The Enzyme Database

Your query returned 28 entries.    printer_iconPrintable version

EC 1.1.1.211     
Accepted name: long-chain-3-hydroxyacyl-CoA dehydrogenase
Reaction: a long-chain (S)-3-hydroxyacyl-CoA + NAD+ = a long-chain 3-oxoacyl-CoA + NADH + H+
Glossary: a long-chain acyl-CoA = an acyl-CoA thioester where the acyl chain contains 13 to 22 carbon atoms.
Other name(s): β-hydroxyacyl-CoA dehydrogenase; long-chain 3-hydroxyacyl coenzyme A dehydrogenase; 3-hydroxyacyl-CoA dehydrogenase; LCHAD
Systematic name: long-chain-(S)-3-hydroxyacyl-CoA:NAD+ oxidoreductase
Comments: This enzyme was purified from the mitochondrial inner membrane. The enzyme has a preference for long-chain substrates, and activity with a C16 substrate was 6- to 15-fold higher than with a C4 substrate (cf. EC 1.1.1.35 3-hydroxyacyl-CoA dehydrogenase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 84177-52-6
References:
1.  El-Fakhri, M. and Middleton, B. The existence of an inner-membrane-bound, long acyl-chain-specific 3-hydroxyacyl-CoA dehydrogenase in mammalian mitochondria. Biochim. Biophys. Acta 713 (1982) 270–279. [DOI] [PMID: 7150615]
[EC 1.1.1.211 created 1986]
 
 
EC 1.1.1.330     
Accepted name: very-long-chain 3-oxoacyl-CoA reductase
Reaction: a very-long-chain (3R)-3-hydroxyacyl-CoA + NADP+ = a very-long-chain 3-oxoacyl-CoA + NADPH + H+
Glossary: a very-long-chain acyl-CoA = an acyl-CoA thioester where the acyl chain contains 23 or more carbon atoms.
Other name(s): very-long-chain 3-ketoacyl-CoA reductase; very-long-chain β-ketoacyl-CoA reductase; KCR (gene name); IFA38 (gene name)
Systematic name: (3R)-3-hydroxyacyl-CoA:NADP+ oxidoreductase
Comments: The second component of the elongase, a microsomal protein complex responsible for extending palmitoyl-CoA and stearoyl-CoA (and modified forms thereof) to very-long-chain acyl CoAs. The enzyme is active with substrates with chain length of C16 to C34, depending on the species. cf. EC 2.3.1.199, very-long-chain 3-oxoacyl-CoA synthase, EC 4.2.1.134, very-long-chain (3R)-3-hydroxyacyl-[acyl-carrier protein] dehydratase, and EC 1.3.1.93, very-long-chain enoyl-CoA reductase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Beaudoin, F., Gable, K., Sayanova, O., Dunn, T. and Napier, J.A. A Saccharomyces cerevisiae gene required for heterologous fatty acid elongase activity encodes a microsomal β-keto-reductase. J. Biol. Chem. 277 (2002) 11481–11488. [DOI] [PMID: 11792704]
2.  Han, G., Gable, K., Kohlwein, S.D., Beaudoin, F., Napier, J.A. and Dunn, T.M. The Saccharomyces cerevisiae YBR159w gene encodes the 3-ketoreductase of the microsomal fatty acid elongase. J. Biol. Chem. 277 (2002) 35440–35449. [DOI] [PMID: 12087109]
3.  Beaudoin, F., Wu, X., Li, F., Haslam, R.P., Markham, J.E., Zheng, H., Napier, J.A. and Kunst, L. Functional characterization of the Arabidopsis β-ketoacyl-coenzyme A reductase candidates of the fatty acid elongase. Plant Physiol. 150 (2009) 1174–1191. [DOI] [PMID: 19439572]
[EC 1.1.1.330 created 2012]
 
 
EC 1.2.1.50     
Accepted name: long-chain acyl-protein thioester reductase
Reaction: a long-chain aldehyde + [protein]-L-cysteine + NADP+ = a [protein]-S-(long-chain fatty acyl)-L-cysteine + NADPH + H+
Other name(s): luxC (gene name); acyl-CoA reductase; acyl coenzyme A reductase; long-chain-aldehyde:NADP+ oxidoreductase (acyl-CoA-forming); long-chain-fatty-acyl-CoA reductase
Systematic name: long-chain-aldehyde:NADP+ oxidoreductase (protein thioester-forming)
Comments: Together with a hydrolase component (EC 3.1.2.2 and EC 3.1.2.14) and a synthetase component (EC 6.2.1.19), this enzyme forms a multienzyme fatty acid reductase complex that produces the long-chain aldehyde substrate of the bacterial luciferase enzyme (EC 1.14.14.3). The enzyme is acylated by receiving an acyl group from EC 6.2.1.19, and catalyses the reduction of the acyl group, releasing the aldehyde product. The enzyme is also able to accept the acyl group from a long-chain acyl-CoA.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 50936-56-6
References:
1.  Riendeau, D., Rodrigues, A. and Meighen, E. Resolution of the fatty acid reductase from Photobacterium phosphoreum into acyl protein synthetase and acyl-CoA reductase activities. Evidence for an enzyme complex. J. Biol. Chem. 257 (1982) 6908–6915. [PMID: 7085612]
2.  Wall, L. and Meighen, E.A. Subunit structure of the fatty-acid reductase complex from Photobacterium phosphoreum. Biochemistry 25 (1986) 4315–4321.
3.  Lin, J.W., Chao, Y.F. and Weng, S.F. Nucleotide sequence of the luxC gene encoding fatty acid reductase of the lux operon from Photobacterium leiognathi. Biochem. Biophys. Res. Commun. 191 (1993) 314–318. [DOI] [PMID: 8447834]
[EC 1.2.1.50 created 1986, modified 2016]
 
 
EC 1.2.1.84     
Accepted name: alcohol-forming fatty acyl-CoA reductase
Reaction: a long-chain acyl-CoA + 2 NADPH + 2 H+ = a long-chain alcohol + 2 NADP+ + CoA
Glossary: a long-chain acyl-CoA = an acyl-CoA thioester where the acyl chain contains 13 to 22 carbon atoms.
Other name(s): FAR (gene name); long-chain acyl-CoA:NADPH reductase
Systematic name: NADPH:long-chain acyl-CoA reductase
Comments: The enzyme has been characterized from the plant Simmondsia chinensis (jojoba). The alcohol is formed by a four-electron reduction of fatty acyl-CoA. Although the reaction proceeds through an aldehyde intermediate, a free aldehyde is not released. The recombinant enzyme was shown to accept saturated and mono-unsaturated fatty acyl-CoAs of 16 to 22 carbons.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Metz, J.G., Pollard, M.R., Anderson, L., Hayes, T.R. and Lassner, M.W. Purification of a jojoba embryo fatty acyl-coenzyme A reductase and expression of its cDNA in high erucic acid rapeseed. Plant Physiol. 122 (2000) 635–644. [PMID: 10712526]
[EC 1.2.1.84 created 2012]
 
 
EC 1.3.1.93     
Accepted name: very-long-chain enoyl-CoA reductase
Reaction: a very-long-chain acyl-CoA + NADP+ = a very-long-chain trans-2,3-dehydroacyl-CoA + NADPH + H+
Glossary: a very-long-chain acyl-CoA = an acyl-CoA thioester where the acyl chain contains 23 or more carbon atoms.
Other name(s): TSC13 (gene name); CER10 (gene name)
Systematic name: very-long-chain acyl-CoA:NADP+ oxidoreductase
Comments: This is the fourth component of the elongase, a microsomal protein complex responsible for extending palmitoyl-CoA and stearoyl-CoA (and modified forms thereof) to very-long-chain acyl CoAs. cf. EC 2.3.1.199, very-long-chain 3-oxoacyl-CoA synthase, EC 1.1.1.330, very-long-chain 3-oxoacyl-CoA reductase, and EC 4.2.1.134, very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Kohlwein, S.D., Eder, S., Oh, C.S., Martin, C.E., Gable, K., Bacikova, D. and Dunn, T. Tsc13p is required for fatty acid elongation and localizes to a novel structure at the nuclear-vacuolar interface in Saccharomyces cerevisiae. Mol. Cell Biol. 21 (2001) 109–125. [DOI] [PMID: 11113186]
2.  Gable, K., Garton, S., Napier, J.A. and Dunn, T.M. Functional characterization of the Arabidopsis thaliana orthologue of Tsc13p, the enoyl reductase of the yeast microsomal fatty acid elongating system. J. Exp. Bot. 55 (2004) 543–545. [DOI] [PMID: 14673020]
3.  Kvam, E., Gable, K., Dunn, T.M. and Goldfarb, D.S. Targeting of Tsc13p to nucleus-vacuole junctions: a role for very-long-chain fatty acids in the biogenesis of microautophagic vesicles. Mol. Biol. Cell 16 (2005) 3987–3998. [DOI] [PMID: 15958487]
4.  Zheng, H., Rowland, O. and Kunst, L. Disruptions of the Arabidopsis enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell 17 (2005) 1467–1481. [DOI] [PMID: 15829606]
[EC 1.3.1.93 created 2012]
 
 
EC 1.3.8.1     
Accepted name: short-chain acyl-CoA dehydrogenase
Reaction: a short-chain acyl-CoA + electron-transfer flavoprotein = a short-chain trans-2,3-dehydroacyl-CoA + reduced electron-transfer flavoprotein
Glossary: a short-chain acyl-CoA = an acyl-CoA thioester where the acyl chain contains less than 6 carbon atoms.
Other name(s): butyryl-CoA dehydrogenase; butanoyl-CoA dehydrogenase; butyryl dehydrogenase; unsaturated acyl-CoA reductase; ethylene reductase; enoyl-coenzyme A reductase; unsaturated acyl coenzyme A reductase; butyryl coenzyme A dehydrogenase; short-chain acyl CoA dehydrogenase; short-chain acyl-coenzyme A dehydrogenase; 3-hydroxyacyl CoA reductase; butanoyl-CoA:(acceptor) 2,3-oxidoreductase; ACADS (gene name).
Systematic name: short-chain acyl-CoA:electron-transfer flavoprotein 2,3-oxidoreductase
Comments: Contains a tightly-bound FAD cofactor. One of several enzymes that catalyse the first step in fatty acids β-oxidation. The enzyme catalyses the oxidation of saturated short-chain acyl-CoA thioesters to give a trans 2,3-unsaturated product by removal of the two pro-R-hydrogen atoms. The enzyme from beef liver accepts substrates with acyl chain lengths of 3 to 8 carbon atoms. The highest activity was reported with either butanoyl-CoA [2] or pentanoyl-CoA [4]. The enzyme from rat has only 10% activity with hexanoyl-CoA (compared to butanoyl-CoA) and no activity with octanoyl-CoA [6]. cf. EC 1.3.8.7, medium-chain acyl-CoA dehydrogenase, EC 1.3.8.8, long-chain acyl-CoA dehydrogenase, and EC 1.3.8.9, very-long-chain acyl-CoA dehydrogenase.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9027-88-7
References:
1.  Mahler, H.R. Studies on the fatty acid oxidizing system of animal tissue. IV. The prosthetic group of butyryl coenzyme A dehydrogenase. J. Biol. Chem. 206 (1954) 13–26. [PMID: 13130522]
2.  Green, D.E., Mii, S., Mahler, H.R. and Bock, R.M. Studies on the fatty acid oxidizing system of animal tissue. III. Butyryl coenzyme A dehydrogenase. J. Biol. Chem. 206 (1954) 1–12. [PMID: 13130521]
3.  Beinert, H. Acyl coenzyme A dehydrogenase. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 7, Academic Press, New York, 1963, pp. 447–466.
4.  Shaw, L. and Engel, P.C. The purification and properties of ox liver short-chain acyl-CoA dehydrogenase. Biochem. J. 218 (1984) 511–520. [PMID: 6712627]
5.  Thorpe, C. and Kim, J.J. Structure and mechanism of action of the acyl-CoA dehydrogenases. FASEB J. 9 (1995) 718–725. [PMID: 7601336]
6.  Ikeda, Y., Ikeda, K.O. and Tanaka, K. Purification and characterization of short-chain, medium-chain, and long-chain acyl-CoA dehydrogenases from rat liver mitochondria. Isolation of the holo- and apoenzymes and conversion of the apoenzyme to the holoenzyme. J. Biol. Chem. 260 (1985) 1311–1325. [PMID: 3968063]
7.  McMahon, B., Gallagher, M.E. and Mayhew, S.G. The protein coded by the PP2216 gene of Pseudomonas putida KT2440 is an acyl-CoA dehydrogenase that oxidises only short-chain aliphatic substrates. FEMS Microbiol. Lett. 250 (2005) 121–127. [DOI] [PMID: 16024185]
[EC 1.3.8.1 created 1961 as EC 1.3.2.1, transferred 1964 to EC 1.3.99.2, transferred 2011 to EC 1.3.8.1, modified 2012]
 
 
EC 1.3.8.7     
Accepted name: medium-chain acyl-CoA dehydrogenase
Reaction: a medium-chain acyl-CoA + electron-transfer flavoprotein = a medium-chain trans-2,3-dehydroacyl-CoA + reduced electron-transfer flavoprotein
Glossary: a medium-chain acyl-CoA = an acyl-CoA thioester where the acyl chain contains 6 to 12 carbon atoms.
Other name(s): fatty acyl coenzyme A dehydrogenase (ambiguous); acyl coenzyme A dehydrogenase (ambiguous); acyl dehydrogenase (ambiguous); fatty-acyl-CoA dehydrogenase (ambiguous); acyl CoA dehydrogenase (ambiguous); general acyl CoA dehydrogenase (ambiguous); medium-chain acyl-coenzyme A dehydrogenase; acyl-CoA:(acceptor) 2,3-oxidoreductase (ambiguous); ACADM (gene name).
Systematic name: medium-chain acyl-CoA:electron-transfer flavoprotein 2,3-oxidoreductase
Comments: Contains a tightly-bound FAD cofactor. One of several enzymes that catalyse the first step in fatty acids β-oxidation. The enzyme from pig liver can accept substrates with acyl chain lengths of 4 to 16 carbon atoms, but is most active with C8 to C12 compounds [2]. The enzyme from rat does not accept C16 at all and is most active with C6-C8 compounds [4]. cf. EC 1.3.8.1, short-chain acyl-CoA dehydrogenase, EC 1.3.8.8, long-chain acyl-CoA dehydrogenase, and EC 1.3.8.9, very-long-chain acyl-CoA dehydrogenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Crane, F.L., Hauge, J.G. and Beinert, H. Flavoproteins involved in the first oxidative step of the fatty acid cycle. Biochim. Biophys. Acta 17 (1955) 292–294. [DOI] [PMID: 13239683]
2.  Crane, F.L., Mii, S., Hauge, J.G., Green, D.E. and Beinert, H. On the mechanism of dehydrogenation of fatty acyl derivatives of coenzyme A. I. The general fatty acyl coenzyme A dehydrogenase. J. Biol. Chem. 218 (1956) 701–716. [PMID: 13295224]
3.  Beinert, H. Acyl coenzyme A dehydrogenase. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 7, Academic Press, New York, 1963, pp. 447–466.
4.  Ikeda, Y., Ikeda, K.O. and Tanaka, K. Purification and characterization of short-chain, medium-chain, and long-chain acyl-CoA dehydrogenases from rat liver mitochondria. Isolation of the holo- and apoenzymes and conversion of the apoenzyme to the holoenzyme. J. Biol. Chem. 260 (1985) 1311–1325. [PMID: 3968063]
5.  Thorpe, C. and Kim, J.J. Structure and mechanism of action of the acyl-CoA dehydrogenases. FASEB J. 9 (1995) 718–725. [PMID: 7601336]
6.  Kim, J.J., Wang, M. and Paschke, R. Crystal structures of medium-chain acyl-CoA dehydrogenase from pig liver mitochondria with and without substrate. Proc. Natl. Acad. Sci. USA 90 (1993) 7523–7527. [DOI] [PMID: 8356049]
7.  Peterson, K.L., Sergienko, E.E., Wu, Y., Kumar, N.R., Strauss, A.W., Oleson, A.E., Muhonen, W.W., Shabb, J.B. and Srivastava, D.K. Recombinant human liver medium-chain acyl-CoA dehydrogenase: purification, characterization, and the mechanism of interactions with functionally diverse C8-CoA molecules. Biochemistry 34 (1995) 14942–14953. [PMID: 7578106]
8.  Toogood, H.S., van Thiel, A., Basran, J., Sutcliffe, M.J., Scrutton, N.S. and Leys, D. Extensive domain motion and electron transfer in the human electron transferring flavoprotein.medium chain Acyl-CoA dehydrogenase complex. J. Biol. Chem. 279 (2004) 32904–32912. [DOI] [PMID: 15159392]
[EC 1.3.8.7 created 1961 as EC 1.3.2.2, transferred 1964 to EC 1.3.99.3, part transferred 2012 to EC 1.3.8.7]
 
 
EC 1.3.8.8     
Accepted name: long-chain acyl-CoA dehydrogenase
Reaction: a long-chain acyl-CoA + electron-transfer flavoprotein = a long-chain trans-2,3-dehydroacyl-CoA + reduced electron-transfer flavoprotein
Glossary: a long-chain acyl-CoA = an acyl-CoA thioester where the acyl chain contains 13 to 22 carbon atoms.
Other name(s): palmitoyl-CoA dehydrogenase; palmitoyl-coenzyme A dehydrogenase; long-chain acyl-coenzyme A dehydrogenase; long-chain-acyl-CoA:(acceptor) 2,3-oxidoreductase; ACADL (gene name).
Systematic name: long-chain acyl-CoA:electron-transfer flavoprotein 2,3-oxidoreductase
Comments: Contains a tightly-bound FAD cofactor. One of several enzymes that catalyse the first step in fatty acids β-oxidation. The enzyme from pig liver can accept substrates with acyl chain lengths of 6 to at least 16 carbon atoms. The highest activity was found with C12, and the rates with C8 and C16 were 80 and 70%, respectively [2]. The enzyme from rat can accept substrates with C8-C22. It is most active with C14 and C16, and has no activity with C4, C6 or C24 [4]. cf. EC 1.3.8.1, short-chain acyl-CoA dehydrogenase, EC 1.3.8.8, medium-chain acyl-CoA dehydrogenase, and EC 1.3.8.9, very-long-chain acyl-CoA dehydrogenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 59536-74-2
References:
1.  Crane, F.L., Hauge, J.G. and Beinert, H. Flavoproteins involved in the first oxidative step of the fatty acid cycle. Biochim. Biophys. Acta 17 (1955) 292–294. [DOI] [PMID: 13239683]
2.  Hauge, J.G., Crane, F.L. and Beinert, H. On the mechanism of dehydrogenation of fatty acyl derivatives of coenzyme A. III. Palmityl CoA dehydrogenase. J. Biol. Chem. 219 (1956) 727–733. [PMID: 13319294]
3.  Hall, C.L., Heijkenkjold, L., Bartfai, T., Ernster, L. and Kamin, H. Acyl coenzyme A dehydrogenases and electron-transferring flavoprotein from beef heart mitochondria. Arch. Biochem. Biophys. 177 (1976) 402–414. [DOI] [PMID: 1015826]
4.  Ikeda, Y., Ikeda, K.O. and Tanaka, K. Purification and characterization of short-chain, medium-chain, and long-chain acyl-CoA dehydrogenases from rat liver mitochondria. Isolation of the holo- and apoenzymes and conversion of the apoenzyme to the holoenzyme. J. Biol. Chem. 260 (1985) 1311–1325. [PMID: 3968063]
5.  Djordjevic, S., Dong, Y., Paschke, R., Frerman, F.E., Strauss, A.W. and Kim, J.J. Identification of the catalytic base in long chain acyl-CoA dehydrogenase. Biochemistry 33 (1994) 4258–4264. [PMID: 8155643]
[EC 1.3.8.8 created 1989 as EC 1.3.99.13, part transferred 2012 to EC 1.3.8.8]
 
 
EC 1.3.8.9     
Accepted name: very-long-chain acyl-CoA dehydrogenase
Reaction: a very-long-chain acyl-CoA + electron-transfer flavoprotein = a very-long-chain trans-2,3-dehydroacyl-CoA + reduced electron-transfer flavoprotein
Glossary: a very-long-chain acyl-CoA = an acyl-CoA thioester where the acyl chain contains 23 or more carbon atoms.
Other name(s): ACADVL (gene name).
Systematic name: very-long-chain acyl-CoA:electron-transfer flavoprotein 2,3-oxidoreductase
Comments: Contains a tightly-bound FAD cofactor. One of several enzymes that catalyse the first step in fatty acids β-oxidation. The enzyme is most active toward long-chain acyl-CoAs such as C14, C16 and C18, but is also active with very-long-chain acyl-CoAs up to 24 carbons. It shows no activity for substrates of less than 12 carbons. Its specific activity towards palmitoyl-CoA is more than 10-fold that of the long-chain acyl-CoA dehydrogenase [1]. cf. EC 1.3.8.1, short-chain acyl-CoA dehydrogenase, EC 1.3.8.7, medium-chain acyl-CoA dehydrogenase, and EC 1.3.8.8, long-chain acyl-CoA dehydrogenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Izai, K., Uchida, Y., Orii, T., Yamamoto, S. and Hashimoto, T. Novel fatty acid β-oxidation enzymes in rat liver mitochondria. I. Purification and properties of very-long-chain acyl-coenzyme A dehydrogenase. J. Biol. Chem. 267 (1992) 1027–1033. [PMID: 1730632]
2.  Aoyama, T., Souri, M., Ushikubo, S., Kamijo, T., Yamaguchi, S., Kelley, R.I., Rhead, W.J., Uetake, K., Tanaka, K. and Hashimoto, T. Purification of human very-long-chain acyl-coenzyme A dehydrogenase and characterization of its deficiency in seven patients. J. Clin. Invest. 95 (1995) 2465–2473. [DOI] [PMID: 7769092]
3.  McAndrew, R.P., Wang, Y., Mohsen, A.W., He, M., Vockley, J. and Kim, J.J. Structural basis for substrate fatty acyl chain specificity: crystal structure of human very-long-chain acyl-CoA dehydrogenase. J. Biol. Chem. 283 (2008) 9435–9443. [DOI] [PMID: 18227065]
[EC 1.3.8.9 created 1961 as EC 1.3.2.2, transferred 1964 to EC 1.3.99.3, part transferred 2012 to EC 1.3.8.9]
 
 
EC 1.3.99.3      
Transferred entry: acyl-CoA dehydrogenase, now EC 1.3.8.7, medium-chain acyl-CoA dehydrogenase, EC 1.3.8.8, long-chain acyl-CoA dehydrogenase and EC 1.3.8.9, very-long-chain acyl-CoA dehydrogenase
[EC 1.3.99.3 created 1961 as EC 1.3.2.2, transferred 1964 to EC 1.3.99.3, deleted 2012]
 
 
EC 1.3.99.12      
Transferred entry: 2-methylacyl-CoA dehydrogenase. Now classified as EC 1.3.8.5, 2-methyl-branched-chain-enoyl-CoA reductase.
[EC 1.3.99.12 created 1986, deleted 2020]
 
 
EC 1.3.99.13      
Transferred entry: long-chain-acyl-CoA dehydrogenase. Now EC 1.3.8.8, long-chain-acyl-CoA dehydrogenase
[EC 1.3.99.13 created 1989, deleted 2012]
 
 
EC 1.14.13.204      
Transferred entry: long-chain acyl-CoA ω-monooxygenase. Now EC 1.14.14.129, long-chain acyl-CoA ω-monooxygenase
[EC 1.14.13.204 created 2015, deleted 2018]
 
 
EC 1.14.14.129     
Accepted name: long-chain acyl-CoA ω-monooxygenase
Reaction: (1) oleoyl-CoA + [reduced NADPH—hemoprotein reductase] + O2 = 18-hydroxyoleoyl-CoA + [oxidized NADPH—hemoprotein reductase] + H2O
(2) linoleoyl-CoA + [reduced NADPH—hemoprotein reductase] + O2 = 18-hydroxylinoleoyl-CoA + [oxidized NADPH—hemoprotein reductase] + H2O
Other name(s): long-chain acyl-CoA ω-hydroxylase; CYP86A22 (gene name)
Systematic name: long-chain acyl-CoA,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (ω-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein. The enzymes from solanaceous plants are involved in the biosynthesis of stigmatic estolide, a lipid-based polyester that forms a major component of the exudate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Han, J., Clement, J.M., Li, J., King, A., Ng, S. and Jaworski, J.G. The cytochrome P450 CYP86A22 is a fatty acyl-CoA ω-hydroxylase essential for estolide synthesis in the stigma of Petunia hybrida. J. Biol. Chem. 285 (2010) 3986–3996. [DOI] [PMID: 19940120]
[EC 1.14.14.129 created 2015 as EC 1.14.13.204, transferred 2018 to EC 1.14.14.129]
 
 
EC 2.3.1.20     
Accepted name: diacylglycerol O-acyltransferase
Reaction: acyl-CoA + 1,2-diacyl-sn-glycerol = CoA + triacylglycerol
Other name(s): diglyceride acyltransferase; 1,2-diacylglycerol acyltransferase; diacylglycerol acyltransferase; diglyceride O-acyltransferase; palmitoyl-CoA-sn-1,2-diacylglycerol acyltransferase; acyl-CoA:1,2-diacylglycerol O-acyltransferase
Systematic name: acyl-CoA:1,2-diacyl-sn-glycerol O-acyltransferase
Comments: Palmitoyl-CoA and other long-chain acyl-CoAs can act as donors.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9029-98-5
References:
1.  Coleman, R. and Bell, R.M. Triacylglycerol synthesis in isolated fat cells. Studies on the microsomal diacylglycerol acyltransferase activity using ethanol-dispersed diacylglycerols. J. Biol. Chem. 251 (1976) 4537–4543. [PMID: 947894]
2.  Grigor, M.R. and Bell, R.M. Separate monoacylglycerol and diacylglycerol acyltransferases function in intestinal triacylglycerol synthesis. Biochim. Biophys. Acta 712 (1982) 464–472. [DOI] [PMID: 6289909]
3.  Kawasaki, T. and Snyder, F. Synthesis of a novel acetylated neutral lipid related to platelet-activating factor by acyl-CoA:1-O-alkyl-2-acetyl-sn-glycerol acyltransferase in HL-60 cells. J. Biol. Chem. 263 (1988) 2593–2596. [PMID: 3422635]
4.  Weiss, S.B., Kennedy, E.P. and Kiyasu, J.Y. The enzymatic synthesis of triglycerides. J. Biol. Chem. 235 (1960) 40–44. [PMID: 13843753]
[EC 2.3.1.20 created 1965]
 
 
EC 2.3.1.22     
Accepted name: 2-acylglycerol O-acyltransferase
Reaction: acyl-CoA + 2-acylglycerol = CoA + diacylglycerol
Other name(s): acylglycerol palmitoyltransferase; monoglyceride acyltransferase; acyl coenzyme A-monoglyceride acyltransferase; monoacylglycerol acyltransferase
Systematic name: acyl-CoA:2-acylglycerol O-acyltransferase
Comments: Various 2-acylglycerols can act as acceptor; palmitoyl-CoA and other long-chain acyl-CoAs can act as donors. The sn-1 position and the sn-3 position are both acylated, at about the same rate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9055-17-8
References:
1.  Manganaro, F. and Kuksis, A. Purification and preliminary characterization of 2-monoacylglycerol acyltransferase from rat intestinal villus cells. Can. J. Biochem. Cell Biol. 63 (1985) 341–347. [DOI] [PMID: 4016575]
[EC 2.3.1.22 created 1972, modified 1986, modified 1989]
 
 
EC 2.3.1.26     
Accepted name: sterol O-acyltransferase
Reaction: a long-chain acyl-CoA + a sterol = CoA + a long-chain 3-hydroxysterol ester
Other name(s): cholesterol acyltransferase; sterol-ester synthase; acyl coenzyme A-cholesterol-O-acyltransferase; acyl-CoA:cholesterol acyltransferase; ACAT; acylcoenzyme A:cholesterol O-acyltransferase; cholesterol ester synthase; cholesterol ester synthetase; cholesteryl ester synthetase; SOAT1 (gene name); SOAT2 (gene name); ARE1 (gene name); ARE2 (gene name); acyl-CoA:cholesterol O-acyltransferase
Systematic name: long-chain acyl-CoA:sterol O-acyltransferase
Comments: The enzyme catalyses the formation of sterol esters from a sterol and long-chain fatty acyl-coenzyme A. The enzyme from yeast, but not from mammals, prefers monounsaturated acyl-CoA. In mammals the enzyme acts mainly on cholesterol and forms cholesterol esters that are stored in cytosolic droplets, which may serve to protect cells from the toxicity of free cholesterol. In macrophages, the accumulation of cytosolic droplets of cholesterol esters results in the formation of `foam cells’, a hallmark of early atherosclerotic lesions. In hepatocytes and enterocytes, cholesterol esters can be incorporated into apolipoprotein B-containing lipoproteins for secretion from the cell.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9027-63-8
References:
1.  Spector, A.A., Mathur, S.N. and Kaduce, T.L. Role of acylcoenzyme A: cholesterol O-acyltransferase in cholesterol metabolism. Prog. Lipid Res. 18 (1979) 31–53. [DOI] [PMID: 42927]
2.  Taketani, S., Nishino, T. and Katsuki, H. Characterization of sterol-ester synthetase in Saccharomyces cerevisiae. Biochim. Biophys. Acta 575 (1979) 148–155. [DOI] [PMID: 389289]
3.  Lee, O., Chang, C.C., Lee, W. and Chang, T.Y. Immunodepletion experiments suggest that acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT-1) protein plays a major catalytic role in adult human liver, adrenal gland, macrophages, and kidney, but not in intestines. J. Lipid Res. 39 (1998) 1722–1727. [PMID: 9717734]
4.  Yang, H., Cromley, D., Wang, H., Billheimer, J.T. and Sturley, S.L. Functional expression of a cDNA to human acyl-coenzyme A:cholesterol acyltransferase in yeast. Species-dependent substrate specificity and inhibitor sensitivity. J. Biol. Chem. 272 (1997) 3980–3985. [PMID: 9020103]
5.  Chang, C.C., Lee, C.Y., Chang, E.T., Cruz, J.C., Levesque, M.C. and Chang, T.Y. Recombinant acyl-CoA:cholesterol acyltransferase-1 (ACAT-1) purified to essential homogeneity utilizes cholesterol in mixed micelles or in vesicles in a highly cooperative manner. J. Biol. Chem. 273 (1998) 35132–35141. [PMID: 9857049]
6.  Das, A., Davis, M.A. and Rudel, L.L. Identification of putative active site residues of ACAT enzymes. J. Lipid Res. 49 (2008) 1770–1781. [PMID: 18480028]
[EC 2.3.1.26 created 1972, modified 2019]
 
 
EC 2.3.1.65     
Accepted name: bile acid-CoA:amino acid N-acyltransferase
Reaction: choloyl-CoA + glycine = CoA + glycocholate
For diagram of the biosynthesis of cholic-acid conjugates, click here
Glossary: choloyl-CoA = 3α,7α,12α-trihydroxy-5β-cholan-24-oyl-CoA
Other name(s): glycine—taurine N-acyltransferase; amino acid N-choloyltransferase; BAT; glycine N-choloyltransferase; BACAT; cholyl-CoA glycine-taurine N-acyltransferase; cholyl-CoA:taurine N-acyltransferase
Systematic name: choloyl-CoA:glycine N-choloyltransferase
Comments: Also acts on CoA derivatives of other bile acids. Taurine and 2-fluoro-β-alanine can act as substrates, but more slowly [4]. The enzyme can also conjugate fatty acids to glycine and can act as a very-long-chain acyl-CoA thioesterase [7]. Bile-acid—amino-acid conjugates serve as detergents in the gastrointestinal tract, solubilizing long chain fatty acids, mono- and diglycerides, fat-soluble vitamins and cholesterol [4]. This is the second enzyme in a two-step process leading to the conjugation of bile acids with amino acids; the first step is the conversion of bile acids into their acyl-CoA thioesters, which is catalysed by EC 6.2.1.7, cholate—CoA ligase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 65979-40-0
References:
1.  Czuba, B. and Vessey, D.A. Kinetic characterization of cholyl-CoA glycine-taurine N-acyltransferase from bovine liver. J. Biol. Chem. 255 (1980) 5296–5299. [PMID: 7372637]
2.  Jordan, T.W., Lee, R. and Lim, W.C. Isoelectric focussing of soluble and particulate benzoyl-CoA and cholyl-CoA:amino acid N-acyltransferases from rat liver. Biochem. Int. 1 (1980) 325–330.
3.  Vessey, D.A. The co-purification and common identity of cholyl CoA:glycine- and cholyl CoA:taurine-N-acyltransferase activities from bovine liver. J. Biol. Chem. 254 (1979) 2059–2063. [PMID: 422567]
4.  Johnson, M.R., Barnes, S., Kwakye, J.B. and Diasio, R.B. Purification and characterization of bile acid-CoA:amino acid N-acyltransferase from human liver. J. Biol. Chem. 266 (1991) 10227–10233. [PMID: 2037576]
5.  Falany, C.N., Xie, X., Wheeler, J.B., Wang, J., Smith, M., He, D. and Barnes, S. Molecular cloning and expression of rat liver bile acid CoA ligase. J. Lipid Res. 43 (2002) 2062–2071. [PMID: 12454267]
6.  He, D., Barnes, S. and Falany, C.N. Rat liver bile acid CoA:amino acid N-acyltransferase: expression, characterization, and peroxisomal localization. J. Lipid Res. 44 (2003) 2242–2249. [DOI] [PMID: 12951368]
7.  O'Byrne, J., Hunt, M.C., Rai, D.K., Saeki, M. and Alexson, S.E. The human bile acid-CoA:amino acid N-acyltransferase functions in the conjugation of fatty acids to glycine. J. Biol. Chem. 278 (2003) 34237–34244. [DOI] [PMID: 12810727]
[EC 2.3.1.65 created 1983, modified 2005]
 
 
EC 2.3.1.111     
Accepted name: mycocerosate synthase
Reaction: (1) a long-chain acyl-[mycocerosic acid synthase] + 3 methylmalonyl-CoA + 6 NADPH + 6 H+ = a trimethylated-mycocerosoyl-[mycocerosate synthase] + 3 CoA + 3 CO2 + 6 NADP+ + 3 H2O
(2) a long-chain acyl-[mycocerosic acid synthase] + 4 methylmalonyl-CoA + 8 NADPH + 8 H+ = a tetramethylated-mycocerosoyl-[mycocerosate synthase] + 4 CoA + 4 CO2 + 8 NADP+ + 4 H2O
Glossary: mycocerosic acid = a long-chain fatty acid with 3 or 4 methyl branches at positions 2,4,6 or 2,4,6,8, respectively. The carbon atoms bearing the methyl groups have the (R)-configuration.
Other name(s): mas (gene name); mycocerosic acid synthase; acyl-CoA:methylmalonyl-CoA C-acyltransferase (decarboxylating, oxoacyl- and enoyl-reducing); long-chain acyl-CoA:methylmalonyl-CoA C-acyltransferase (mycocerosate-forming)
Systematic name: long-chain acyl-[mycocerosic acid synthase]:methylmalonyl-CoA C-acyltransferase (mycocerosate-forming)
Comments: The enzyme, characterized from mycobacteria, is loaded with a long-chain acyl moiety by EC 6.2.1.49, long-chain fatty acid adenylyltransferase FadD28, and elongates it by incorporation of three or four methylmalonyl (but not malonyl) residues, to form tri- or tetramethyl-branched fatty-acids, respectively, such as 2,4,6,8-tetramethyloctacosanoate (C32-mycocerosate). Since the enzyme lacks a thioesterase domain, the product remains bound and requires additional enzyme(s) for removal. Even though the enzyme can accept C6 to C20 substrates in vitro, it prefers to act on C14-C20 substrates in vivo.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 95229-19-9
References:
1.  Rainwater, D.L. and Kollattukudy, P.E. Fatty acid biosynthesis in Mycobacterium tuberculosis var. bovis Bacillus Calmette-Guérin. Purification and characterization of a novel fatty acid synthase, mycocerosic acid synthase, which elongates n-fatty acyl-CoA with methylmalonyl-CoA. J. Biol. Chem. 260 (1985) 616–623. [PMID: 3880746]
2.  Mathur, M. and Kolattukudy, P.E. Molecular cloning and sequencing of the gene for mycocerosic acid synthase, a novel fatty acid elongating multifunctional enzyme, from Mycobacterium tuberculosis var. bovis Bacillus Calmette-Guerin. J. Biol. Chem. 267 (1992) 19388–19395. [PMID: 1527058]
3.  Trivedi, O.A., Arora, P., Vats, A., Ansari, M.Z., Tickoo, R., Sridharan, V., Mohanty, D. and Gokhale, R.S. Dissecting the mechanism and assembly of a complex virulence mycobacterial lipid. Mol. Cell 17 (2005) 631–643. [DOI] [PMID: 15749014]
4.  Menendez-Bravo, S., Comba, S., Sabatini, M., Arabolaza, A. and Gramajo, H. Expanding the chemical diversity of natural esters by engineering a polyketide-derived pathway into Escherichia coli. Metab. Eng. 24 (2014) 97–106. [DOI] [PMID: 24831705]
[EC 2.3.1.111 created 1989, modified 2016, modified 2017]
 
 
EC 2.3.1.199     
Accepted name: very-long-chain 3-oxoacyl-CoA synthase
Reaction: a very-long-chain acyl-CoA + malonyl-CoA = a very-long-chain 3-oxoacyl-CoA + CO2 + CoA
Glossary: a very-long-chain acyl-CoA = an acyl-CoA thioester where the acyl chain contains 23 or more carbon atoms.
Other name(s): very-long-chain 3-ketoacyl-CoA synthase; very-long-chain β-ketoacyl-CoA synthase; condensing enzyme (ambiguous); CUT1 (gene name); CER6 (gene name); FAE1 (gene name); KCS (gene name); ELO (gene name)
Systematic name: malonyl-CoA:very-long-chain acyl-CoA malonyltransferase (decarboxylating and thioester-hydrolysing)
Comments: This is the first component of the elongase, a microsomal protein complex responsible for extending palmitoyl-CoA and stearoyl-CoA (and modified forms thereof) to very-long-chain acyl CoAs. Multiple forms exist with differing preferences for the substrate, and thus the specific form expressed determines the local composition of very-long-chain fatty acids [6,7]. For example, the FAE1 form from the plant Arabidopsis thaliana accepts only 16 and 18 carbon substrates, with oleoyl-CoA (18:1) being the preferred substrate [5], while CER6 from the same plant prefers substrates with chain length of C22 to C32 [4,8]. cf. EC 1.1.1.330, very-long-chain 3-oxoacyl-CoA reductase, EC 4.2.1.134, very-long-chain (3R)-3-hydroxyacyl-[acyl-carrier protein] dehydratase, and EC 1.3.1.93, very-long-chain enoyl-CoA reductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Toke, D.A. and Martin, C.E. Isolation and characterization of a gene affecting fatty acid elongation in Saccharomyces cerevisiae. J. Biol. Chem. 271 (1996) 18413–18422. [DOI] [PMID: 8702485]
2.  Oh, C.S., Toke, D.A., Mandala, S. and Martin, C.E. ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. J. Biol. Chem. 272 (1997) 17376–17384. [DOI] [PMID: 9211877]
3.  Dittrich, F., Zajonc, D., Huhne, K., Hoja, U., Ekici, A., Greiner, E., Klein, H., Hofmann, J., Bessoule, J.J., Sperling, P. and Schweizer, E. Fatty acid elongation in yeast--biochemical characteristics of the enzyme system and isolation of elongation-defective mutants. Eur. J. Biochem. 252 (1998) 477–485. [DOI] [PMID: 9546663]
4.  Millar, A.A., Clemens, S., Zachgo, S., Giblin, E.M., Taylor, D.C. and Kunst, L. CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell 11 (1999) 825–838. [PMID: 10330468]
5.  Ghanevati, M. and Jaworski, J.G. Engineering and mechanistic studies of the Arabidopsis FAE1 β-ketoacyl-CoA synthase, FAE1 KCS. Eur. J. Biochem. 269 (2002) 3531–3539. [DOI] [PMID: 12135493]
6.  Blacklock, B.J. and Jaworski, J.G. Substrate specificity of Arabidopsis 3-ketoacyl-CoA synthases. Biochem. Biophys. Res. Commun. 346 (2006) 583–590. [DOI] [PMID: 16765910]
7.  Denic, V. and Weissman, J.S. A molecular caliper mechanism for determining very long-chain fatty acid length. Cell 130 (2007) 663–677. [DOI] [PMID: 17719544]
8.  Tresch, S., Heilmann, M., Christiansen, N., Looser, R. and Grossmann, K. Inhibition of saturated very-long-chain fatty acid biosynthesis by mefluidide and perfluidone, selective inhibitors of 3-ketoacyl-CoA synthases. Phytochemistry 76 (2012) 162–171. [DOI] [PMID: 22284369]
[EC 2.3.1.199 created 2012]
 
 
EC 2.3.1.252     
Accepted name: mycolipanoate synthase
Reaction: a long-chain acyl-CoA + 3 (S)-methylmalonyl-CoA + 6 NADPH + 6 H+ + holo-[mycolipanoate synthase] = mycolipanoyl-[mycolipanoate synthase] + 4 CoA + 3 CO2 + 6 NADP+ + 3 H2O
Glossary: mycolipanoic acid = (2S,4S,6S)-2,4,6-trimethyl-very-long-chain fatty acid
Other name(s): msl3 (gene name); Pks3/4; mycolipanoic acid synthase; long-chain acyl-CoA:methylmalonyl-CoA C-acyltransferase (mycolipanoate-forming)
Systematic name: long-chain acyl-CoA:(S)-methylmalonyl-CoA C-acyltransferase (mycolipanoate-forming)
Comments: This mycobacterial enzyme accepts long-chain fatty acyl groups from their CoA esters and extends them by incorporation of three methylmalonyl (but not malonyl) residues, forming trimethyl-branched fatty-acids such as (2S,4S,6S)-2,4,6-trimethyltetracosanoate (C27-mycolipanoate). Since the enzyme lacks a thioesterase domain, the product remains bound to the enzyme and requires additional enzyme(s) for removal.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Sirakova, T.D., Thirumala, A.K., Dubey, V.S., Sprecher, H. and Kolattukudy, P.E. The Mycobacterium tuberculosis pks2 gene encodes the synthase for the hepta- and octamethyl-branched fatty acids required for sulfolipid synthesis. J. Biol. Chem. 276 (2001) 16833–16839. [DOI] [PMID: 11278910]
2.  Dubey, V.S., Sirakova, T.D. and Kolattukudy, P.E. Disruption of msl3 abolishes the synthesis of mycolipanoic and mycolipenic acids required for polyacyltrehalose synthesis in Mycobacterium tuberculosis H37Rv and causes cell aggregation. Mol. Microbiol. 45 (2002) 1451–1459. [DOI] [PMID: 12207710]
[EC 2.3.1.252 created 2016, modified 2019]
 
 
EC 2.3.1.298     
Accepted name: ultra-long-chain ceramide synthase
Reaction: an ultra-long-chain fatty acyl-CoA + a sphingoid base = an ultra-long-chain ceramide + CoA
Glossary: a sphingoid base = an amino alcohol, composed predominantly of 18 carbon atoms, characterized by the presence of a hydroxyl group at C-1 (and often also at C-3), and an amine group at C-2.
an ultra-long-chain fatty acyl-CoA = an acyl-CoA with a chain length of 28 or longer.
Other name(s): mammalian ceramide synthase 3; sphingoid base N-ultra-long-chain fatty acyl-CoA transferase; CERS3 (gene name)
Systematic name: ultra-long-chain fatty acyl-CoA:sphingoid base N-acyltransferase
Comments: Mammals have six ceramide synthases that exhibit relatively strict specificity regarding the chain-length of their acyl-CoA substrates. Ceramide synthase 3 (CERS3) is the only enzyme that is active with ultra-long-chain acyl-CoA donors (C28 or longer). It is active in the epidermis, where its products are incorporated into acylceramides. CERS3 also accepts (2R)-2-hydroxy fatty acids and ω-hydroxy fatty acids, and can accept very-long-chain acyl-CoA substrates (see EC 2.3.1.297, very-long-chain ceramide synthase). It can use multiple sphingoid bases including sphinganine, sphingosine, phytosphingosine, and (6R)-6-hydroxysphingosine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Mizutani, Y., Kihara, A. and Igarashi, Y. LASS3 (longevity assurance homologue 3) is a mainly testis-specific (dihydro)ceramide synthase with relatively broad substrate specificity. Biochem. J. 398 (2006) 531–538. [PMID: 16753040]
2.  Mizutani, Y., Kihara, A., Chiba, H., Tojo, H. and Igarashi, Y. 2-Hydroxy-ceramide synthesis by ceramide synthase family: enzymatic basis for the preference of FA chain length. J. Lipid Res. 49 (2008) 2356–2364. [PMID: 18541923]
3.  Jennemann, R., Rabionet, M., Gorgas, K., Epstein, S., Dalpke, A., Rothermel, U., Bayerle, A., van der Hoeven, F., Imgrund, S., Kirsch, J., Nickel, W., Willecke, K., Riezman, H., Grone, H.J. and Sandhoff, R. Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum. Mol. Genet. 21 (2012) 586–608. [PMID: 22038835]
4.  Mizutani, Y., Sun, H., Ohno, Y., Sassa, T., Wakashima, T., Obara, M., Yuyama, K., Kihara, A. and Igarashi, Y. Cooperative synthesis of ultra long-chain fatty acid and ceramide during keratinocyte differentiation. PLoS One 8:e67317 (2013). [PMID: 23826266]
[EC 2.3.1.298 created 2019]
 
 
EC 2.3.1.301     
Accepted name: mycobacterial β-ketoacyl-[acyl carrier protein] synthase III
Reaction: dodecanoyl-CoA + a malonyl-[acyl-carrier protein] = a 3-oxotetradecanoyl-[acyl-carrier protein] + CoA + CO2
Glossary: dodecanoyl-CoA = lauroyl-CoA
Other name(s): fabH (gene name) (ambiguous); mycobacterial 3-oxoacyl-[acyl carrier protein] synthase III
Systematic name: dodecanoyl-CoA:malonyl-[acyl-carrier protein] C-acyltransferase
Comments: The enzyme, characterized from mycobacteria, provides a link between the type I and type II fatty acid synthase systems (FAS-I and FAS-II, respectively) found in these organisms. The enzyme acts on medium- and long-chain acyl-CoAs (C12-C16) produced by the FAS-I system, condensing them with malonyl-[acyl-carrier protein] (malonyl-AcpM) and forming starter molecules for the FAS-II system, which elongates them into meromycolic acids. The enzyme has no activity with short-chain acyl-CoAs (e.g. acetyl-CoA), which are used by EC 2.3.1.180, β-ketoacyl-[acyl-carrier-protein] synthase III, or branched-chain acyl-CoAs, which are used by EC 2.3.1.300, branched-chain β-ketoacyl-[acyl-carrier-protein] synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Scarsdale, J.N., Kazanina, G., He, X., Reynolds, K.A. and Wright, H.T. Crystal structure of the Mycobacterium tuberculosis β-ketoacyl-acyl carrier protein synthase III. J. Biol. Chem. 276 (2001) 20516–20522. [DOI] [PMID: 11278743]
2.  Musayev, F., Sachdeva, S., Scarsdale, J.N., Reynolds, K.A. and Wright, H.T. Crystal structure of a substrate complex of Mycobacterium tuberculosis β-ketoacyl-acyl carrier protein synthase III (FabH) with lauroyl-coenzyme A. J. Mol. Biol. 346 (2005) 1313–1321. [DOI] [PMID: 15713483]
3.  Brown, A.K., Sridharan, S., Kremer, L., Lindenberg, S., Dover, L.G., Sacchettini, J.C. and Besra, G.S. Probing the mechanism of the Mycobacterium tuberculosis β-ketoacyl-acyl carrier protein synthase III mtFabH: factors influencing catalysis and substrate specificity. J. Biol. Chem. 280 (2005) 32539–32547. [DOI] [PMID: 16040614]
4.  Sachdeva, S., Musayev, F.N., Alhamadsheh, M.M., Scarsdale, J.N., Wright, H.T. and Reynolds, K.A. Separate entrance and exit portals for ligand traffic in Mycobacterium tuberculosis FabH. Chem. Biol. 15 (2008) 402–412. [DOI] [PMID: 18420147]
[EC 2.3.1.301 created 2021]
 
 
EC 3.1.2.2     
Accepted name: palmitoyl-CoA hydrolase
Reaction: palmitoyl-CoA + H2O = CoA + palmitate
Other name(s): long-chain fatty-acyl-CoA hydrolase; palmitoyl coenzyme A hydrolase; palmitoyl thioesterase; palmitoyl coenzyme A hydrolase; palmitoyl-CoA deacylase; palmityl thioesterase; palmityl-CoA deacylase; fatty acyl thioesterase I; palmityl thioesterase I
Systematic name: palmitoyl-CoA hydrolase
Comments: Also hydrolyses CoA thioesters of other long-chain fatty acids.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9025-87-0
References:
1.  Barnes, E.M., Jr. and Wakil, S.J. Studies on the mechanism of fatty acid synthesis. XIX. Preparation and general properties of palmityl thioesterase. J. Biol. Chem. 243 (1968) 2955–2962. [PMID: 4871199]
2.  Berge, R.K. and Farstad, M. Long-chain fatty acyl-CoA hydrolase from rat liver mitochondria. Methods Enzymol. 71 (1981) 234–242. [PMID: 6116156]
3.  Miyazawa, S., Furuta, S. and Hashimoto, T. Induction of a novel long-chain acyl-CoA hydrolase in rat liver by administration of peroxisome proliferators. Eur. J. Biochem. 117 (1981) 425–430. [DOI] [PMID: 6115749]
4.  Srere, P.A., Seubert, W. and Lynen, F. Palmityl coenzyme A deacylase. Biochim. Biophys. Acta 33 (1959) 313–319. [DOI] [PMID: 13670899]
5.  Yabusaki, K.K. and Ballou, C.E. Long-chain fatty acyl-CoA thioesterases from Mycobacterium smegmatis. Methods Enzymol. 71 (1981) 242–246.
[EC 3.1.2.2 created 1961]
 
 
EC 3.1.2.20     
Accepted name: acyl-CoA hydrolase
Reaction: acyl-CoA + H2O = CoA + a carboxylate
Other name(s): acyl coenzyme A thioesterase; acyl-CoA thioesterase; acyl coenzyme A hydrolase; thioesterase B; thioesterase II; acyl-CoA thioesterase
Systematic name: acyl-CoA hydrolase
Comments: Broad specificity for medium- to long-chain acyl-CoA. Insensitive to NAD+ (cf. EC 3.1.2.19 ADP-dependent medium-chain-acyl-CoA hydrolase)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37270-64-7
References:
1.  Alexson, S.E.H., Svensson, L.T. and Nedergaard, J. NADH-sensitive propionyl-CoA hydrolase in brown-adipose-tissue mitochondria of the rat. Biochim. Biophys. Acta 1005 (1989) 13–19. [DOI] [PMID: 2570608]
[EC 3.1.2.20 created 1992]
 
 
EC 3.1.2.27     
Accepted name: choloyl-CoA hydrolase
Reaction: choloyl-CoA + H2O = cholate + CoA
For diagram of the biosynthesis of cholic-acid conjugates, click here
Other name(s): PTE-2 (ambiguous); choloyl-coenzyme A thioesterase; chenodeoxycholoyl-coenzyme A thioesterase; peroxisomal acyl-CoA thioesterase 2
Systematic name: choloyl-CoA hydrolase
Comments: Also acts on chenodeoxycholoyl-CoA and to a lesser extent on short- and medium- to long-chain acyl-CoAs, and other substrates, including trihydroxycoprostanoyl-CoA, hydroxymethylglutaryl-CoA and branched chain acyl-CoAs, all of which are present in peroxisomes. The enzyme is strongly inhibited by CoA and may be involved in controlling CoA levels in the peroxisome [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hunt, M.C., Solaas, K., Kase, B.F. and Alexson, S.E. Characterization of an acyl-coA thioesterase that functions as a major regulator of peroxisomal lipid metabolism. J. Biol. Chem. 277 (2002) 1128–1138. [DOI] [PMID: 11673457]
2.  Solaas, K., Sletta, R.J., Soreide, O. and Kase, B.F. Presence of choloyl- and chenodeoxycholoyl-coenzyme A thioesterase activity in human liver. Scand. J. Clin. Lab. Invest. 60 (2000) 91–102. [PMID: 10817395]
3.  Russell, D.W. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72 (2003) 137–174. [DOI] [PMID: 12543708]
[EC 3.1.2.27 created 2005]
 
 
EC 4.2.1.134     
Accepted name: very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase
Reaction: a very-long-chain (3R)-3-hydroxyacyl-CoA = a very-long-chain trans-2,3-dehydroacyl-CoA + H2O
Glossary: a very-long-chain acyl-CoA = an acyl-CoA thioester where the acyl chain contains 23 or more carbon atoms.
Other name(s): PHS1 (gene name); PAS2 (gene name)
Systematic name: very-long-chain (3R)-3-hydroxyacyl-CoA hydro-lyase
Comments: This is the third component of the elongase, a microsomal protein complex responsible for extending palmitoyl-CoA and stearoyl-CoA (and modified forms thereof) to very-long chain acyl CoAs. cf. EC 2.3.1.199, very-long-chain 3-oxoacyl-CoA synthase, EC 1.1.1.330, very-long-chain 3-oxoacyl-CoA reductase, and EC 1.3.1.93, very-long-chain enoyl-CoA reductase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Bach, L., Michaelson, L.V., Haslam, R., Bellec, Y., Gissot, L., Marion, J., Da Costa, M., Boutin, J.P., Miquel, M., Tellier, F., Domergue, F., Markham, J.E., Beaudoin, F., Napier, J.A. and Faure, J.D. The very-long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development. Proc. Natl. Acad. Sci. USA 105 (2008) 14727–14731. [DOI] [PMID: 18799749]
2.  Kihara, A., Sakuraba, H., Ikeda, M., Denpoh, A. and Igarashi, Y. Membrane topology and essential amino acid residues of Phs1, a 3-hydroxyacyl-CoA dehydratase involved in very long-chain fatty acid elongation. J. Biol. Chem. 283 (2008) 11199–11209. [DOI] [PMID: 18272525]
[EC 4.2.1.134 created 2012, modified 2014]
 
 
EC 6.2.1.3     
Accepted name: long-chain-fatty-acid—CoA ligase
Reaction: ATP + a long-chain fatty acid + CoA = AMP + diphosphate + an acyl-CoA
Glossary: a long-chain-fatty acid = a fatty acid with an aliphatic chain of 13-22 carbons.
Other name(s): acyl-CoA synthetase; fatty acid thiokinase (long chain); acyl-activating enzyme; palmitoyl-CoA synthase; lignoceroyl-CoA synthase; arachidonyl-CoA synthetase; acyl coenzyme A synthetase; acyl-CoA ligase; palmitoyl coenzyme A synthetase; thiokinase; palmitoyl-CoA ligase; acyl-coenzyme A ligase; fatty acid CoA ligase; long-chain fatty acyl coenzyme A synthetase; oleoyl-CoA synthetase; stearoyl-CoA synthetase; long chain fatty acyl-CoA synthetase; long-chain acyl CoA synthetase; fatty acid elongase; LCFA synthetase; pristanoyl-CoA synthetase; ACS3; long-chain acyl-CoA synthetase I; long-chain acyl-CoA synthetase II; fatty acyl-coenzyme A synthetase; long-chain acyl-coenzyme A synthetase; FAA1
Systematic name: long-chain fatty acid:CoA ligase (AMP-forming)
Comments: Acts on a wide range of long-chain saturated and unsaturated fatty acids, but the enzymes from different tissues show some variation in specificity. The liver enzyme acts on acids from C6 to C20; that from brain shows high activity up to C24.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9013-18-7
References:
1.  Bakken, A.M. and Farstad, M. Identical subcellular distribution of palmitoyl-CoA and arachidonoyl-CoA synthetase activities in human blood platelets. Biochem. J. 261 (1989) 71–76. [PMID: 2528345]
2.  Hosaka, K., Mishima, M., Tanaka, T., Kamiryo, T. and Numa, S. Acyl-coenzyme-A synthetase I from Candida lipolytica. Purification, properties and immunochemical studies. Eur. J. Biochem. 93 (1979) 197–203. [DOI] [PMID: 108099]
3.  Nagamatsu, K., Soeda, S., Mori, M. and Kishimoto, Y. Lignoceroyl-coenzyme A synthetase from developing rat brain: partial purification, characterization and comparison with palmitoyl-coenzyme A synthetase activity and liver enzyme. Biochim. Biophys. Acta 836 (1985) 80–88. [DOI] [PMID: 3161545]
4.  Tanaka, T., Hosaka, K., Hoshimaru, M. and Numa, S. Purification and properties of long-chain acyl-coenzyme-A synthetase from rat liver. Eur. J. Biochem. 98 (1979) 165–172. [DOI] [PMID: 467438]
[EC 6.2.1.3 created 1961, modified 1989, modified 2011]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald