The Enzyme Database

Your query returned 35 entries.    printer_iconPrintable version



EC 1.2.1.19     
Accepted name: aminobutyraldehyde dehydrogenase
Reaction: 4-aminobutanal + NAD+ + H2O = 4-aminobutanoate + NADH + 2 H+
For diagram of arginine catabolism, click here
Glossary: 4-aminobutanoate = γ-aminobutyrate = GABA
Other name(s): γ-guanidinobutyraldehyde dehydrogenase (ambiguous); ABAL dehydrogenase; 4-aminobutyraldehyde dehydrogenase; 4-aminobutanal dehydrogenase; γ-aminobutyraldehyde dehydroganase; 1-pyrroline dehydrogenase; ABALDH; YdcW
Systematic name: 4-aminobutanal:NAD+ 1-oxidoreductase
Comments: The enzyme from some species exhibits broad substrate specificity and has a marked preference for straight-chain aldehydes (up to 7 carbon atoms) as substrates [9]. The plant enzyme also acts on 4-guanidinobutanal (cf. EC 1.2.1.54 γ-guanidinobutyraldehyde dehydrogenase). As 1-pyrroline and 4-aminobutanal are in equilibrium and can be interconverted spontaneously, 1-pyrroline may act as the starting substrate. The enzyme forms part of the arginine-catabolism pathway [8] and belongs in the aldehyde dehydrogenase superfamily [9].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-98-2
References:
1.  Callewaert, D.M., Rosemblatt, M.S. and Tchen, T.T. Purification and properties of 4-aminobutanal dehydrogenase from a Pseudomonas species. J. Biol. Chem. 249 (1974) 1737–1741. [PMID: 4817964]
2.  Jakoby, W.B. Aldehyde dehydrogenases. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 7, Academic Press, New York, 1963, pp. 203–221.
3.  Jakoby, W.B. and Fredericks, J. Pyrrolidine and putrescine metabolism: γ-aminobutyraldehyde dehydrogenase. J. Biol. Chem. 234 (1959) 2145–2150. [PMID: 13673029]
4.  Matsuda, H. and Suzuki, Y. γ-Guanidinobutyraldehyde dehydrogenase of Vicia faba leaves. Plant Physiol. 76 (1984) 654–657. [PMID: 16663901]
5.  Yorifuji, T., Koike, K., Sakurai, T. and Yokoyama, K. 4-Aminobutyraldehyde and 4-guanidinobutyraldehyde dehydrogenases for arginine degradation in Pseudomonas putida. Agric. Biol. Chem. 50 (1986) 2009–2016.
6.  Prieto-Santos, M.I., Martin-Checa, J., Balaña-Fouce, R. and Garrido-Pertierra, A. A pathway for putrescine catabolism in Escherichia coli. Biochim. Biophys. Acta 880 (1986) 242–244. [DOI] [PMID: 3510672]
7.  Prieto, M.I., Martin, J., Balaña-Fouce, R. and Garrido-Pertierra, A. Properties of γ-aminobutyraldehyde dehydrogenase from Escherichia coli. Biochimie 69 (1987) 1161–1168. [DOI] [PMID: 3129020]
8.  Samsonova, N.N., Smirnov, S.V., Novikova, A.E. and Ptitsyn, L.R. Identification of Escherichia coli K12 YdcW protein as a γ-aminobutyraldehyde dehydrogenase. FEBS Lett. 579 (2005) 4107–4112. [DOI] [PMID: 16023116]
9.  Gruez, A., Roig-Zamboni, V., Grisel, S., Salomoni, A., Valencia, C., Campanacci, V., Tegoni, M. and Cambillau, C. Crystal structure and kinetics identify Escherichia coli YdcW gene product as a medium-chain aldehyde dehydrogenase. J. Mol. Biol. 343 (2004) 29–41. [DOI] [PMID: 15381418]
[EC 1.2.1.19 created 1965, modified 1989 (EC 1.5.1.35 created 2006, incorporated 2007)]
 
 
EC 1.2.1.99     
Accepted name: 4-(γ-glutamylamino)butanal dehydrogenase
Reaction: 4-(γ-L-glutamylamino)butanal + NAD(P)+ + H2O = 4-(γ-L-glutamylamino)butanoate + NAD(P)H + H+
Other name(s): puuC (gene name)
Systematic name: 4-(γ-L-glutamylamino)butanal:NAD(P)+ oxidoreductase
Comments: The enzyme, characterized from the bacterium Escherichia coli, is involved in a putrescine catabolic pathway. It has a broad substrate range, and can also catalyse the activities of EC 1.2.1.19, aminobutyraldehyde dehydrogenase, and EC 1.2.1.24, succinate-semialdehyde dehydrogenase (NAD+).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kurihara, S., Oda, S., Kato, K., Kim, H.G., Koyanagi, T., Kumagai, H. and Suzuki, H. A novel putrescine utilization pathway involves γ-glutamylated intermediates of Escherichia coli K-12. J. Biol. Chem. 280 (2005) 4602–4608. [DOI] [PMID: 15590624]
2.  Jo, J.E., Mohan Raj, S., Rathnasingh, C., Selvakumar, E., Jung, W.C. and Park, S. Cloning, expression, and characterization of an aldehyde dehydrogenase from Escherichia coli K-12 that utilizes 3-hydroxypropionaldehyde as a substrate. Appl. Microbiol. Biotechnol. 81 (2008) 51–60. [DOI] [PMID: 18668238]
3.  Schneider, B.L. and Reitzer, L. Pathway and enzyme redundancy in putrescine catabolism in Escherichia coli. J. Bacteriol. 194 (2012) 4080–4088. [DOI] [PMID: 22636776]
[EC 1.2.1.99 created 2017]
 
 
EC 1.4.3.10     
Accepted name: putrescine oxidase
Reaction: putrescine + O2 + H2O = 4-aminobutanal + NH3 + H2O2
Glossary: putrescine = butane-1,4-diamine
Systematic name: putrescine:oxygen oxidoreductase (deaminating)
Comments: A flavoprotein (FAD). 4-Aminobutanal condenses non-enzymically to 1-pyrroline.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9076-87-3
References:
1.  DeSa, R.J. Putrescine oxidase from Micrococcus rubens. Purification and properties of the enzyme. J. Biol. Chem. 247 (1972) 5527–5534. [PMID: 4341347]
2.  Yamada, H. Putrescine oxidase (Micrococcus rubens). Methods Enzymol. 17B (1971) 726–730.
[EC 1.4.3.10 created 1976]
 
 
EC 1.4.3.20     
Accepted name: L-lysine 6-oxidase
Reaction: L-lysine + O2 + H2O = (S)-2-amino-6-oxohexanoate + H2O2 + NH3
Glossary: (S)-2-amino-6-oxohexanoate = L-2-aminoadipate 6-semialdehyde = L-allysine
Other name(s): L-lysine-ε-oxidase; Lod; LodA; marinocine
Systematic name: L-lysine:oxygen 6-oxidoreductase (deaminating)
Comments: Differs from EC 1.4.3.13, protein-lysine 6-oxidase, by using free L-lysine rather than the protein-bound form. N2-Acetyl-L-lysine is also a substrate, but N6-acetyl-L-lysine, which has an acetyl group at position 6, is not a substrate. Also acts on L-ornithine, D-lysine and 4-hydroxy-L-lysine, but more slowly. The amines cadaverine and putrescine are not substrates [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 1116448-48-6
References:
1.  Lucas-Elío, P., Gómez, D., Solano, F. and Sanchez-Amat, A. The antimicrobial activity of marinocine, synthesized by Marinomonas mediterranea, is due to hydrogen peroxide generated by its lysine oxidase activity. J. Bacteriol. 188 (2006) 2493–2501. [DOI] [PMID: 16547036]
2.  Gómez, D., Lucas-Elío, P., Sanchez-Amat, A. and Solano, F. A novel type of lysine oxidase: L-lysine-ε-oxidase. Biochim. Biophys. Acta 1764 (2006) 1577–1585. [DOI] [PMID: 17030025]
[EC 1.4.3.20 created 2006, modified 2011]
 
 
EC 1.5.1.35      
Deleted entry: 1-pyrroline dehydrogenase. The enzyme is identical to EC 1.2.1.19, aminobutyraldehyde dehydrogenase, as the substrates 1-pyrroline and 4-aminobutanal are interconvertible
[EC 1.5.1.35 created 2006, deleted 2007]
 
 
EC 1.5.1.43     
Accepted name: carboxynorspermidine synthase
Reaction: (1) carboxynorspermidine + H2O + NADP+ = L-aspartate 4-semialdehyde + propane-1,3-diamine + NADPH + H+
(2) carboxyspermidine + H2O + NADP+ = L-aspartate 4-semialdehyde + putrescine + NADPH + H+
Other name(s): carboxynorspermidine dehydrogenase; carboxyspermidine dehydrogenase; CASDH; CANSDH; VC1624 (gene name)
Systematic name: carboxynorspermidine:NADP+ oxidoreductase
Comments: The reaction takes place in the opposite direction. Part of a bacterial polyamine biosynthesis pathway. L-aspartate 4-semialdehyde and propane-1,3-diamine/putrescine form a Schiff base that is reduced to form carboxynorspermidine/carboxyspermidine, respectively [1]. The enzyme from the bacterium Vibrio cholerae is essential for biofilm formation [2]. The enzyme from Campylobacter jejuni only produces carboxyspermidine in vivo even though it also can produce carboxynorspermidine in vitro [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Nakao, H., Shinoda, S. and Yamamoto, S. Purification and some properties of carboxynorspermidine synthase participating in a novel biosynthetic pathway for norspermidine in Vibrio alginolyticus. J. Gen. Microbiol. 137 (1991) 1737–1742. [DOI] [PMID: 1955861]
2.  Lee, J., Sperandio, V., Frantz, D.E., Longgood, J., Camilli, A., Phillips, M.A. and Michael, A.J. An alternative polyamine biosynthetic pathway is widespread in bacteria and essential for biofilm formation in Vibrio cholerae. J. Biol. Chem. 284 (2009) 9899–9907. [DOI] [PMID: 19196710]
3.  Hanfrey, C.C., Pearson, B.M., Hazeldine, S., Lee, J., Gaskin, D.J., Woster, P.M., Phillips, M.A. and Michael, A.J. Alternative spermidine biosynthetic route is critical for growth of Campylobacter jejuni and is the dominant polyamine pathway in human gut microbiota. J. Biol. Chem. 286 (2011) 43301–43312. [DOI] [PMID: 22025614]
[EC 1.5.1.43 created 2012]
 
 
EC 1.5.3.13     
Accepted name: N1-acetylpolyamine oxidase
Reaction: (1) N1-acetylspermidine + O2 + H2O = putrescine + 3-acetamidopropanal + H2O2
(2) N1-acetylspermine + O2 + H2O = spermidine + 3-acetamidopropanal + H2O2
Other name(s): hPAO-1; PAO (ambiguous); mPAO; hPAO; polyamine oxidase (ambiguous)
Systematic name: N1-acetylpolyamine:oxygen oxidoreductase (3-acetamidopropanal-forming)
Comments: The enzyme also catalyses the reaction: N1,N12-diacetylspermine + O2 + H2O = N1-acetylspermidine + 3-acetamamidopropanal + H2O2 [1]. No or very weak activity with spermine, or spermidine in absence of aldehydes. In presence of aldehydes the enzyme catalyses the reactions: 1. spermine + O2 + H2O = spermidine + 3-aminopropanal + H2O2, and with weak efficiency 2. spermidine + O2 + H2O = putrescine + 3-aminopropanal + H2O2 [2]. A flavoprotein (FAD). This enzyme, encoded by the PAOX gene, is found in mammalian peroxisomes and oxidizes N1-acetylated polyamines at the exo (three-carbon) side of the secondary amine, forming 3-acetamamidopropanal. Since the products of the reactions are deacetylated polyamines, this process is known as polyamine back-conversion. Differs in specificity from EC 1.5.3.14 [polyamine oxidase (propane-1,3-diamine-forming)], EC 1.5.3.15 [N8-acetylspermidine oxidase (propane-1,3-diamine-forming)], EC 1.5.3.16 (spermine oxidase) and EC 1.5.3.17 (non-specific polyamine oxidase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Vujcic, S., Liang, P., Diegelman, P., Kramer, D.L. and Porter, C.W. Genomic identification and biochemical characterization of the mammalian polyamine oxidase involved in polyamine back-conversion. Biochem. J. 370 (2003) 19–28. [DOI] [PMID: 12477380]
2.  Jarvinen, A., Grigorenko, N., Khomutov, A.R., Hyvonen, M.T., Uimari, A., Vepsalainen, J., Sinervirta, R., Keinanen, T.A., Vujcic, S., Alhonen, L., Porter, C.W. and Janne, J. Metabolic stability of α-methylated polyamine derivatives and their use as substitutes for the natural polyamines. J. Biol. Chem. 280 (2005) 6595–6601. [DOI] [PMID: 15611107]
3.  Wang, Y., Hacker, A., Murray-Stewart, T., Frydman, B., Valasinas, A., Fraser, A.V., Woster, P.M. and Casero, R.A., Jr. Properties of recombinant human N1-acetylpolyamine oxidase (hPAO): potential role in determining drug sensitivity. Cancer Chemother. Pharmacol. 56 (2005) 83–90. [DOI] [PMID: 15791459]
4.  Wu, T., Yankovskaya, V. and McIntire, W.S. Cloning, sequencing, and heterologous expression of the murine peroxisomal flavoprotein, N1-acetylated polyamine oxidase. J. Biol. Chem. 278 (2003) 20514–20525. [DOI] [PMID: 12660232]
[EC 1.5.3.13 created 2009]
 
 
EC 1.5.3.15     
Accepted name: N8-acetylspermidine oxidase (propane-1,3-diamine-forming)
Reaction: N8-acetylspermidine + O2 + H2O = propane-1,3-diamine + 4-acetamidobutanal + H2O2
Systematic name: N8-acetylspermidine:oxygen oxidoreductase (propane-1,3-diamine-forming)
Comments: Also active with N1-acetylspermine, weak activity with N1,N12-diacetylspermine. No activity with diaminopropane, putrescine, cadaverine, diaminohexane, norspermidine, spermine and spermidine. Absence of monoamine oxidase (EC 1.4.3.4) activity. Differs in specificity from EC 1.5.3.13 (N1-acetylpolyamine oxidase), EC 1.5.3.14 (polyamine oxidase (propane-1,3-diamine-forming)), EC 1.5.3.16 (spermine oxidase) and EC 1.5.3.17 (non-specific polyamine oxidase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Shukla, O.P., Muller, S. and Walter, R.D. Polyamine oxidase from Acanthamoeba culbertsoni specific for N8-acetylspermidine. Mol. Biochem. Parasitol. 51 (1992) 91–98. [DOI] [PMID: 1565141]
[EC 1.5.3.15 created 2009]
 
 
EC 1.5.3.17     
Accepted name: non-specific polyamine oxidase
Reaction: (1) spermine + O2 + H2O = spermidine + 3-aminopropanal + H2O2
(2) spermidine + O2 + H2O = putrescine + 3-aminopropanal + H2O2
(3) N1-acetylspermine + O2 + H2O = spermidine + 3-acetamidopropanal + H2O2
(4) N1-acetylspermidine + O2 + H2O = putrescine + 3-acetamidopropanal + H2O2
Other name(s): polyamine oxidase (ambiguous); Fms1; AtPAO3
Systematic name: polyamine:oxygen oxidoreductase (3-aminopropanal or 3-acetamidopropanal-forming)
Comments: A flavoprotein (FAD). The non-specific polyamine oxidases may differ from each other considerably. The enzyme from Saccharomyces cerevisiae shows a rather broad specificity and also oxidizes N8-acetylspermidine [3]. The enzyme from Ascaris suum shows high activity with spermine and spermidine, but also oxidizes norspermine [2]. The enzyme from Arabidopsis thaliana shows high activity with spermidine, but also oxidizes other polyamines [1]. The specific polyamine oxidases are classified as EC 1.5.3.13 (N1-acetylpolyamine oxidase), EC 1.5.3.14 (polyamine oxidase (propane-1,3-diamine-forming)), EC 1.5.3.15 (N8-acetylspermidine oxidase (propane-1,3-diamine-forming)) and EC 1.5.3.16 (spermine oxidase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Moschou, P.N., Sanmartin, M., Andriopoulou, A.H., Rojo, E., Sanchez-Serrano, J.J. and Roubelakis-Angelakis, K.A. Bridging the gap between plant and mammalian polyamine catabolism: a novel peroxisomal polyamine oxidase responsible for a full back-conversion pathway in Arabidopsis. Plant Physiol. 147 (2008) 1845–1857. [DOI] [PMID: 18583528]
2.  Muller, S. and Walter, R.D. Purification and characterization of polyamine oxidase from Ascaris suum. Biochem. J. 283 (1992) 75–80. [PMID: 1567380]
3.  Landry, J. and Sternglanz, R. Yeast Fms1 is a FAD-utilizing polyamine oxidase. Biochem. Biophys. Res. Commun. 303 (2003) 771–776. [DOI] [PMID: 12670477]
[EC 1.5.3.17 created 2009]
 
 
EC 2.1.1.53     
Accepted name: putrescine N-methyltransferase
Reaction: S-adenosyl-L-methionine + putrescine = S-adenosyl-L-homocysteine + N-methylputrescine
For diagram of tropane alkaloid biosynthesis, click here
Glossary: putrescine = butane-1,4-diamine
Other name(s): putrescine methyltransferase
Systematic name: S-adenosyl-L-methionine:putrescine N-methyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9075-39-2
References:
1.  Mizusaki, S., Tanabe, Y., Noguchi, M. and Tamaki, E. Phytochemical studies on tobacco alkaloids. XIV. The occurence and properties of putrescine N-methyltransferase in tobacco roots. Plant Cell Physiol. 12 (1971) 633–640.
[EC 2.1.1.53 created 1976]
 
 
EC 2.1.3.3     
Accepted name: ornithine carbamoyltransferase
Reaction: carbamoyl phosphate + L-ornithine = phosphate + L-citrulline
For diagram of the urea cycle and arginine biosynthesis, click here
Other name(s): citrulline phosphorylase; ornithine transcarbamylase; OTC; carbamylphosphate-ornithine transcarbamylase; L-ornithine carbamoyltransferase; L-ornithine carbamyltransferase; L-ornithine transcarbamylase; ornithine carbamyltransferase
Systematic name: carbamoyl-phosphate:L-ornithine carbamoyltransferase
Comments: The plant enzyme also catalyses the reactions of EC 2.1.3.6 putrescine carbamoyltransferase, EC 2.7.2.2 carbamate kinase and EC 3.5.3.12 agmatine deiminase, thus acting as putrescine synthase, converting agmatine [(4-aminobutyl)guanidine] and ornithine into putrescine and citrulline, respectively.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9001-69-8
References:
1.  Bishop, S.H. and Grisolia, S. Crystalline ornithine transcarbamylase. Biochim. Biophys. Acta 139 (1967) 344–348. [DOI] [PMID: 6034676]
2.  Marshall, M. and Cohen, P.P. Ornithine transcarbamylase from Streptococcus faecalis and bovine liver. I. Isolation and subunit structure. J. Biol. Chem. 247 (1972) 1641–1653. [PMID: 4622303]
3.  Marshall, M. and Cohen, P.P. Ornithine transcarbamylase from Streptococcus faecalis and bovine liver. II. Multiple binding sites for carbamyl-P and L-norvaline, correlation with steady state kinetics. J. Biol. Chem. 247 (1972) 1654–1668. [PMID: 4622304]
4.  Marshall, M. and Cohen, P.P. Ornithine transcarbamylase from Streptococcus faecalis and bovine liver. 3. Effects of chemical modifications of specific residues on ligand binding and enzymatic activity. J. Biol. Chem. 247 (1972) 1669–1682. [PMID: 4622305]
[EC 2.1.3.3 created 1961]
 
 
EC 2.1.3.6     
Accepted name: putrescine carbamoyltransferase
Reaction: carbamoyl phosphate + putrescine = phosphate + N-carbamoylputrescine
Glossary: putrescine = butane-1,4-diamine
Other name(s): PTCase; putrescine synthase; putrescine transcarbamylase
Systematic name: carbamoyl-phosphate:putrescine carbamoyltransferase
Comments: The plant enzyme also catalyses the reactions of EC 2.1.3.3 ornithine carbamoyltransferase, EC 2.7.2.2 carbamate kinase and EC 3.5.3.12 agmatine deiminase, thus acting as putrescine synthase, converting agmatine [(4-aminobutyl)guanidine] and ornithine into putrescine and citrulline, respectively.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9076-55-5
References:
1.  Roon, R.J. and Barker, H.A. Fermentation of agmatine in Streptococcus faecalis: occurrence of putrescine transcarbamoylase. J. Bacteriol. 109 (1972) 44–50. [PMID: 4621632]
2.  Srivenugopal, K.S. and Adiga, P.R. Enzymic conversion of agmatine to putrescine in Lathyrus sativus seedlings. Purification and properties of a multifunctional enzyme (putrescine synthase). J. Biol. Chem. 256 (1981) 9532–9541. [PMID: 6895223]
[EC 2.1.3.6 created 1976]
 
 
EC 2.3.1.57     
Accepted name: diamine N-acetyltransferase
Reaction: acetyl-CoA + an alkane-α,ω-diamine = CoA + an N-acetyldiamine
Glossary: spermidine = N-(3-aminopropyl)butane-1,4-diamine
spermine = N,N′-bis(3-aminopropyl)butane-1,4-diamine
Other name(s): spermidine acetyltransferase; putrescine acetyltransferase; putrescine (diamine)-acetylating enzyme; diamine acetyltransferase; spermidine/spermine N1-acetyltransferase; spermidine N1-acetyltransferase; acetyl-coenzyme A-1,4-diaminobutane N-acetyltransferase; putrescine acetylase; putrescine N-acetyltransferase
Systematic name: acetyl-CoA:alkane-α,ω-diamine N-acetyltransferase
Comments: Acts on propane-1,3-diamine, pentane-1,5-diamine, putrescine, spermidine (forming N1- and N8-acetylspermidine), spermine, N1-acetylspermidine and N8-acetylspermidine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 54596-36-0
References:
1.  Della Ragione, F. and Pegg, A.E. Purification and characterization of spermidine/spermine N1-acetyltransferase from rat liver. Biochemistry 21 (1982) 6152–6158. [PMID: 7150547]
[EC 2.3.1.57 created 1976, modified 1989]
 
 
EC 2.3.1.138     
Accepted name: putrescine N-hydroxycinnamoyltransferase
Reaction: caffeoyl-CoA + putrescine = CoA + N-caffeoylputrescine
Glossary: putrescine = butane-1,4-diamine
Other name(s): caffeoyl-CoA putrescine N-caffeoyl transferase; PHT; putrescine hydroxycinnamoyl transferase; hydroxycinnamoyl-CoA:putrescine hydroxycinnamoyltransferase; putrescine hydroxycinnamoyltransferase
Systematic name: caffeoyl-CoA:putrescine N-(3,4-dihydroxycinnamoyl)transferase
Comments: Feruloyl-CoA, cinnamoyl-CoA and sinapoyl-CoA can also act as donors, but more slowly.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 120598-69-8
References:
1.  Negrel, J. The biosynthesis of cinnamoylputrescines in callus-tissue cultures of Nicotiana tabacum. Phytochemistry 28 (1989) 477–481.
[EC 2.3.1.138 created 1992]
 
 
EC 2.5.1.16     
Accepted name: spermidine synthase
Reaction: S-adenosyl 3-(methylsulfanyl)propylamine + putrescine = S-methyl-5′-thioadenosine + spermidine
For diagram of spermine biosynthesis, click here
Glossary: spermidine = N-(3-aminopropyl)butane-1,4-diamine
spermine = N,N′-bis(3-aminopropyl)butane-1,4-diamine
putrescine = butane-1,4-diamine
S-adenosyl 3-(methylsulfanyl)propylamine = (3-aminopropyl){[(2S,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methyl}methylsulfonium
Other name(s): aminopropyltransferase; putrescine aminopropyltransferase; spermidine synthetase; SpeE (ambiguous); S-adenosylmethioninamine:putrescine 3-aminopropyltransferase; S-adenosyl 3-(methylthio)propylamine:putrescine 3-aminopropyltransferase
Systematic name: S-adenosyl 3-(methylsulfanyl)propylamine:putrescine 3-aminopropyltransferase
Comments: The enzymes from the plant Glycine max and from mammalia are highly specific for putrescine as the amine acceptor [2,7]. The enzymes from the bacteria Escherichia coli and Thermotoga maritima prefer putrescine but are more tolerant towards other amine acceptors, such as spermidine and cadaverine [5,6]. cf. EC 2.5.1.22 (spermine synthase) and EC 2.5.1.23 (sym-norspermidine synthase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37277-82-0
References:
1.  Hannonen, P., Janne, J. and Raina, A. Partial purification and characterization of spermine synthase from rat brain. Biochim. Biophys. Acta 289 (1972) 225–231. [DOI] [PMID: 4564056]
2.  Pegg, A.E., Shuttleworth, K. and Hibasami, H. Specificity of mammalian spermidine synthase and spermine synthase. Biochem. J. 197 (1981) 315–320. [PMID: 6798961]
3.  Tabor, C.W. Propylamine transferase (spermidine synthesis). Methods Enzymol. 5 (1962) 761–765.
4.  Tabor, H. and Tabor, C.W. Biosynthesis and metabolism of 1,4-diaminobutane, spermidine, spermine, and related amines. Adv. Enzymol. Relat. Areas Mol. Biol. 36 (1972) 203–268. [PMID: 4628436]
5.  Bowman, W.H., Tabor, C.W. and Tabor, H. Spermidine biosynthesis. Purification and properties of propylamine transferase from Escherichia coli. J. Biol. Chem. 248 (1973) 2480–2486. [PMID: 4572733]
6.  Korolev, S., Ikeguchi, Y., Skarina, T., Beasley, S., Arrowsmith, C., Edwards, A., Joachimiak, A., Pegg, A.E. and Savchenko, A. The crystal structure of spermidine synthase with a multisubstrate adduct inhibitor. Nat. Struct. Biol. 9 (2002) 27–31. [DOI] [PMID: 11731804]
7.  Yoon, S.O., Lee, Y.S., Lee, S.H. and Cho, Y.D. Polyamine synthesis in plants: isolation and characterization of spermidine synthase from soybean (Glycine max) axes. Biochim. Biophys. Acta 1475 (2000) 17–26. [DOI] [PMID: 10806333]
[EC 2.5.1.16 created 1972, modified 1982, modified 2013]
 
 
EC 2.5.1.23     
Accepted name: sym-norspermidine synthase
Reaction: S-adenosyl 3-(methylsulfanyl)propylamine + propane-1,3-diamine = S-methyl-5′-thioadenosine + bis(3-aminopropyl)amine
Glossary: S-adenosyl 3-(methylsulfanyl)propylamine = (3-aminopropyl){[(2S,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methyl}methylsulfonium
Other name(s): S-adenosylmethioninamine:propane-1,3-diamine 3-aminopropyltransferase; S-adenosyl 3-(methylthio)propylamine:propane-1,3-diamine 3-aminopropyltransferase
Systematic name: S-adenosyl 3-(methylsulfanyl)propylamine:propane-1,3-diamine 3-aminopropyltransferase
Comments: The enzyme has been originally characterized from the protist Euglena gracilis [1,2]. The enzyme from the archaeon Sulfolobus solfataricus can transfer the propylamine moiety from S-adenosyl 3-(methylsulfanyl)propylamine to putrescine, sym-norspermidine and spermidine with lower efficiency [3]. cf. EC 2.5.1.16 (spermidine synthase) and EC 2.5.1.22 (spermine synthase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Aleksijevic, A., Grove, J. and Schuber, F. Studies on polyamine biosynthesis in Euglena gracilis. Biochim. Biophys. Acta 565 (1979) 199–207. [DOI] [PMID: 116684]
2.  Villanueva, V.R., Adlakha, R.C. and Calbayrac, R. Biosynthesis of polyamines in Euglena gracilis. Phytochemistry 19 (1980) 787–790.
3.  Cacciapuoti, G., Porcelli, M., Carteni-Farina, M., Gambacorta, A. and Zappia, V. Purification and characterization of propylamine transferase from Sulfolobus solfataricus, an extreme thermophilic archaebacterium. Eur. J. Biochem. 161 (1986) 263–271. [DOI] [PMID: 3096734]
[EC 2.5.1.23 created 1983, modified 2013]
 
 
EC 2.5.1.44     
Accepted name: homospermidine synthase
Reaction: (1) 2 putrescine = sym-homospermidine + NH3 + H+
(2) putrescine + spermidine = sym-homospermidine + propane-1,3-diamine
For diagram of reaction, click here
Glossary: sym-homospermidine = N-(4-aminobutyl)butane-1,4-diamine
putrescine = butane-1,4-diamine
dehydroputrescine = 4-iminobutan-1-amine
Systematic name: putrescine:putrescine 4-aminobutyltransferase (ammonia-forming)
Comments: The reaction of this enzyme occurs in three steps, with some of the intermediates presumably remaining enzyme-bound: NAD+-dependent dehydrogenation of putrescine, transfer of the 4-aminobutylidene group from dehydroputrescine to a second molecule of putrescine and reduction of the imine intermediate to form homospermidine. Hence the overall reaction is transfer of a 4-aminobutyl group. Differs from EC 2.5.1.45, homospermidine synthase (spermidine-specific), which cannot use putrescine as donor of the aminobutyl group.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 76106-84-8
References:
1.  Tait, G.H. The formation of homospermidine by an enzyme from Rhodopseudomonas viridis. Biochem. Soc. Trans. 7 (1979) 199–200. [PMID: 437275]
2.  Böttcher, F., Ober, D. and Hartmann, T. Biosynthesis of pyrrolizidine alkaloids: putrescine and spermidine are essential substrates of enzymatic homospermidine formation. Can. J. Chem. 72 (1994) 80–85.
3.  Yamamoto, S., Nagata, S. and Kusaba, K. Purification and characterization of homospermidine synthase in Acinetobacter tartarogens ATCC 31105. J. Biochem. 114 (1993) 45–49. [PMID: 8407874]
4.  Srivenugopal, K.S. and Adiga, P.R. Enzymatic synthesis of sym-homospermidine in Lathyrus sativus T (grass pea) seedlings. Biochem. J. 190 (1980) 461–464. [PMID: 7470060]
5.  Ober, D., Tholl, D., Martin, W. and Hartmann, T. Homospermidine synthase of Rhodopseudomonas viridis: Substrate specificity and effects of the heterologously expressed enzyme on polyamine metabolism of Escherichia coli. J. Gen. Appl. Microbiol. 42 (1996) 411–419.
6.  Ober, D. and Hartmann, T. Homospermidine synthase, the first pathway-specific enzyme of pyrrolizidine alkaloid biosynthesis, evolved from deoxyhypusine synthase. Proc. Natl. Acad. Sci. USA 96 (1999) 14777–14782. [DOI] [PMID: 10611289]
[EC 2.5.1.44 created 1999, modified 2001]
 
 
EC 2.5.1.45     
Accepted name: homospermidine synthase (spermidine-specific)
Reaction: spermidine + putrescine = sym-homospermidine + propane-1,3-diamine
For diagram of reaction, click here
Glossary: sym-homospermidine = N-(4-aminobutyl)butane-1,4-diamine
putrescine = butane-1,4-diamine
spermidine = N-(3-aminopropyl)butane-1,4-diamine
Systematic name: spermidine:putrescine 4-aminobutyltransferase (propane-1,3-diamine-forming)
Comments: The reaction of this enzyme occurs in three steps, with some of the intermediates presumably remaining enzyme-bound: (a) NAD+-dependent dehydrogenation of spermidine, (b) transfer of the 4-aminobutylidene group from dehydrospermidine to putrescine and (c) reduction of the imine intermediate to form homospermidine. This enzyme is more specific than EC 2.5.1.44, homospermidine synthase, which is found in bacteria, as it cannot use putrescine as donor of the 4-aminobutyl group. Forms part of the biosynthetic pathway of the poisonous pyrrolizidine alkaloids of the ragworts (Senecio).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Böttcher, F., Ober, D. and Hartmann, T. Biosynthesis of pyrrolizidine alkaloids: putrescine and spermidine are essential substrates of enzymatic homospermidine formation. Can. J. Chem. 72 (1994) 80–85.
2.  Ober, D. and Hartmann, T. Homospermidine synthase, the first pathway-specific enzyme of pyrrolizidine alkaloid biosynthesis, evolved from deoxyhypusine synthase. Proc. Natl. Acad. Sci. USA 96 (1999) 14777–14782. [DOI] [PMID: 10611289]
3.  Ober, D., Harms, R. and Hartmann, T. Cloning and expression of homospermidine synthase from Senecio vulgaris: a revision. Phytochemistry 55 (2000) 311–316. [PMID: 11117878]
[EC 2.5.1.45 created 2001]
 
 
EC 2.5.1.46     
Accepted name: deoxyhypusine synthase
Reaction: [eIF5A-precursor]-lysine + spermidine = [eIF5A-precursor]-deoxyhypusine + propane-1,3-diamine (overall reaction)
(1a) spermidine + NAD+ = dehydrospermidine + NADH
(1b) dehydrospermidine + [enzyme]-lysine = N-(4-aminobutylidene)-[enzyme]-lysine + propane-1,3-diamine
(1c) N-(4-aminobutylidene)-[enzyme]-lysine + [eIF5A-precursor]-lysine = N-(4-aminobutylidene)-[eIF5A-precursor]-lysine + [enzyme]-lysine
(1d) N-(4-aminobutylidene)-[eIF5A-precursor]-lysine + NADH + H+ = [eIF5A-precursor]-deoxyhypusine + NAD+
For diagram of reaction, click here
Glossary: deoxyhypusine = N6-(4-aminobutyl)-L-lysine
hypusine = N6-[(R)-4-amino-2-hydroxybutyl]-L-lysine
spermidine = N-(3-aminopropyl)butane-1,4-diamine
Other name(s): spermidine:eIF5A-lysine 4-aminobutyltransferase (propane-1,3-diamine-forming)
Systematic name: [eIF5A-precursor]-lysine:spermidine 4-aminobutyltransferase (propane-1,3-diamine-forming)
Comments: The eukaryotic initiation factor eIF5A contains a hypusine residue that is essential for activity. This enzyme catalyses the first reaction of hypusine formation from one specific lysine residue of the eIF5A precursor. The reaction occurs in four steps: NAD+-dependent dehydrogenation of spermidine (1a), formation of an enzyme-imine intermediate by transfer of the 4-aminobutylidene group from dehydrospermidine to the active site lysine residue (Lys329 for the human enzyme; 1b), transfer of the same 4-aminobutylidene group from the enzyme intermediate to the e1F5A precursor (1c), reduction of the e1F5A-imine intermediate to form a deoxyhypusine residue (1d). Hence the overall reaction is transfer of a 4-aminobutyl group. For the plant enzyme, homospermidine can substitute for spermidine and putrescine can substitute for the lysine residue of the eIF5A precursor. Hypusine is formed from deoxyhypusine by the action of EC 1.14.99.29, deoxyhypusine monooxygenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 127069-31-2
References:
1.  Wolff, E.C., Park, M.H. and Folk, J.E. Cleavage of spermidine as the first step in deoxyhypusine synthesis. The role of NAD+. J. Biol. Chem. 265 (1990) 4793–4799. [PMID: 2108161]
2.  Wolff, E.C., Folk, J.E. and Park, M.H. Enzyme-substrate intermediate formation at lysine 329 of human deoxyhypusine synthase. J. Biol. Chem. 272 (1997) 15865–15871. [DOI] [PMID: 9188485]
3.  Chen, K.Y. and Liu, A.Y.C. Biochemistry and function of hypusine formation on eukaryotic initiation factor 5A. Biol. Signals 6 (1997) 105–109. [PMID: 9285092]
4.  Ober, D. and Hartmann, T. Deoxyhypusine synthase from tobacco. cDNA isolation, characterization, and bacterial expression of an enzyme with extended substrate specificity. J. Biol. Chem. 274 (1999) 32040–32047. [DOI] [PMID: 10542236]
5.  Ober, D. and Hartmann, T. Homospermidine synthase, the first pathway-specific enzyme of pyrrolizidine alkaloid biosynthesis, evolved from deoxyhypusine synthase. Proc. Natl. Acad. Sci. USA 96 (1999) 14777–14782. [DOI] [PMID: 10611289]
6.  Wolff, E.C. and Park, M.H. Identification of lysine350 of yeast deoxyhypusine synthase as the site of enzyme intermediate formation. Yeast 15 (1999) 43–50. [DOI] [PMID: 10028184]
7.  Wolff, E.C., Wolff, J. and Park, M.H. Deoxyhypusine synthase generates and uses bound NADH in a transient hydride transfer mechanism. J. Biol. Chem. 275 (2000) 9170–9177. [DOI] [PMID: 10734052]
8.  Joe, Y.A., Wolff, E.C. and Park, M.H. Cloning and expression of human deoxyhypusine synthase cDNA: structure-function studies with the recombinant enzyme and mutant proteins. J. Biol. Chem. 270 (1995) 22386–22392. [DOI] [PMID: 7673224]
9.  Tao, Y. and Chen, K.Y. Molecular cloning and functional expression of Neurospora deoxyhypusine synthase cDNA and identification of yeast deoxyhypusine synthase cDNA. J. Biol. Chem. 270 (1995) 23984–23987. [DOI] [PMID: 7592594]
[EC 2.5.1.46 provisional version created 1999 as EC 1.1.1.249 deleted 1999, revised and reinstated 2001 as EC 2.5.1.46]
 
 
EC 2.5.1.104     
Accepted name: N1-aminopropylagmatine synthase
Reaction: S-adenosyl 3-(methylsulfanyl)propylamine + agmatine = S-methyl-5′-thioadenosine + N1-(3-aminopropyl)agmatine
For diagram of spermidine biosynthesis, click here
Glossary: S-adenosyl 3-(methylsulfanyl)propylamine = (3-aminopropyl){[(2S,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methyl}methylsulfonium
Other name(s): agmatine/cadaverine aminopropyl transferase; ACAPT; PF0127 (gene name); triamine/agmatine aminopropyltransferase; SpeE (ambiguous); agmatine aminopropyltransferase; S-adenosyl 3-(methylthio)propylamine:agmatine 3-aminopropyltransferase
Systematic name: S-adenosyl 3-(methylsulfanyl)propylamine:agmatine 3-aminopropyltransferase
Comments: The enzyme is involved in the biosynthesis of spermidine from agmatine in some archaea and bacteria. The enzyme from the Gram-negative bacterium Thermus thermophilus accepts agmatine, spermidine and norspermidine with similar catalytic efficiency. The enzymes from the archaea Pyrococcus furiosus and Thermococcus kodakarensis prefer agmatine, but can utilize cadaverine, putrescine and propane-1,3-diamine with much lower catalytic efficiency. cf. EC 2.5.1.16, spermidine synthase, and EC 2.5.1.23, sym-norspermidine synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Ohnuma, M., Terui, Y., Tamakoshi, M., Mitome, H., Niitsu, M., Samejima, K., Kawashima, E. and Oshima, T. N1-aminopropylagmatine, a new polyamine produced as a key intermediate in polyamine biosynthesis of an extreme thermophile, Thermus thermophilus. J. Biol. Chem. 280 (2005) 30073–30082. [DOI] [PMID: 15983049]
2.  Cacciapuoti, G., Porcelli, M., Moretti, M.A., Sorrentino, F., Concilio, L., Zappia, V., Liu, Z.J., Tempel, W., Schubot, F., Rose, J.P., Wang, B.C., Brereton, P.S., Jenney, F.E. and Adams, M.W. The first agmatine/cadaverine aminopropyl transferase: biochemical and structural characterization of an enzyme involved in polyamine biosynthesis in the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 189 (2007) 6057–6067. [DOI] [PMID: 17545282]
3.  Morimoto, N., Fukuda, W., Nakajima, N., Masuda, T., Terui, Y., Kanai, T., Oshima, T., Imanaka, T. and Fujiwara, S. Dual biosynthesis pathway for longer-chain polyamines in the hyperthermophilic archaeon Thermococcus kodakarensis. J. Bacteriol. 192 (2010) 4991–5001. [DOI] [PMID: 20675472]
4.  Ohnuma, M., Ganbe, T., Terui, Y., Niitsu, M., Sato, T., Tanaka, N., Tamakoshi, M., Samejima, K., Kumasaka, T. and Oshima, T. Crystal structures and enzymatic properties of a triamine/agmatine aminopropyltransferase from Thermus thermophilus. J. Mol. Biol. 408 (2011) 971–986. [DOI] [PMID: 21458463]
[EC 2.5.1.104 created 2013]
 
 
EC 2.6.1.82     
Accepted name: putrescine—2-oxoglutarate transaminase
Reaction: putrescine + 2-oxoglutarate = 1-pyrroline + L-glutamate + H2O (overall reaction)
(1a) putrescine + 2-oxoglutarate = 4-aminobutanal + L-glutamate
(1b) 4-aminobutanal = 1-pyrroline + H2O (spontaneous)
For diagram of arginine catabolism, click here
Glossary: putrescine = butane-1,4-diamine
1-pyrroline = 3,4-dihydro-2H-pyrrole
Other name(s): putrescine-α-ketoglutarate transaminase; YgjG; putrescine:α-ketoglutarate aminotransferase; PAT (ambiguous); putrescine transaminase (ambiguous); putrescine aminotransferase (ambiguous); butane-1,4-diamine:2-oxoglutarate aminotransferase
Systematic name: putrescine:2-oxoglutarate aminotransferase
Comments: A pyridoxal 5′-phosphate protein [3]. The product, 4-aminobutanal, spontaneously cyclizes to form 1-pyrroline, which is a substrate for EC 1.2.1.19, aminobutyraldehyde dehydrogenase. Cadaverine and spermidine can also act as substrates [3]. Forms part of the arginine-catabolism pathway [2]. cf. EC 2.6.1.113, putrescine—pyruvate transaminase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 98982-73-1
References:
1.  Prieto-Santos, M.I., Martin-Checa, J., Balaña-Fouce, R. and Garrido-Pertierra, A. A pathway for putrescine catabolism in Escherichia coli. Biochim. Biophys. Acta 880 (1986) 242–244. [DOI] [PMID: 3510672]
2.  Samsonova, N.N., Smirnov, S.V., Novikova, A.E. and Ptitsyn, L.R. Identification of Escherichia coli K12 YdcW protein as a γ-aminobutyraldehyde dehydrogenase. FEBS Lett. 579 (2005) 4107–4112. [DOI] [PMID: 16023116]
3.  Samsonova, N.N., Smirnov, S.V., Altman, I.B. and Ptitsyn, L.R. Molecular cloning and characterization of Escherichia coli K12 ygjG gene. BMC Microbiol. 3 (2003) 2. [DOI] [PMID: 12617754]
[EC 2.6.1.82 created 2006, modified 2017]
 
 
EC 2.6.1.113     
Accepted name: putrescine—pyruvate transaminase
Reaction: putrescine + pyruvate = 4-aminobutanal + alanine
Other name(s): spuC (gene name)
Systematic name: putrescine:pyruvate aminotransferase
Comments: A pyridoxal 5′-phosphate protein. The enzyme, studied in the bacterium Pseudomonas aeruginosa, participates in a putrescine degradation pathway. cf. EC 2.6.1.82, putrescine—2-oxoglutarate aminotransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lu, C.D., Itoh, Y., Nakada, Y. and Jiang, Y. Functional analysis and regulation of the divergent spuABCDEFGH-spuI operons for polyamine uptake and utilization in Pseudomonas aeruginosa PAO1. J. Bacteriol. 184 (2002) 3765–3773. [DOI] [PMID: 12081945]
[EC 2.6.1.113 created 2017]
 
 
EC 2.7.2.2     
Accepted name: carbamate kinase
Reaction: ATP + NH3 + hydrogencarbonate = ADP + carbamoyl phosphate + H2O (overall reaction)
(1a) ATP + carbamate = ADP + carbamoyl phosphate
(1b) NH3 + hydrogencarbonate = carbamate + H2O (spontaneous)
For diagram of AMP catabolism, click here
Other name(s): CKase; carbamoyl phosphokinase; carbamyl phosphokinase
Systematic name: ATP:carbamate phosphotransferase
Comments: The enzyme catalyses the reversible conversion of carbamoyl phosphate and ADP to ATP and carbamate, which hydrolyses to ammonia and hydrogencarbonate. The physiological role of the enzyme is to generate ATP.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9026-69-1
References:
1.  Jones, M.E., Spector, L. and Lipmann, F. Carbamyl phosphate, the carbamyl donor in enzymatic citrulline synthesis. J. Am. Chem. Soc. 77 (1955) 819–820.
2.  Davis, R.H. Carbamyl phosphate synthesis in Neurospora crassa. I. Preliminary characterization of arginine-specific carbamyl phosphokinase. Biochim. Biophys. Acta 107 (1965) 44–53. [DOI] [PMID: 5857367]
3.  Glasziou, K.T. The metabolism of arginine in Serratia marcescens. II. Carbamyladenosine diphosphate phosphoferase. Aust. J. Biol. Sci. 9 (1956) 253–262.
4.  Bishop, S.H. and Grisolia, S. Crystalline carbamate kinase. Biochim. Biophys. Acta 118 (1966) 211–215. [PMID: 4959296]
5.  Srivenugopal, K.S. and Adiga, P.R. Enzymic conversion of agmatine to putrescine in Lathyrus sativus seedlings. Purification and properties of a multifunctional enzyme (putrescine synthase). J. Biol. Chem. 256 (1981) 9532–9541. [PMID: 6895223]
[EC 2.7.2.2 created 1961, modified 2018]
 
 
EC 3.5.1.53     
Accepted name: N-carbamoylputrescine amidase
Reaction: N-carbamoylputrescine + H2O = putrescine + CO2 + NH3
Glossary: putrescine = butane-1,4-diamine
Other name(s): carbamoylputrescine hydrolase; NCP
Systematic name: N-carbamoylputrescine amidohydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 85030-69-9
References:
1.  Yanagisawa, H. and Suzuki, Y. Preparation and properties of N-carbamylputrescine amidohydrolase from maize shoots. Phytochemistry 21 (1982) 2201–2203.
[EC 3.5.1.53 created 1986]
 
 
EC 3.5.1.62     
Accepted name: acetylputrescine deacetylase
Reaction: N-acetylputrescine + H2O = acetate + putrescine
Glossary: putrescine = butane-1,4-diamine
spermidine = N-(3-aminopropyl)butane-1,4-diamine
Systematic name: N-acetylputrescine acetylhydrolase
Comments: The enzyme from Micrococcus luteus also acts on N8-acetylspermidine and acetylcadaverine, but more slowly.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 103679-48-7
References:
1.  Suzuki, O., Ishikawa, Y., Miyazaki, K., Izu, K. and Matsumoto, T. Acetylputrescine deacetylase from Micrococcus luteus K-11. Biochim. Biophys. Acta 882 (1986) 140–142.
[EC 3.5.1.62 created 1989]
 
 
EC 3.5.1.63     
Accepted name: 4-acetamidobutyrate deacetylase
Reaction: 4-acetamidobutanoate + H2O = acetate + 4-aminobutanoate
Glossary: 4-aminobutanoate = γ-aminobutyrate = GABA
Systematic name: 4-acetamidobutanoate amidohydrolase
Comments: Also acts on N-acetyl-β-alanine and 5-acetamidopentanoate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 102347-82-0
References:
1.  Haywood, G.W. and Large, P.J. 4-Acetamidobutyrate deacetylase in the yeast Candida boidinii grown on putrescine or spermidine as sole nitrogen source and its probable role in polyamine catabolism. J. Gen. Microbiol. 132 (1986) 7–14.
[EC 3.5.1.63 created 1989]
 
 
EC 3.5.1.94     
Accepted name: γ-glutamyl-γ-aminobutyrate hydrolase
Reaction: 4-(γ-L-glutamylamino)butanoate + H2O = 4-aminobutanoate + L-glutamate
Glossary: 4-aminobutanoate = γ-aminobutyrate = GABA
Other name(s): γ-glutamyl-GABA hydrolase; PuuD; YcjL; 4-(γ-glutamylamino)butanoate amidohydrolase; 4-(L-γ-glutamylamino)butanoate amidohydrolase
Systematic name: 4-(γ-L-glutamylamino)butanoate amidohydrolase
Comments: Forms part of a putrescine-utilizing pathway in Escherichia coli, in which it has been hypothesized that putrescine is first glutamylated to form γ-glutamylputrescine, which is oxidized to 4-(γ-glutamylamino)butanal and then to 4-(γ-glutamylamino)butanoate. The enzyme can also catalyse the reactions of EC 3.5.1.35 (D-glutaminase) and EC 3.5.1.65 (theanine hydrolase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kurihara, S., Oda, S., Kato, K., Kim, H.G., Koyanagi, T., Kumagai, H. and Suzuki, H. A novel putrescine utilization pathway involves γ-glutamylated intermediates of Escherichia coli K-12. J. Biol. Chem. 280 (2005) 4602–4608. [DOI] [PMID: 15590624]
[EC 3.5.1.94 created 2006, modified 2011]
 
 
EC 3.5.3.11     
Accepted name: agmatinase
Reaction: agmatine + H2O = putrescine + urea
For diagram of arginine catabolism, click here
Glossary: agmatine = (4-aminobutyl)guanidine
putrescine = butane-1,4-diamine
Other name(s): agmatine ureohydrolase; SpeB
Systematic name: agmatine amidinohydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37289-16-0
References:
1.  Hirshfeld, I.N., Rosenfeld, H.J., Leifer, Z. and Maas, W.K. Isolation and characterization of a mutant of Escherichia coli blocked in the synthesis of putrescine. J. Bacteriol. 101 (1970) 725–730. [PMID: 4908780]
2.  Vicente, C. and Legaz, M.E. Preparation and properties of agmatine amidinohydrolase of Evernia prunastri. Physiol. Plant. 55 (1982) 335–339.
[EC 3.5.3.11 created 1972]
 
 
EC 3.5.3.12     
Accepted name: agmatine deiminase
Reaction: agmatine + H2O = N-carbamoylputrescine + NH3
Glossary: agmatine = (4-aminobutyl)guanidine
Other name(s): agmatine amidinohydrolase
Systematic name: agmatine iminohydrolase
Comments: The plant enzyme also catalyses the reactions of EC 2.1.3.3 (ornithine carbamoyltransferase), EC 2.1.3.6 (putrescine carbamoyltransferase) and EC 2.7.2.2 (carbamate kinase), thus functioning as a putrescine synthase, converting agmatine and ornithine into putrescine and citrulline, respectively.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37289-17-1
References:
1.  Smith, T.A. Agmatine iminohydrolase in maize. Phytochemistry 8 (1969) 2111–2117.
2.  Srivenugopal, K.S. and Adiga, P.R. Enzymic conversion of agmatine to putrescine in Lathyrus sativus seedlings. Purification and properties of a multifunctional enzyme (putrescine synthase). J. Biol. Chem. 256 (1981) 9532–9541. [PMID: 6895223]
[EC 3.5.3.12 created 1972]
 
 
EC 3.6.3.31      
Transferred entry: polyamine-transporting ATPase. Now EC 7.6.2.11, polyamine-transporting ATPase
[EC 3.6.3.31 created 2000, deleted 2018]
 
 
EC 4.1.1.17     
Accepted name: ornithine decarboxylase
Reaction: L-ornithine = putrescine + CO2
For diagram of spermine biosynthesis, click here and for diagram of arginine catabolism, click here
Glossary: putrescine = butane-1,4-diamine
Other name(s): SpeC; L-ornithine carboxy-lyase
Systematic name: L-ornithine carboxy-lyase (putrescine-forming)
Comments: A pyridoxal-phosphate protein.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9024-60-6
References:
1.  Ono, M., Inoue, H., Suzuki, F. and Takeda, Y. Studies on ornithine decarboxylase from the liver of thioacetamide-treated rats. Purification and some properties. Biochim. Biophys. Acta 284 (1972) 285–297. [DOI] [PMID: 5073764]
2.  Taylor, E.S. and Gale, E.F. Studies on bacterial amino-acid decarboxylases. 6. Codecarboxylase content and action of inhibitors. Biochem. J. 39 (1945) 52–58. [PMID: 16747854]
[EC 4.1.1.17 created 1961]
 
 
EC 4.1.1.116     
Accepted name: D-ornithine/D-lysine decarboxylase
Reaction: (1) D-ornithine = putrescine + CO2
(2) D-lysine = cadaverine + CO2
Glossary: cadaverine = pentane-1,5-diamine
putrescine = butane-1,4-diamine
Other name(s): dokD (gene name); DOKDC
Systematic name: D-ornithine/D-lysine carboxy-lyase
Comments: The enzyme, characterized from the bacterium Salmonella typhimurium LT2, is specific for D-ornithine and D-lysine. Requires pyridoxal 5′-phosphate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Phillips, R.S., Poteh, P., Miller, K.A. and Hoover, T.R. STM2360 encodes a D-ornithine/D-lysine decarboxylase in Salmonella enterica serovar typhimurium. Arch. Biochem. Biophys. 634 (2017) 83–87. [PMID: 29024617]
[EC 4.1.1.116 created 2019]
 
 
EC 6.3.1.11     
Accepted name: glutamate—putrescine ligase
Reaction: ATP + L-glutamate + putrescine = ADP + phosphate + γ-L-glutamylputrescine
Glossary: putrescine = butane-1,4-diamine
Other name(s): γ-glutamylputrescine synthetase; YcjK
Systematic name: L-glutamate:putrescine ligase (ADP-forming)
Comments: Forms part of a novel bacterial putrescine utilization pathway in Escherichia coli.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 914090-78-1
References:
1.  Kurihara, S., Oda, S., Kato, K., Kim, H.G., Koyanagi, T., Kumagai, H. and Suzuki, H. A novel putrescine utilization pathway involves γ-glutamylated intermediates of Escherichia coli K-12. J. Biol. Chem. 280 (2005) 4602–4608. [DOI] [PMID: 15590624]
[EC 6.3.1.11 created 2005]
 
 
EC 7.6.2.11     
Accepted name: ABC-type polyamine transporter
Reaction: ATP + H2O + polyamine-[polyamine-binding protein][side 1] = ADP + phosphate + polyamine[side 2] + [polyamine-binding protein][side 1]
Other name(s): polyamine ABC transporter; polyamine-transporting ATPase
Systematic name: ATP phosphohydrolase (ABC-type, polyamine-importing)
Comments: An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. Does not undergo phosphorylation during the transport process. A bacterial enzyme that imports putrescine and spermidine. In Escherichia coli the enzyme imports spermidine preferentially.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kashiwagi, K., Miyamoto, S., Nukui, E., Kobayashi, H. and Igarashi, K. Functions of potA and potD proteins in spermidine - preferential uptake system in Escherichia coli. J. Biol. Chem. 268 (1993) 19358–19363. [PMID: 8366082]
2.  Kuan, G., Dassa, E., Saurin, N., Hofnung, M. and Saier, M.H., Jr. Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. Res. Microbiol. 146 (1995) 271–278. [DOI] [PMID: 7569321]
3.  Saier, M.H., Jr. Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. Adv. Microb. Physiol. 40 (1998) 81–136. [PMID: 9889977]
[EC 7.6.2.11 created 2000 as EC 3.6.3.31, transferred 2018 to EC 7.6.2.11]
 
 
EC 7.6.2.16     
Accepted name: ABC-type putrescine transporter
Reaction: ATP + H2O + putrescine-[putrescine-binding protein][side 1] = ADP + phosphate + putrescine[side 2] + [putrescine-binding protein][side 1]
Other name(s): putrescine transporting ATPase; putrescine ABC transporter; potFGHI (gene names)
Systematic name: ATP phosphohydrolase (ABC-type, putrescine-importing)
Comments: ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. The enzyme from the bacterium Escherichia coli interacts with an extracytoplasmic substrate binding protein and mediates the high affinity uptake of putrescine. Differs in specificity from EC 7.6.2.11, ABC-type polyamine transporter.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Pistocchi, R., Kashiwagi, K., Miyamoto, S., Nukui, E., Sadakata, Y., Kobayashi, H. and Igarashi, K. Characteristics of the operon for a putrescine transport system that maps at 19 minutes on the Escherichia coli chromosome. J. Biol. Chem. 268 (1993) 146–152. [PMID: 8416922]
2.  Terui, Y., Saroj, S.D., Sakamoto, A., Yoshida, T., Higashi, K., Kurihara, S., Suzuki, H., Toida, T., Kashiwagi, K. and Igarashi, K. Properties of putrescine uptake by PotFGHI and PuuP and their physiological significance in Escherichia coli. Amino Acids 46 (2014) 661–670. [PMID: 23719730]
[EC 7.6.2.16 created 2019]
 
 


Data © 2001–2020 IUBMB
Web site © 2005–2020 Andrew McDonald