D-manno-octulosonic acid transferase], EC 2.4.99.13 [(Kdo)-lipid IVA 3-deoxy-D-manno-octulosonic acid transferase], and EC 2.4.99.14 [(Kdo)2-lipid IVA (2-8) 3-deoxy-D-manno-octulosonic acid transferase]).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Brabetz, W., Lindner, B. and Brade, H. Comparative analyses of secondary gene products of 3-deoxy-D-manno-oct-2-ulosonic acid transferases from Chlamydiaceae in Escherichia coli K-12. Eur. J. Biochem. 267 (2000) 5458–5465. [DOI] [PMID: 10951204]
2.  Holst, O., Bock, K., Brade, L. and Brade, H. The structures of oligosaccharide bisphosphates isolated from the lipopolysaccharide of a recombinant Escherichia coli strain expressing the gene gseA [3-deoxy-D-manno-octulopyranosonic acid (Kdo) transferase] of Chlamydia psittaci 6BC. Eur. J. Biochem. 229 (1995) 194–200. [DOI] [PMID: 7744029]
[EC 2.4.99.15 created 2010, modified 2011]
 
 
EC 2.7.1.130     
Accepted name: tetraacyldisaccharide 4′-kinase
Reaction: ATP + a lipid A disaccharide = ADP + a lipid IVA
For diagram of lipid IVA biosynthesis, click here
Glossary: a lipid A disaccharide = a dephospho-lipid IVA = 2-deoxy-2-{[(3R)-3-hydroxyacyl]amino}-3-O-[(3R)-3-hydroxyacyl]-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxyacyl]-2-{[(3R)-3-hydroxyacyl]amino}-1-O-phospho-α-D-glucopyranose
a lipid IVA = 2-deoxy-2-{[(3R)-3-hydroxyacyl]amino}-3-O-[(3R)-3-hydroxyacyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxyacyl]-2-{[(3R)-3-hydroxyacyl]amino}-1-O-phospho-α-D-glucopyranose
Other name(s): lpxK (gene name); lipid-A 4′-kinase; ATP:2,2′,3,3′-tetrakis[(3R)-3-hydroxytetradecanoyl]-β-D-glucosaminyl-(1→6)-α-D-glucosaminyl-phosphate 4′-O-phosphotransferase
Systematic name: ATP:2-deoxy-2-{[(3R)-3-hydroxyacyl]amino}-3-O-[(3R)-3-hydroxyacyl]-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxyacyl]-2-{[(3R)-3-hydroxyacyl]amino}-1-O-phospho-α-D-glucopyranose 4′-O-phosphotransferase
Comments: Involved with EC 2.3.1.129 (acyl-[acyl-carrier-protein]—UDP-N-acetylglucosamine O-acyltransferase) and EC 2.4.1.182 (lipid-A-disaccharide synthase) in the biosynthesis of the phosphorylated glycolipid, lipid A, in the outer membrane of Gram-negative bacteria.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 107309-06-8
References:
1.  Ray, B.L. and Raetz, C.R.H. The biosynthesis of gram-negative endotoxin. A novel kinase in Escherichia coli membranes that incorporates the 4′-phosphate of lipid A. J. Biol. Chem. 262 (1987) 1122–1128. [PMID: 3027079]
2.  Emptage, R.P., Daughtry, K.D., Pemble, C.W., 4th and Raetz, C.R. Crystal structure of LpxK, the 4′-kinase of lipid A biosynthesis and atypical P-loop kinase functioning at the membrane interface. Proc. Natl. Acad. Sci. USA 109 (2012) 12956–12961. [DOI] [PMID: 22826246]
3.  Emptage, R.P., Pemble, C.W., 4th, York, J.D., Raetz, C.R. and Zhou, P. Mechanistic characterization of the tetraacyldisaccharide-1-phosphate 4′-kinase LpxK involved in lipid A biosynthesis. Biochemistry 52 (2013) 2280–2290. [DOI] [PMID: 23464738]
4.  Emptage, R.P., Tonthat, N.K., York, J.D., Schumacher, M.A. and Zhou, P. Structural basis of lipid binding for the membrane-embedded tetraacyldisaccharide-1-phosphate 4′-kinase LpxK. J. Biol. Chem. 289 (2014) 24059–24068. [DOI] [PMID: 25023290]
[EC 2.7.1.130 created 1990, modified 2021]
 
 
EC 2.7.1.166     
Accepted name: 3-deoxy-D-manno-octulosonic acid kinase
Reaction: α-Kdo-(2→6)-lipid IVA + ATP = 4-O-phospho-α-Kdo-(2→6)-lipid IVA + ADP
Glossary: (Kdo)-lipid IVA = α-Kdo-(2→6)-lipid IVA = (3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→6)-2-deoxy-2-{[(3R)-3-hydroxytetradecanoyl]amino}-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phosphono-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-{[(3R)-3-hydroxytetradecanoyl]amino}-1-O-phosphono-α-D-glucopyranose
(4-O-phospho-KDO)-lipid IVA = 4-O-phospho-α-Kdo-(2→6)-lipid IVA = (3-deoxy-4-O-phosphono-α-D-manno-oct-2-ulopyranosylonate)-(2→6)-2-deoxy-2-{[(3R)-3-hydroxytetradecanoyl]amino}-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phosphono-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-{[(3R)-3-hydroxytetradecanoyl]amino}-1-O-phosphono-α-D-glucopyranose
Other name(s): kdkA (gene name); Kdo kinase
Systematic name: ATP:(Kdo)-lipid IVA 3-deoxy-α-D-manno-oct-2-ulopyranose 4-phosphotransferase
Comments: The enzyme phosphorylates the 4-OH position of Kdo in (Kdo)-lipid IVA.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Brabetz, W., Muller-Loennies, S. and Brade, H. 3-Deoxy-D-manno-oct-2-ulosonic acid (Kdo) transferase (WaaA) and kdo kinase (KdkA) of Haemophilus influenzae are both required to complement a waaA knockout mutation of Escherichia coli. J. Biol. Chem. 275 (2000) 34954–34962. [DOI] [PMID: 10952982]
2.  Harper, M., Boyce, J.D., Cox, A.D., St Michael, F., Wilkie, I.W., Blackall, P.J. and Adler, B. Pasteurella multocida expresses two lipopolysaccharide glycoforms simultaneously, but only a single form is required for virulence: identification of two acceptor-specific heptosyl I transferases. Infect. Immun. 75 (2007) 3885–3893. [DOI] [PMID: 17517879]
3.  White, K.A., Kaltashov, I.A., Cotter, R.J. and Raetz, C.R. A mono-functional 3-deoxy-D-manno-octulosonic acid (Kdo) transferase and a Kdo kinase in extracts of Haemophilus influenzae. J. Biol. Chem. 272 (1997) 16555–16563. [DOI] [PMID: 9195966]
4.  White, K.A., Lin, S., Cotter, R.J. and Raetz, C.R. A Haemophilus influenzae gene that encodes a membrane bound 3-deoxy-D-manno-octulosonic acid (Kdo) kinase. Possible involvement of kdo phosphorylation in bacterial virulence. J. Biol. Chem. 274 (1999) 31391–31400. [DOI] [PMID: 10531340]
[EC 2.7.1.166 created 2010, modified 2011]
 
 
EC 2.7.4.30      
Transferred entry: lipid A phosphoethanolamine transferase. Now EC 2.7.8.43, lipid A phosphoethanolamine transferase
[EC 2.7.4.30 created 2015, deleted 2016]
 
 
EC 2.7.8.42     
Accepted name: Kdo2-lipid A phosphoethanolamine 7′′-transferase
Reaction: (1) diacylphosphatidylethanolamine + α-D-Kdo-(2→4)-α-D-Kdo-(2→6)-lipid A = diacylglycerol + 7-O-[2-aminoethoxy(hydroxy)phosphoryl]-α-D-Kdo-(2→4)-α-D-Kdo-(2→6)-lipid A
(2) diacylphosphatidylethanolamine + α-D-Kdo-(2→4)-α-D-Kdo-(2→6)-lipid IVA = diacylglycerol + 7-O-[2-aminoethoxy(hydroxy)phosphoryl]-α-D-Kdo-(2→4)-α-D-Kdo-(2→6)-lipid IVA
Glossary: lipid A = 2-deoxy-2-[(3R)-3-(tetradecanoyloxy)tetradecanamido]-3-O-[(3R)-3-(dodecanoyloxy)tetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranosyl phosphate
lipid IVA = 2-deoxy-2-[(3R)-3-hydroxytetradecanamido]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranosyl phosphate
Other name(s): eptB (gene name)
Systematic name: diacylphosphatidylethanolamine:α-D-Kdo-(2→4)-α-D-Kdo-(2→6)-lipid-A 7′′-phosphoethanolaminetransferase
Comments: The enzyme has been characterized from the bacterium Escherichia coli. It is activated by Ca2+ ions and is silenced by the sRNA MgrR.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kanipes, M.I., Lin, S., Cotter, R.J. and Raetz, C.R. Ca2+-induced phosphoethanolamine transfer to the outer 3-deoxy-D-manno-octulosonic acid moiety of Escherichia coli lipopolysaccharide. A novel membrane enzyme dependent upon phosphatidylethanolamine. J. Biol. Chem. 276 (2001) 1156–1163. [DOI] [PMID: 11042192]
2.  Reynolds, C.M., Kalb, S.R., Cotter, R.J. and Raetz, C.R. A phosphoethanolamine transferase specific for the outer 3-deoxy-D-manno-octulosonic acid residue of Escherichia coli lipopolysaccharide. Identification of the eptB gene and Ca2+ hypersensitivity of an eptB deletion mutant. J. Biol. Chem. 280 (2005) 21202–21211. [DOI] [PMID: 15795227]
3.  Moon, K., Six, D.A., Lee, H.J., Raetz, C.R. and Gottesman, S. Complex transcriptional and post-transcriptional regulation of an enzyme for lipopolysaccharide modification. Mol. Microbiol. 89 (2013) 52–64. [DOI] [PMID: 23659637]
[EC 2.7.8.42 created 2015]
 
 
EC 2.7.8.43     
Accepted name: lipid A phosphoethanolamine transferase
Reaction: (1) diacylphosphatidylethanolamine + lipid A = diacylglycerol + lipid A 1-(2-aminoethyl diphosphate)
(2) diacylphosphatidylethanolamine + lipid A = diacylglycerol + lipid A 4′-(2-aminoethyl diphosphate)
(3) diacylphosphatidylethanolamine + lipid A 1-(2-aminoethyl diphosphate) = diacylglycerol + lipid A 1,4′-bis(2-aminoethyl diphosphate)
Glossary: lipid A (Campylobacter jejuni) = 2,3-dideoxy-2,3-bis[(3R)-3-(hexadecanoyloxy)tetradecanamido]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranosyl phosphate
lipid A (Escherichia coli) =
2-deoxy-2-[(3R)-3-(tetradecanoyloxy)tetradecanamido]-3-O-[(3R)-3-(dodecanoyloxy)tetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranosyl phosphate
lipid A (Helicobacter pylori) = 2-deoxy-2-[(3R)-3-(octadecanoyloxy)octadecanamido]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxyhexadecanoyl]-2-[(3R)-3-hydroxyoctadecanamido]-α-D-glucopyranosyl phosphate
lipid A (Neisseria meningitidis) =
2-deoxy-3-O-[(3R)-3-hydroxydodecanoyl]-2-[(3R)-3-(dodecanoyloxy)tetradecanamido]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxydodecanoyl]-2-[(3R)-3-(dodecanoyloxy)tetradecanamido]-α-D-glucopyranosyl phosphate
lipid A 1-[(2-aminoethyl) diphosphate] = P1-(2-aminoethyl)
P2-(2-deoxy-2-[(3R)-3-(tetradecanoyloxy)tetradecanamido]-3-O-[(3R)-3-(dodecanoyloxy)tetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranosyl) diphosphate
lipid A 1,4′-bis(2-aminoethyl diphosphate) = P1-(2-aminoethyl)
P2-(2-deoxy-2-[(3R)-3-(tetradecanoyloxy)tetradecanamido]-3-O-[(3R)-3-(dodecanoyloxy)tetradecanoyl]-4-O-(2-aminoethyldiphospho)-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[(3R)-3-hydroxytetradecanamido]-α-D-glucopyranosyl) diphosphate
Other name(s): lipid A PEA transferase; LptA
Systematic name: diacylphosphatidylethanolamine:lipid-A ethanolaminephosphotransferase
Comments: The enzyme adds one or two ethanolamine phosphate groups to lipid A giving a diphosphate, sometimes in combination with EC 2.4.2.43 (lipid IVA 4-amino-4-deoxy-L-arabinosyltransferase) giving products with 4-amino-4-deoxy-β-L-arabinose groups at the phosphates of lipid A instead of diphosphoethanolamine groups. It will also act on lipid IVA and Kdo2-lipid A.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Tran, A.X., Karbarz, M.J., Wang, X., Raetz, C.R., McGrath, S.C., Cotter, R.J. and Trent, M.S. Periplasmic cleavage and modification of the 1-phosphate group of Helicobacter pylori lipid A. J. Biol. Chem. 279 (2004) 55780–55791. [DOI] [PMID: 15489235]
2.  Herrera, C.M., Hankins, J.V. and Trent, M.S. Activation of PmrA inhibits LpxT-dependent phosphorylation of lipid A promoting resistance to antimicrobial peptides. Mol. Microbiol. 76 (2010) 1444–1460. [DOI] [PMID: 20384697]
3.  Cullen, T.W. and Trent, M.S. A link between the assembly of flagella and lipooligosaccharide of the Gram-negative bacterium Campylobacter jejuni. Proc. Natl. Acad. Sci. USA 107 (2010) 5160–5165. [DOI] [PMID: 20194750]
4.  Anandan, A., Piek, S., Kahler, C.M. and Vrielink, A. Cloning, expression, purification and crystallization of an endotoxin-biosynthesis enzyme from Neisseria meningitidis. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 68 (2012) 1494–1497. [DOI] [PMID: 23192031]
5.  Wanty, C., Anandan, A., Piek, S., Walshe, J., Ganguly, J., Carlson, R.W., Stubbs, K.A., Kahler, C.M. and Vrielink, A. The structure of the neisserial lipooligosaccharide phosphoethanolamine transferase A (LptA) required for resistance to polymyxin. J. Mol. Biol. 425 (2013) 3389–3402. [DOI] [PMID: 23810904]
[EC 2.7.8.43 created 2015 as EC 2.7.4.30, transferred 2016 to EC 2.7.8.43]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald