The Enzyme Database

Your query returned 4 entries.    printer_iconPrintable version

EC 1.1.3.7     
Accepted name: aryl-alcohol oxidase
Reaction: an aromatic primary alcohol + O2 = an aromatic aldehyde + H2O2
Other name(s): aryl alcohol oxidase; veratryl alcohol oxidase; arom. alcohol oxidase
Systematic name: aryl-alcohol:oxygen oxidoreductase
Comments: Oxidizes many primary alcohols containing an aromatic ring; best substrates are (2-naphthyl)methanol and 3-methoxybenzyl alcohol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-77-7
References:
1.  Farmer, V.C., Henderson, M.E.K. and Russell, J.D. Aromatic-alcohol-oxidase activity in the growth medium of Polystictus versicolor. Biochem. J. 74 (1960) 257–262. [PMID: 13821599]
[EC 1.1.3.7 created 1965]
 
 
EC 1.11.1.13     
Accepted name: manganese peroxidase
Reaction: 2 Mn(II) + 2 H+ + H2O2 = 2 Mn(III) + 2 H2O
Other name(s): peroxidase-M2; Mn-dependent (NADH-oxidizing) peroxidase
Systematic name: Mn(II):hydrogen-peroxide oxidoreductase
Comments: A hemoprotein. The enzyme from white rot basidiomycetes is involved in the oxidative degradation of lignin. The enzyme oxidizes a bound Mn2+ ion to Mn3+ in the presence of hydrogen peroxide. The product, Mn3+, is released from the active site in the presence of a chelator (mostly oxalate and malate) that stabilizes it against disproportionation to Mn2+ and insoluble Mn4+ [4]. The complexed Mn3+ ion can diffuse into the lignified cell wall, where it oxidizes phenolic components of lignin and other organic substrates [1]. It is inactive with veratryl alcohol or nonphenolic substrates.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 114995-15-2
References:
1.  Glenn, J.K., Akileswaran, L. and Gold, M.H. Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch. Biochem. Biophys. 251 (1986) 688–696. [DOI] [PMID: 3800395]
2.  Paszczynski, A., Huynh, V.-B. and Crawford, R. Comparison of ligninase-I and peroxidase-M2 from the white-rot fungus Phanerochaete chrysosporium. Arch. Biochem. Biophys. 244 (1986) 750–765. [DOI] [PMID: 3080953]
3.  Wariishi, H., Akileswaran, L. and Gold, M.H. Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: spectral characterization of the oxidized states and the catalytic cycle. Biochemistry 27 (1988) 5365–5370. [PMID: 3167051]
4.  Kuan, I.C. and Tien, M. Stimulation of Mn peroxidase activity: a possible role for oxalate in lignin biodegradation. Proc. Natl. Acad. Sci. USA 90 (1993) 1242–1246. [DOI] [PMID: 8433984]
[EC 1.11.1.13 created 1992]
 
 
EC 1.11.1.14     
Accepted name: lignin peroxidase
Reaction: (1) 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol + H2O2 = 3,4-dimethoxybenzaldehyde + 2-methoxyphenol + glycolaldehyde + H2O
(2) 2 (3,4-dimethoxyphenyl)methanol + H2O2 = 2 (3,4-dimethoxyphenyl)methanol radical + 2 H2O
Glossary: veratryl alcohol = (3,4-dimethoxyphenyl)methanol
veratraldehyde = 3,4-dimethoxybenzaldehyde
2-methoxyphenol = guaiacol
Other name(s): diarylpropane oxygenase; ligninase I; diarylpropane peroxidase; LiP; diarylpropane:oxygen,hydrogen-peroxide oxidoreductase (C-C-bond-cleaving); 1,2-bis(3,4-dimethoxyphenyl)propane-1,3-diol:hydrogen-peroxide oxidoreductase (incorrect); (3,4-dimethoxyphenyl)methanol:hydrogen-peroxide oxidoreductase
Systematic name: 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol:hydrogen-peroxide oxidoreductase
Comments: A hemoprotein, involved in the oxidative breakdown of lignin by white-rot basidiomycete fungi. The reaction involves an initial oxidation of the heme iron by hydrogen peroxide, forming compound I (FeIV=O radical cation) at the active site. A single one-electron reduction of compound I by an electron derived from a substrate molecule yields compound II (FeIV=O non-radical cation), followed by a second one-electron transfer that returns the enzyme to the ferric oxidation state. The electron transfer events convert the substrate molecule into a transient cation radical intermediate that fragments spontaneously. The enzyme can act on a wide range of aromatic compounds, including methoxybenzenes and nonphenolic β-O-4 linked arylglycerol β-aryl ethers, but cannot act directly on the lignin molecule, which is too large to fit into the active site. However larger lignin molecules can be degraded in the presence of veratryl alcohol. It has been suggested that the free radical that is formed when the enzyme acts on veratryl alcohol can diffuse into the lignified cell wall, where it oxidizes lignin and other organic substrates. In the presence of high concentration of hydrogen peroxide and lack of substrate, the enzyme forms a catalytically inactive form (compound III). This form can be rescued by interaction with two molecules of the free radical products. In the case of veratryl alcohol, such an interaction yields two molecules of veratryl aldehyde.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 93792-13-3
References:
1.  Kersten, P.J., Tien, M., Kalyanaraman, B. and Kirk, T.K. The ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzenes. J. Biol. Chem. 260 (1985) 2609–2612. [PMID: 2982828]
2.  Paszczynski, A., Huynh, V.-B. and Crawford, R. Comparison of ligninase-I and peroxidase-M2 from the white-rot fungus Phanerochaete chrysosporium. Arch. Biochem. Biophys. 244 (1986) 750–765. [DOI] [PMID: 3080953]
3.  Harvey, P.J., Schoemaker, H.E. and Palmer, J.M. Veratryl alcohol as a mediator and the role of radical cations in lignin biodegradation by Phanerochaete chrysosporium. FEBS Lett. 195 (1986) 242–246.
4.  Wariishi, H., Marquez, L., Dunford, H.B. and Gold, M.H. Lignin peroxidase compounds II and III. Spectral and kinetic characterization of reactions with peroxides. J. Biol. Chem. 265 (1990) 11137–11142. [PMID: 2162833]
5.  Cai, D.Y. and Tien, M. Characterization of the oxycomplex of lignin peroxidases from Phanerochaete chrysosporium: equilibrium and kinetics studies. Biochemistry 29 (1990) 2085–2091. [PMID: 2328240]
6.  Khindaria, A., Yamazaki, I. and Aust, S.D. Veratryl alcohol oxidation by lignin peroxidase. Biochemistry 34 (1995) 16860–16869. [PMID: 8527462]
7.  Khindaria, A., Yamazaki, I. and Aust, S.D. Stabilization of the veratryl alcohol cation radical by lignin peroxidase. Biochemistry 35 (1996) 6418–6424. [DOI] [PMID: 8639588]
8.  Khindaria, A., Nie, G. and Aust, S.D. Detection and characterization of the lignin peroxidase compound II-veratryl alcohol cation radical complex. Biochemistry 36 (1997) 14181–14185. [DOI] [PMID: 9369491]
9.  Doyle, W.A., Blodig, W., Veitch, N.C., Piontek, K. and Smith, A.T. Two substrate interaction sites in lignin peroxidase revealed by site-directed mutagenesis. Biochemistry 37 (1998) 15097–15105. [DOI] [PMID: 9790672]
10.  Pollegioni, L., Tonin, F. and Rosini, E. Lignin-degrading enzymes. FEBS J. 282 (2015) 1190–1213. [DOI] [PMID: 25649492]
[EC 1.11.1.14 created 1992, modified 2006, modified 2011, modified 2016]
 
 
EC 1.11.1.19     
Accepted name: dye decolorizing peroxidase
Reaction: Reactive Blue 5 + 2 H2O2 = phthalate + 2,2′-disulfonyl azobenzene + 3-[(4-amino-6-chloro-1,3,5-triazin-2-yl)amino]benzenesulfonate + 2 H2O
Glossary: Reactive Blue 5 = 1-amino-4-{[3-({4-chloro-6-[(3-sulfophenyl)amino]-1,3,5-triazin-2-yl}amino)-4-sulfophenyl]amino}-9,10-dihydro-9,10-dioxoanthracene-2-sulfonic acid
Other name(s): DyP; DyP-type peroxidase
Systematic name: Reactive-Blue-5:hydrogen-peroxide oxidoreductase
Comments: Heme proteins with proximal histidine secreted by basidiomycetous fungi and eubacteria. They are similar to EC 1.11.1.16 versatile peroxidase (oxidation of Reactive Black 5, phenols, veratryl alcohol), but differ from the latter in their ability to efficiently oxidize a number of recalcitrant anthraquinone dyes, and inability to oxidize Mn(II). The model substrate Reactive Blue 5 is converted with high efficiency via a so far unique mechanism that combines oxidative and hydrolytic steps and leads to the formation of phthalic acid. Bacterial TfuDyP catalyses sulfoxidation.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Kim, S.J. and Shoda, M. Purification and characterization of a novel peroxidase from Geotrichum candidum dec 1 involved in decolorization of dyes. Appl. Environ. Microbiol. 65 (1999) 1029–1035. [PMID: 10049859]
2.  Sugano, Y., Ishii, Y. and Shoda, M. Role of H164 in a unique dye-decolorizing heme peroxidase DyP. Biochem. Biophys. Res. Commun. 322 (2004) 126–132. [DOI] [PMID: 15313183]
3.  Zubieta, C., Joseph, R., Krishna, S.S., McMullan, D., Kapoor, M., Axelrod, H.L., Miller, M.D., Abdubek, P., Acosta, C., Astakhova, T., Carlton, D., Chiu, H.J., Clayton, T., Deller, M.C., Duan, L., Elias, Y., Elsliger, M.A., Feuerhelm, J., Grzechnik, S.K., Hale, J., Han, G.W., Jaroszewski, L., Jin, K.K., Klock, H.E., Knuth, M.W., Kozbial, P., Kumar, A., Marciano, D., Morse, A.T., Murphy, K.D., Nigoghossian, E., Okach, L., Oommachen, S., Reyes, R., Rife, C.L., Schimmel, P., Trout, C.V., van den Bedem, H., Weekes, D., White, A., Xu, Q., Hodgson, K.O., Wooley, J., Deacon, A.M., Godzik, A., Lesley, S.A. and Wilson, I.A. Identification and structural characterization of heme binding in a novel dye-decolorizing peroxidase, TyrA. Proteins 69 (2007) 234–243. [DOI] [PMID: 17654547]
4.  Sugano, Y., Matsushima, Y., Tsuchiya, K., Aoki, H., Hirai, M. and Shoda, M. Degradation pathway of an anthraquinone dye catalyzed by a unique peroxidase DyP from Thanatephorus cucumeris Dec 1. Biodegradation 20 (2009) 433–440. [DOI] [PMID: 19009358]
5.  Sugano, Y. DyP-type peroxidases comprise a novel heme peroxidase family. Cell. Mol. Life Sci. 66 (2009) 1387–1403. [DOI] [PMID: 19099183]
6.  Ogola, H.J., Kamiike, T., Hashimoto, N., Ashida, H., Ishikawa, T., Shibata, H. and Sawa, Y. Molecular characterization of a novel peroxidase from the cyanobacterium Anabaena sp. strain PCC 7120. Appl. Environ. Microbiol. 75 (2009) 7509–7518. [DOI] [PMID: 19801472]
7.  van Bloois, E., Torres Pazmino, D.E., Winter, R.T. and Fraaije, M.W. A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily. Appl. Microbiol. Biotechnol. 86 (2010) 1419–1430. [DOI] [PMID: 19967355]
8.  Liers, C., Bobeth, C., Pecyna, M., Ullrich, R. and Hofrichter, M. DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes. Appl. Microbiol. Biotechnol. 85 (2010) 1869–1879. [DOI] [PMID: 19756587]
9.  Hofrichter, M., Ullrich, R., Pecyna, M.J., Liers, C. and Lundell, T. New and classic families of secreted fungal heme peroxidases. Appl. Microbiol. Biotechnol. 87 (2010) 871–897. [DOI] [PMID: 20495915]
[EC 1.11.1.19 created 2011, modified 2015]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald