The Enzyme Database

Your query returned 8 entries.    printer_iconPrintable version

EC 1.6.5.4     
Accepted name: monodehydroascorbate reductase (NADH)
Reaction: NADH + H+ + 2 monodehydroascorbate = NAD+ + 2 ascorbate
Other name(s): NADH:semidehydroascorbic acid oxidoreductase; MDHA; semidehydroascorbate reductase; AFR (ambiguous); AFR-reductase; ascorbic free radical reductase; ascorbate free radical reductase; SOR (ambiguous); MDAsA reductase (NADPH); SDA reductase; NADH:ascorbate radical oxidoreductase; NADH-semidehydroascorbate oxidoreductase; ascorbate free-radical reductase; NADH:AFR oxidoreductase; monodehydroascorbate reductase (NADH2)
Systematic name: NADH:monodehydroascorbate oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9029-26-9
References:
1.  Schulze, H.-U., Schott, H.-H. and Staudinger, H. Isolierung und Charakterisierung einer NADH: Semidehydroascorbinsäure-Oxidoreduktase aus Neurospora crassa. Hoppe-Seyler's Z. Physiol. Chem. 353 (1972) 1931–1942. [PMID: 4405497]
[EC 1.6.5.4 created 1961]
 
 
EC 1.10.2.1      
Deleted entry: L-ascorbate—cytochrome-b5 reductase. The activity is covered by EC 7.2.1.3, ascorbate ferrireductase (transmembrane)
[EC 1.10.2.1 created 1972, modified 2000, deleted 2021]
 
 
EC 1.10.3.3     
Accepted name: L-ascorbate oxidase
Reaction: 4 L-ascorbate + O2 = 4 monodehydroascorbate + 2 H2O
Other name(s): ascorbase; ascorbic acid oxidase; ascorbate oxidase; ascorbic oxidase; ascorbate dehydrogenase; L-ascorbic acid oxidase; AAO; L-ascorbate:O2 oxidoreductase; AA oxidase
Systematic name: L-ascorbate:oxygen oxidoreductase
Comments: A multicopper protein.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9029-44-1
References:
1.  Yamazaki, I. and Piette, L.H. Mechanism of free radical formation and disappearance during the ascorbic acid oxidase and peroxidase reactions. Biochim. Biophys. Acta 50 (1961) 62–69. [DOI] [PMID: 13787201]
2.  Stark, G.R. and Dawson, C.R. Ascorbic acid oxidase. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 8, Academic Press, New York, 1963, pp. 297–311.
3.  Messerschmidt, A., Ladenstein, R., Huber, R., Bolognesi, M., Avigliano, L., Petruzzelli, R., Rossi, A. and Finazzi-Agro, A. Refined crystal structure of ascorbate oxidase at 1.9 Å resolution. J. Mol. Biol. 224 (1992) 179–205. [DOI] [PMID: 1548698]
[EC 1.10.3.3 created 1961, modified 2011]
 
 
EC 1.11.1.11     
Accepted name: L-ascorbate peroxidase
Reaction: 2 L-ascorbate + H2O2 + 2 H+ = L-ascorbate + L-dehydroascorbate + 2 H2O (overall reaction)
(1a) 2 L-ascorbate + H2O2 + 2 H+ = 2 monodehydroascorbate + 2 H2O
(1b) 2 monodehydroascorbate = L-ascorbate + L-dehydroascorbate (spontaneous)
Glossary: monodehydroascorbate = ascorbate radical
Other name(s): L-ascorbic acid peroxidase; L-ascorbic acid-specific peroxidase; ascorbate peroxidase; ascorbic acid peroxidase
Systematic name: L-ascorbate:hydrogen-peroxide oxidoreductase
Comments: A heme protein. Oxidizes ascorbate and low molecular weight aromatic substrates. The monodehydroascorbate radical produced is either directly reduced back to ascorbate by EC 1.6.5.4 [monodehydroascorbate reductase (NADH)] or undergoes non-enzymic disproportionation to ascorbate and dehydroascorbate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 72906-87-7
References:
1.  Shigeoka, S., Nakano, Y. and Kitaoka, S. Purification and some properties of L-ascorbic-acid-specific peroxidase in Euglena gracilis. Z. Arch. Biochem. Biophys. 201 (1980) 121–127. [DOI] [PMID: 6772104]
2.  Shigeoka, S., Nakano, Y. and Kitaoka, S. Metabolism of hydrogen peroxide in Euglena gracilis Z by L-ascorbic acid peroxidase. Biochem. J. 186 (1980) 377–380. [PMID: 6768357]
3.  Nakano, Y and Asada, K. Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol. 28 (1987) 131–140.
4.  Patterson, W.R. and Poulos, T.L. Crystal structure of recombinant pea cytosolic ascorbate peroxidase. Biochemistry 34 (1995) 4331–4341. [PMID: 7703247]
5.  Sharp, K.H., Moody, P.C., Brown, K.A. and Raven, E.L. Crystal structure of the ascorbate peroxidase-salicylhydroxamic acid complex. Biochemistry 43 (2004) 8644–8651. [DOI] [PMID: 15236572]
6.  Macdonald, I.K., Badyal, S.K., Ghamsari, L., Moody, P.C. and Raven, E.L. Interaction of ascorbate peroxidase with substrates: a mechanistic and structural analysis. Biochemistry 45 (2006) 7808–7817. [DOI] [PMID: 16784232]
[EC 1.11.1.11 created 1983, modified 2010, modified 2011]
 
 
EC 1.14.17.1     
Accepted name: dopamine β-monooxygenase
Reaction: dopamine + 2 ascorbate + O2 = noradrenaline + 2 monodehydroascorbate + H2O
For diagram of dopa biosynthesis, click here
Glossary: dopamine = 4-(2-aminoethyl)benzene-1,2-diol
Other name(s): dopamine β-hydroxylase; MDBH (membrane-associated dopamine β-monooxygenase); SDBH (soluble dopamine β-monooxygenase); dopamine-B-hydroxylase; 3,4-dihydroxyphenethylamine β-oxidase; 4-(2-aminoethyl)pyrocatechol β-oxidase; dopa β-hydroxylase; dopamine β-oxidase; dopamine hydroxylase; phenylamine β-hydroxylase; (3,4-dihydroxyphenethylamine)β-mono-oxygenase; DβM (gene name)
Systematic name: dopamine,ascorbate:oxygen oxidoreductase (β-hydroxylating)
Comments: A copper protein. The enzyme, found in animals, binds two copper ions with distinct roles during catalysis. Stimulated by fumarate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9013-38-1
References:
1.  Levin, E.Y., Levenberg, B. and Kaufman, S. The enzymatic conversion of 3,4-dihydroxyphenylethylamine to norepinephrine. J. Biol. Chem. 235 (1960) 2080–2086. [PMID: 14416204]
2.  Friedman, S. and Kaufman, S. 3,4-Dihydroxyphenylethylamine β-hydroxylase. Physical properties, copper content, and role of copper in the catalytic activity. J. Biol. Chem. 240 (1965) 4763–4773. [PMID: 5846992]
3.  Skotland, T. and Ljones, T. Direct spectrophotometric detection of ascorbate free radical formed by dopamine β-monooxygenase and by ascorbate oxidase. Biochim. Biophys. Acta 630 (1980) 30–35. [PMID: 7388045]
4.  Evans, J.P., Ahn, K. and Klinman, J.P. Evidence that dioxygen and substrate activation are tightly coupled in dopamine β-monooxygenase. Implications for the reactive oxygen species. J. Biol. Chem. 278 (2003) 49691–49698. [PMID: 12966104]
[EC 1.14.17.1 created 1965 as EC 1.14.2.1, transferred 1972 to EC 1.14.17.1, modified 2020]
 
 
EC 1.14.17.3     
Accepted name: peptidylglycine monooxygenase
Reaction: [peptide]-glycine + 2 ascorbate + O2 = [peptide]-(2S)-2-hydroxyglycine + 2 monodehydroascorbate + H2O
Other name(s): peptidylglycine 2-hydroxylase; peptidyl α-amidating enzyme; peptide-α-amide synthetase; peptide α-amidating enzyme; peptide α-amide synthase; peptidylglycine α-hydroxylase; peptidylglycine α-amidating monooxygenase; PAM-A; PAM-B; PAM; peptidylglycine,ascorbate:oxygen oxidoreductase (2-hydroxylating)
Systematic name: [peptide]-glycine,ascorbate:oxygen oxidoreductase (2-hydroxylating)
Comments: A copper protein. The enzyme binds two copper ions with distinct roles during catalysis. Peptidylglycines with a neutral amino acid residue in the penultimate position are the best substrates for the enzyme. The product is unstable and dismutates to glyoxylate and the corresponding desglycine peptide amide, a reaction catalysed by EC 4.3.2.5 peptidylamidoglycolate lyase. In mammals, the two activities are part of a bifunctional protein. Involved in the final step of biosynthesis of α-melanotropin and related biologically active peptides.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 90597-47-0
References:
1.  Bradbury, A.F., Finnie, M.D.A. and Smyth, D.G. Mechanism of C-terminal amide formation by pituitary enzymes. Nature (Lond.) 298 (1982) 686–688. [PMID: 7099265]
2.  Glembotski, C.G. Further characterization of the peptidyl α-amidating enzyme in rat anterior pituitary secretory granules. Arch. Biochem. Biophys. 241 (1985) 673–683. [DOI] [PMID: 2994573]
3.  Murthy, A.S.N., Mains, R.E. and Eipper, B.A. Purification and characterization of peptidylglycine α-amidating monooxygenase from bovine neurointermediate pituitary. J. Biol. Chem. 261 (1986) 1815–1822. [PMID: 3944110]
4.  Bradbury, A.F. and Smyth, D.G. Enzyme-catalysed peptide amidation. Isolation of a stable intermediate formed by reaction of the amidating enzyme with an imino acid. Eur. J. Biochem. 169 (1987) 579–584. [DOI] [PMID: 3691506]
5.  Murthy, A.S.N., Keutmann, H.T. and Eipper, B.A. Further characterization of peptidylglycine α-amidating monooxygenase from bovine neurointermediate pituitary. Mol. Endocrinol. 1 (1987) 290–299. [DOI] [PMID: 3453894]
6.  Katopodis, A.G., Ping, D. and May, S.W. A novel enzyme from bovine neurointermediate pituitary catalyzes dealkylation of α-hydroxyglycine derivatives, thereby functioning sequentially with peptidylglycine α-amidating monooxygenase in peptide amidation. Biochemistry 29 (1990) 6115–6120. [PMID: 2207061]
7.  Prigge, S.T., Kolhekar, A.S., Eipper, B.A., Mains, R.E. and Amzel, L.M. Amidation of bioactive peptides: the structure of peptidylglycine α-hydroxylating monooxygenase. Science 278 (1997) 1300–1305. [PMID: 9360928]
8.  Prigge, S.T., Eipper, B.A., Mains, R.E. and Amzel, L.M. Dioxygen binds end-on to mononuclear copper in a precatalytic enzyme complex. Science 304 (2004) 864–867. [PMID: 15131304]
9.  Chufan, E.E., Prigge, S.T., Siebert, X., Eipper, B.A., Mains, R.E. and Amzel, L.M. Differential reactivity between two copper sites in peptidylglycine α-hydroxylating monooxygenase. J. Am. Chem. Soc. 132 (2010) 15565–15572. [PMID: 20958070]
10.  Chauhan, S., Hosseinzadeh, P., Lu, Y. and Blackburn, N.J. Stopped-flow studies of the reduction of the copper centers suggest a bifurcated electron transfer pathway in peptidylglycine monooxygenase. Biochemistry 55 (2016) 2008–2021. [PMID: 26982589]
[EC 1.14.17.3 created 1989, modified 2019]
 
 
EC 1.16.5.1      
Transferred entry: ascorbate ferrireductase (transmembrane). Now EC 7.2.1.3, ascorbate ferrireductase (transmembrane)
[EC 1.16.5.1 created 2011, deleted 2018]
 
 
EC 7.2.1.3     
Accepted name: ascorbate ferrireductase (transmembrane)
Reaction: ascorbate[side 1] + Fe(III)[side 2] = monodehydroascorbate[side 1] + Fe(II)[side 2]
Other name(s): cytochrome b561 (ambiguous)
Systematic name: Fe(III):ascorbate oxidorectuctase (electron-translocating)
Comments: A diheme cytochrome that transfers electrons across a single membrane, such as the outer membrane of the enterocyte, or the tonoplast membrane of the plant cell vacuole. Acts on hexacyanoferrate(III) and other ferric chelates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Flatmark, T. and Terland, O. Cytochrome b561 of the bovine adrenal chromaffin granules. A high potential b-type cytochrome. Biochim. Biophys. Acta 253 (1971) 487–491. [DOI] [PMID: 4332308]
2.  McKie, A.T., Barrow, D., Latunde-Dada, G.O., Rolfs, A., Sager, G., Mudaly, E., Mudaly, M., Richardson, C., Barlow, D., Bomford, A., Peters, T.J., Raja, K.B., Shirali, S., Hediger, M.A., Farzaneh, F. and Simpson, R.J. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291 (2001) 1755–1759. [DOI] [PMID: 11230685]
3.  Su, D. and Asard, H. Three mammalian cytochromes b561 are ascorbate-dependent ferrireductases. FEBS J. 273 (2006) 3722–3734. [DOI] [PMID: 16911521]
4.  Berczi, A., Su, D. and Asard, H. An Arabidopsis cytochrome b561 with trans-membrane ferrireductase capability. FEBS Lett. 581 (2007) 1505–1508. [DOI] [PMID: 17376442]
5.  Wyman, S., Simpson, R.J., McKie, A.T. and Sharp, P.A. Dcytb (Cybrd1) functions as both a ferric and a cupric reductase in vitro. FEBS Lett. 582 (2008) 1901–1906. [DOI] [PMID: 18498772]
6.  Glanfield, A., McManus, D.P., Smyth, D.J., Lovas, E.M., Loukas, A., Gobert, G.N. and Jones, M.K. A cytochrome b561 with ferric reductase activity from the parasitic blood fluke, Schistosoma japonicum. PLoS Negl. Trop. Dis. 4:e884 (2010). [DOI] [PMID: 21103361]
[EC 7.2.1.3 created 2011 as EC 1.16.5.1, transferred 2018 to EC 7.2.1.3]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald