The Enzyme Database

Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB)

Proposed Changes to the Enzyme List

The entries below are proposed additions and amendments to the Enzyme Nomenclature list. They were prepared for the NC-IUBMB by Kristian Axelsen, Ron Caspi, Ture Damhus, Shinya Fushinobu, Julia Hauenstein, Antje Jäde, Ingrid Keseler, Masaaki Kotera, Andrew McDonald, Gerry Moss, Ida Schomburg and Keith Tipton. Comments and suggestions on these draft entries should be sent to Dr Andrew McDonald (Department of Biochemistry, Trinity College Dublin, Dublin 2, Ireland). The date on which an enzyme will be made official is appended after the EC number. To prevent confusion please do not quote new EC numbers until they are incorporated into the main list.

An asterisk before 'EC' indicates that this is an amendment to an existing enzyme rather than a new enzyme entry.


Contents

EC 1.1.1.364 dTDP-4-dehydro-6-deoxy-α-D-gulose 4-ketoreductase
EC 1.1.1.365 D-galacturonate reductase
EC 1.1.1.366 L-idonate 5-dehydrogenase (NAD+)
EC 1.1.1.367 UDP-2-acetamido-2,6-β-L-arabino-hexul-4-ose reductase
EC 1.1.1.368 6-hydroxycyclohex-1-ene-1-carbonyl-CoA dehydrogenase
EC 1.1.1.369 D-chiro-inositol 1-dehydrogenase
EC 1.1.1.370 scyllo-inositol 2-dehydrogenase (NAD+)
EC 1.1.1.371 scyllo-inositol 2-dehydrogenase (NADP+)
EC 1.1.5.10 D-2-hydroxyacid dehydrogenase (quinone)
EC 1.1.98.4 F420H2:quinone oxidoreductase
EC 1.1.98.5 secondary-alcohol dehydrogenase (coenzyme-F420)
*EC 1.1.99.2 L-2-hydroxyglutarate dehydrogenase
*EC 1.1.99.6 D-lactate dehydrogenase (acceptor)
EC 1.1.99.39 D-2-hydroxyglutarate dehydrogenase
EC 1.2.1.89 D-glyceraldehyde dehydrogenase (NADP+)
*EC 1.3.1.74 2-alkenal reductase [NAD(P)+]
EC 1.3.1.105 2-methylene-furan-3-one reductase
EC 1.3.1.106 cobalt-precorrin-6A reductase
*EC 1.3.5.1 succinate dehydrogenase
*EC 1.3.5.4 fumarate reductase (quinol)
EC 1.3.8.10 cyclohex-1-ene-1-carbonyl-CoA dehydrogenase
EC 1.3.8.11 cyclohexane-1-carbonyl-CoA dehydrogenase (electron-transfer flavoprotein)
EC 1.3.98.2 fumarate reductase (CoM/CoB)
EC 1.3.99.1 deleted
EC 1.3.99.35 chlorophyllide a reductase
EC 1.5.3.22 coenzyme F420H2 oxidase
EC 1.5.7.2 coenzyme F420 oxidoreductase (ferredoxin)
EC 1.5 Acting on the CH-NH group of donors
EC 1.5.98 With other, known, physiological acceptors
EC 1.5.98.1 methylenetetrahydromethanopterin dehydrogenase
EC 1.5.98.2 5,10-methylenetetrahydromethanopterin reductase
EC 1.5.99.9 transferred
EC 1.5.99.11 transferred
EC 1.6.3.5 renalase
*EC 1.10.2.2 quinol—cytochrome-c reductase
*EC 1.10.3.11 ubiquinol oxidase (non-electrogenic)
EC 1.10.3.14 ubiquinol oxidase (electrogenic, non H+-transporting)
EC 1.13.11.77 oleate 10S-lipoxygenase
*EC 1.14.11.37 kanamycin B dioxygenase
EC 1.14.13.60 transferred
*EC 1.14.13.100 25/26-hydroxycholesterol 7α-hydroxylase
EC 1.14.13.183 dammarenediol 12-hydroxylase
EC 1.14.13.184 protopanaxadiol 6-hydroxylase
EC 1.14.13.185 pikromycin synthase
EC 1.14.13.186 20-oxo-5-O-mycaminosyltylactone 23-monooxygenase
EC 1.14.13.187 L-evernosamine nitrososynthase
EC 1.14.13.188 6-deoxyerythronolide B hydroxylase
*EC 1.16.1.7 ferric-chelate reductase (NADH)
*EC 1.16.1.9 ferric-chelate reductase (NADPH)
EC 1.16.1.10 ferric-chelate reductase [NAD(P)H]
EC 1.21.99.2 cyclic dehypoxanthinyl futalosine synthase
*EC 2.1.1.57 methyltransferase cap1
*EC 2.1.1.196 cobalt-precorrin-6B (C15)-methyltransferase [decarboxylating]
*EC 2.1.1.222 2-polyprenyl-6-hydroxyphenol methylase
*EC 2.1.1.267 flavonoid 3′,5′-methyltransferase
*EC 2.1.1.282 tRNAPhe 7-[(3-amino-3-carboxypropyl)-4-demethylwyosine37-N4]-methyltransferase
EC 2.1.1.289 cobalt-precorrin-7 (C5)-methyltransferase
EC 2.1.1.290 tRNAPhe [7-(3-amino-3-carboxypropyl)wyosine37-O]-methyltransferase
EC 2.1.1.291 (R,S)-reticuline 7-O-methyltransferase
EC 2.1.1.292 carminomycin 4-O-methyltransferase
EC 2.1.1.293 6-hydroxytryprostatin B O-methyltransferase
EC 2.1.1.294 3-O-phospho-polymannosyl GlcNAc-diphospho-ditrans,octacis-undecaprenol 3-phospho-methyltransferase
EC 2.1.1.295 2-methyl-6-phytyl-1,4-hydroquinone methyltransferase
EC 2.1.1.296 methyltransferase cap2
EC 2.1.1.297 peptide chain release factor N5-glutamine methyltransferase
EC 2.1.1.298 ribosomal protein uL3 N5-glutamine methyltransferase
EC 2.1.1.299 protein N-terminal monomethyltransferase
EC 2.1.1.300 pavine N-methyltransferase
*EC 2.3.1.86 fatty-acyl-CoA synthase system
EC 2.3.1.230 2-heptyl-4(1H)-quinolone synthase
EC 2.3.1.231 tRNAPhe {7-[3-amino-3-(methoxycarbonyl)propyl]wyosine37-N}-methoxycarbonyltransferase
EC 2.3.1.232 methanol O-anthraniloyltransferase
*EC 2.3.3.1 citrate (Si)-synthase
EC 2.3.3.16 citrate synthase (unknown stereospecificity)
*EC 2.4.1.161 oligosaccharide 4-α-D-glucosyltransferase
*EC 2.4.1.277 10-deoxymethynolide desosaminyltransferase
*EC 2.4.1.278 3-α-mycarosylerythronolide B desosaminyl transferase
EC 2.4.1.310 vancomycin aglycone glucosyltransferase
EC 2.4.1.311 chloroorienticin B synthase
EC 2.4.1.312 protein O-mannose β-1,4-N-acetylglucosaminyltransferase
EC 2.4.1.313 protein O-mannose β-1,3-N-acetylgalactosaminyltransferase
EC 2.4.1.314 ginsenoside Rd glucosyltransferase
EC 2.4.1.315 diglucosyl diacylglycerol synthase (1,6-linking)
EC 2.4.1.316 tylactone mycaminosyltransferase
EC 2.4.1.317 O-mycaminosyltylonolide 6-deoxyallosyltransferase
EC 2.4.1.318 demethyllactenocin mycarosyltransferase
EC 2.4.1.319 β-1,4-mannooligosaccharide phosphorylase
EC 2.4.1.320 1,4-β-mannosyl-N-acetylglucosamine phosphorylase
EC 2.4.1.321 cellobionic acid phosphorylase
EC 2.4.1.322 devancosaminyl-vancomycin vancosaminetransferase
EC 2.4.1.323 7-deoxyloganetic acid glucosyltransferase
EC 2.4.1.324 7-deoxyloganetin glucosyltransferase
*EC 2.4.2.35 flavonol-3-O-glycoside xylosyltransferase
EC 2.4.2.55 nicotinate D-ribonucleotide:phenol phospho-D-ribosyltransferase
EC 2.4.2.56 kaempferol 3-O-xylosyltransferase
EC 2.4.2.57 AMP phosphorylase
EC 2.4.99.20 2′-phospho-ADP-ribosyl cyclase/2′-phospho-cyclic-ADP-ribose transferase
EC 2.5.1.112 adenylate dimethylallyltransferase (ADP/ATP-dependent)
EC 2.5.1.113 [CysO sulfur-carrier protein]-thiocarboxylate-dependent cysteine synthase
EC 2.5.1.114 tRNAPhe (4-demethylwyosine37-C7) aminocarboxypropyltransferase
EC 2.5.1.115 homogentisate phytyltransferase
EC 2.5.1.116 homogentisate geranylgeranyltransferase
EC 2.5.1.117 homogentisate solanesyltransferase
EC 2.5.1.118 β-(isoxazolin-5-on-2-yl)-L-alanine synthase
EC 2.5.1.119 β-(isoxazolin-5-on-4-yl)-L-alanine synthase
EC 2.5.1.120 aminodeoxyfutalosine synthase
EC 2.6.1.103 (S)-3,5-dihydroxyphenylglycine transaminase
EC 2.6.1.104 3-dehydro-glucose-6-phosphate—glutamate transaminase
EC 2.6.1.105 lysine—8-amino-7-oxononanoate transaminase
EC 2.6.1.106 dTDP-3-amino-3,4,6-trideoxy-α-D-glucose transaminase
EC 2.6.1.107 β-methylphenylalanine transaminase
EC 2.6.99.4 N6-L-threonylcarbamoyladenine synthase
*EC 2.7.1.107 diacylglycerol kinase (ATP)
*EC 2.7.1.174 diacylglycerol kinase (CTP)
EC 2.7.1.180 FAD:protein FMN transferase
EC 2.7.1.181 polymannosyl GlcNAc-diphospho-ditrans,octacis-undecaprenol kinase
EC 2.7.1.182 phytol kinase
*EC 2.7.4.21 inositol-hexakisphosphate 5-kinase
*EC 2.7.4.24 diphosphoinositol-pentakisphosphate 1-kinase
EC 2.8.2.36 desulfo-A47934 sulfotransferase
EC 2.8.3.7 deleted
EC 2.8.3.19 CoA:oxalate CoA-transferase
EC 2.8.3.20 succinyl-CoA—D-citramalate CoA-transferase
EC 2.8.3.21 L-carnitine CoA-transferase
EC 2.8.3.22 succinyl-CoA—L-malate CoA-transferase
EC 2.8.4.3 tRNA-2-methylthio-N6-dimethylallyladenosine synthase
EC 2.8.4.4 [ribosomal protein uS12] (aspartate89-C3)-methylthiotransferase
EC 2.8.4.5 tRNA (N6-L-threonylcarbamoyladenosine37-C2)-methylthiotransferase
EC 3.1.2.30 (3S)-malyl-CoA thioesterase
*EC 3.1.3.16 protein-serine/threonine phosphatase
EC 3.1.3.93 L-galactose 1-phosphate phosphatase
EC 3.1.3.94 D-galactose 1-phosphate phosphatase
EC 3.1.3.95 phosphatidylinositol-3,5-bisphosphate 3-phosphatase
*EC 3.1.21.2 deoxyribonuclease IV
EC 3.1.21.8 T4 deoxyribonuclease II
EC 3.1.21.9 T4 deoxyribonuclease IV
EC 3.1.27.9 transferred
EC 3.2.1.187 (Ara-f)3-Hyp β-L-arabinobiosidase
EC 3.2.1.188 avenacosidase
EC 3.2.1.189 dioscin glycosidase (diosgenin-forming)
EC 3.2.1.190 dioscin glycosidase (3-O-β-D-Glc-diosgenin-forming)
EC 3.2.1.191 ginsenosidase type III
EC 3.2.1.192 ginsenoside Rb1 β-glucosidase
EC 3.2.1.193 ginsenosidase type I
EC 3.2.1.194 ginsenosidase type IV
EC 3.2.1.195 20-O-multi-glycoside ginsenosidase
*EC 3.2.2.5 NAD+ glycohydrolase
*EC 3.2.2.6 ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase
EC 3.2.2.30 aminodeoxyfutalosine nucleosidase
EC 3.3.2.13 chorismatase
EC 3.4.21.121 Lys-Lys/Arg-Xaa endopeptidase
*EC 3.5.1.14 N-acyl-aliphatic-L-amino acid amidohydrolase
EC 3.5.1.114 N-acyl-aromatic-L-amino acid amidohydrolase
EC 3.5.1.115 mycothiol S-conjugate amidase
EC 3.5.1.116 ureidoglycolate amidohydrolase
EC 3.5.3.19 transferred
EC 3.5.3.26 (S)-ureidoglycine aminohydrolase
EC 3.5.4.40 aminodeoxyfutalosine deaminase
EC 3.5.99.10 2-iminobutanoate/2-iminopropanoate deaminase
EC 3.6.1.66 XTP/dITP diphosphatase
EC 3.7.1.21 6-oxocyclohex-1-ene-1-carbonyl-CoA hydratase
EC 3.7.1.22 3D-(3,5/4)-trihydroxycyclohexane-1,2-dione acylhydrolase (ring-opening)
EC 4.1.1.97 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase
*EC 4.1.2.14 2-dehydro-3-deoxy-phosphogluconate aldolase
*EC 4.1.2.21 2-dehydro-3-deoxy-6-phosphogalactonate aldolase
EC 4.1.2.55 2-dehydro-3-deoxy-phosphogluconate/2-dehydro-3-deoxy-6-phosphogalactonate aldolase
EC 4.1.2.56 2-amino-4,5-dihydroxy-6-oxo-7-(phosphooxy)heptanoate synthase
*EC 4.1.3.24 malyl-CoA lyase
*EC 4.1.3.25 (S)-citramalyl-CoA lyase
EC 4.1.3.45 3-hydroxybenzoate synthase
EC 4.1.3.46 (R)-citramalyl-CoA lyase
EC 4.2.1.89 deleted
EC 4.2.1.147 5,6,7,8-tetrahydromethanopterin hydro-lyase
EC 4.2.1.148 2-methylfumaryl-CoA hydratase
EC 4.2.1.149 crotonobetainyl-CoA hydratase
EC 4.2.1.150 short-chain-enoyl-CoA hydratase
EC 4.2.1.151 chorismate dehydratase
*EC 4.3.1.17 L-serine ammonia-lyase
*EC 4.3.1.19 threonine ammonia-lyase
EC 4.3.1.29 D-glucosaminate-6-phosphate ammonia-lyase
EC 4.3.1.30 dTDP-4-amino-4,6-dideoxy-D-glucose ammonia-lyase
*EC 4.3.2.3 ureidoglycolate lyase
EC 4.6.1.16 tRNA-intron lyase
EC 5.1.3.27 dTDP-4-dehydro-6-deoxy-D-glucose 3-epimerase
EC 5.1.3.28 UDP-N-acetyl-L-fucosamine synthase
*EC 5.3.1.3 D-arabinose isomerase
EC 5.3.1.30 5-deoxy-glucuronate isomerase
EC 5.3.99.11 2-keto-myo-inositol isomerase
EC 5.4.1.2 transferred
EC 5.4.1.3 2-methylfumaryl-CoA isomerase
EC 5.4.99.60 cobalt-precorrin-8 methylmutase
EC 5.4.99.61 precorrin-8X methylmutase
EC 5.5.1.24 tocopherol cyclase
EC 6.2.1.40 4-hydroxybutyrate—CoA ligase (AMP-forming)
EC 6.3.1.17 β-citrylglutamate synthase
EC 6.3.2.41 N-acetylaspartylglutamate synthase
EC 6.3.2.42 N-acetylaspartylglutamylglutamate synthase


EC 1.1.1.364
Accepted name: dTDP-4-dehydro-6-deoxy-α-D-gulose 4-ketoreductase
Reaction: dTDP-6-deoxy-α-D-allose + NAD(P)+ = dTDP-4-dehydro-6-deoxy-α-D-gulose + NAD(P)H + H+
For diagram of dTDP-6-deoxy-α-D-allose biosynthesis, click here and for diagram of dTDP-6-deoxyhexose biosynthesis, click here
Glossary: dTDP-4-dehydro-6-deoxy-α-D-gulose = dTDP-4-dehydro-6-deoxy-α-D-allose
Other name(s): dTDP-4-dehydro-6-deoxygulose reductase; tylD (gene name); gerKI (gene name); chmD (gene name); mydI (gene name)
Systematic name: dTDP-6-deoxy-α-D-allose:NAD(P)+ oxidoreductase
Comments: The enzyme forms an activated deoxy-α-D-allose, which is converted to mycinose after attachment to the aglycones of several macrolide antibiotics, including tylosin, chalcomycin, dihydrochalcomycin, and mycinamicin II.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Bate, N. and Cundliffe, E. The mycinose-biosynthetic genes of Streptomyces fradiae, producer of tylosin. J Ind Microbiol Biotechnol 23 (1999) 118–122. [PMID: 10510490]
2.  Anzai, Y., Saito, N., Tanaka, M., Kinoshita, K., Koyama, Y. and Kato, F. Organization of the biosynthetic gene cluster for the polyketide macrolide mycinamicin in Micromonospora griseorubida. FEMS Microbiol. Lett. 218 (2003) 135–141. [DOI] [PMID: 12583909]
3.  Thuy, T.T., Liou, K., Oh, T.J., Kim, D.H., Nam, D.H., Yoo, J.C. and Sohng, J.K. Biosynthesis of dTDP-6-deoxy-β-D-allose, biochemical characterization of dTDP-4-keto-6-deoxyglucose reductase (GerKI) from Streptomyces sp. KCTC 0041BP. Glycobiology 17 (2007) 119–126. [DOI] [PMID: 17053005]
4.  Kubiak, R.L., Phillips, R.K., Zmudka, M.W., Ahn, M.R., Maka, E.M., Pyeatt, G.L., Roggensack, S.J. and Holden, H.M. Structural and functional studies on a 3′-epimerase involved in the biosynthesis of dTDP-6-deoxy-D-allose. Biochemistry 51 (2012) 9375–9383. [DOI] [PMID: 23116432]
[EC 1.1.1.364 created 2013]
 
 
EC 1.1.1.365
Accepted name: D-galacturonate reductase
Reaction: L-galactonate + NADP+ = D-galacturonate + NADPH + H+
Other name(s): GalUR; gar1 (gene name)
Systematic name: L-galactonate:NADP+ oxidoreductase
Comments: The enzyme from plants is involved in ascorbic acid (vitamin C) biosynthesis [1,2]. The enzyme from the fungus Trichoderma reesei (Hypocrea jecorina) is involved in a eukaryotic degradation pathway of D-galacturonate. It is also active with D-glucuronate and glyceraldehyde [3]. Neither enzyme shows any activity with NADH.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Isherwood, F.A. and Mapson, L.W. Biological synthesis of ascorbic acid: the conversion of derivatives of D-galacturonic acid into L-ascorbic acid by plant extracts. Biochem. J. 64 (1956) 13–22. [PMID: 13363799]
2.  Agius, F., Gonzalez-Lamothe, R., Caballero, J.L., Munoz-Blanco, J., Botella, M.A. and Valpuesta, V. Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nat. Biotechnol. 21 (2003) 177–181. [DOI] [PMID: 12524550]
3.  Kuorelahti, S., Kalkkinen, N., Penttila, M., Londesborough, J. and Richard, P. Identification in the mold Hypocrea jecorina of the first fungal D-galacturonic acid reductase. Biochemistry 44 (2005) 11234–11240. [DOI] [PMID: 16101307]
4.  Martens-Uzunova, E.S. and Schaap, P.J. An evolutionary conserved D-galacturonic acid metabolic pathway operates across filamentous fungi capable of pectin degradation. Fungal Genet. Biol. 45 (2008) 1449–1457. [DOI] [PMID: 18768163]
[EC 1.1.1.365 created 2013]
 
 
EC 1.1.1.366
Accepted name: L-idonate 5-dehydrogenase (NAD+)
Reaction: L-idonate + NAD+ = 5-dehydro-D-gluconate + NADH + H+
Systematic name: L-idonate:NAD+ oxidoreductase
Comments: Involved in the catabolism of ascorbate (vitamin C) to tartrate. No activity is observed with NADP+ (cf. EC 1.1.1.264, L-idonate 5-dehydrogenase).
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  DeBolt, S., Cook, D.R. and Ford, C.M. L-Tartaric acid synthesis from vitamin C in higher plants. Proc. Natl. Acad. Sci. USA 103 (2006) 5608–5613. [DOI] [PMID: 16567629]
[EC 1.1.1.366 created 2013]
 
 
EC 1.1.1.367
Accepted name: UDP-2-acetamido-2,6-β-L-arabino-hexul-4-ose reductase
Reaction: UDP-2-acetamido-2,6-dideoxy-β-L-talose + NAD(P)+ = UDP-2-acetamido-2,6-β-L-arabino-hexul-4-ose + NAD(P)H + H+
For diagram of UDP-N-acetyl-β-L-fucosamine biosynthesis, click here
Glossary: UDP-2-acetamido-2,6-dideoxy-β-L-talose = UDP-N-acetyl-β-L-pneumosamine
Other name(s): WbjC; Cap5F
Systematic name: UDP-2-acetamido-2,6-dideoxy-L-talose:NADP+ oxidoreductase
Comments: Part of the biosynthesis of UDP-N-acetyl-L-fucosamine. Isolated from the bacteria Pseudomonas aeruginosa and Staphylococcus aureus.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Kneidinger, B., O'Riordan, K., Li, J., Brisson, J.R., Lee, J.C. and Lam, J.S. Three highly conserved proteins catalyze the conversion of UDP-N-acetyl-D-glucosamine to precursors for the biosynthesis of O antigen in Pseudomonas aeruginosa O11 and capsule in Staphylococcus aureus type 5. Implications for the UDP-N-acetyl-L-fucosamine biosynthetic pathway. J. Biol. Chem. 278 (2003) 3615–3627. [DOI] [PMID: 12464616]
2.  Mulrooney, E.F., Poon, K.K., McNally, D.J., Brisson, J.R. and Lam, J.S. Biosynthesis of UDP-N-acetyl-L-fucosamine, a precursor to the biosynthesis of lipopolysaccharide in Pseudomonas aeruginosa serotype O11. J. Biol. Chem. 280 (2005) 19535–19542. [DOI] [PMID: 15778500]
3.  Miyafusa, T., Tanaka, Y., Kuroda, M., Ohta, T. and Tsumoto, K. Expression, purification, crystallization and preliminary diffraction analysis of CapF, a capsular polysaccharide-synthesis enzyme from Staphylococcus aureus. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64 (2008) 512–515. [DOI] [PMID: 18540063]
[EC 1.1.1.367 created 2014]
 
 
EC 1.1.1.368
Accepted name: 6-hydroxycyclohex-1-ene-1-carbonyl-CoA dehydrogenase
Reaction: 6-hydroxycyclohex-1-ene-1-carbonyl-CoA + NAD+ = 6-oxocyclohex-1-ene-1-carbonyl-CoA + NADH + H+
For diagram of benzoyl-CoA catabolism, click here
Systematic name: 6-hydroxycyclohex-1-ene-1-carbonyl-CoA:NAD+ 6-oxidoreductase
Comments: The enzyme participates in the central benzoyl-CoA degradation pathway of some anaerobic bacteria such as Thauera aromatica.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Laempe, D., Jahn, M. and Fuchs, G. 6-Hydroxycyclohex-1-ene-1-carbonyl-CoA dehydrogenase and 6-oxocyclohex-1-ene-1-carbonyl-CoA hydrolase, enzymes of the benzoyl-CoA pathway of anaerobic aromatic metabolism in the denitrifying bacterium Thauera aromatica. Eur. J. Biochem. 263 (1999) 420–429. [DOI] [PMID: 10406950]
[EC 1.1.1.368 created 2014]
 
 
EC 1.1.1.369
Accepted name: D-chiro-inositol 1-dehydrogenase
Reaction: 1D-chiro-inositol + NAD+ = 2D-2,3,5/4,6-pentahydroxycyclohexanone + NADH + H+
For diagram of inositol catabolism, click here
Glossary: 1D-chiro-inositol = 1,2,4/3,5,6-cyclohexane-1,2,3,4,5,6-hexol
Other name(s): DCI 1-dehydrogenase; IolG
Systematic name: 1D-chiro-inositol:NAD+ 1-oxidoreductase
Comments: The enzyme, found in the bacterium Bacillus subtilis, also catalyses the reaction of EC 1.1.1.18, inositol 2-dehydrogenase, and can also use D-glucose and D-xylose. It shows trace activity with D-ribose and D-fructose [1]. It is part of a myo-inositol/D-chiro-inositol degradation pathway leading to acetyl-CoA.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Ramaley, R., Fujita, Y. and Freese, E. Purification and properties of Bacillus subtilis inositol dehydrogenase. J. Biol. Chem. 254 (1979) 7684–7690. [PMID: 112095]
2.  Yoshida, K., Yamaguchi, M., Morinaga, T., Ikeuchi, M., Kinehara, M. and Ashida, H. Genetic modification of Bacillus subtilis for production of D-chiro-inositol, an investigational drug candidate for treatment of type 2 diabetes and polycystic ovary syndrome. Appl. Environ. Microbiol. 72 (2006) 1310–1315. [DOI] [PMID: 16461681]
[EC 1.1.1.369 created 2014]
 
 
EC 1.1.1.370
Accepted name: scyllo-inositol 2-dehydrogenase (NAD+)
Reaction: scyllo-inositol + NAD+ = 2,4,6/3,5-pentahydroxycyclohexanone + NADH + H+
For diagram of inositol catabolism, click here
Glossary: 2,4,6/3,5-pentahydroxycyclohexanone = (2R,3S,4s,5R,6S)-2,3,4,5,6-pentahydroxycyclohexanone = scyllo-inosose
Other name(s): iolX (gene name)
Systematic name: scyllo-inositol:NAD+ 2-oxidoreductase
Comments: The enzyme, found in the bacterium Bacillus subtilis, has no activity with NADP+ [cf. EC 1.1.1.371, scyllo-inositol 2-dehydrogenase (NADP+)]. It is part of a scyllo-inositol degradation pathway leading to acetyl-CoA.
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Morinaga, T., Ashida, H. and Yoshida, K. Identification of two scyllo-inositol dehydrogenases in Bacillus subtilis. Microbiology 156 (2010) 1538–1546. [DOI] [PMID: 20133360]
[EC 1.1.1.370 created 2014]
 
 
EC 1.1.1.371
Accepted name: scyllo-inositol 2-dehydrogenase (NADP+)
Reaction: scyllo-inositol + NADP+ = 2,4,6/3,5-pentahydroxycyclohexanone + NADPH + H+
For diagram of inositol catabolism, click here
Glossary: 2,4,6/3,5-pentahydroxycyclohexanone = (2R,3S,4s,5R,6S)-2,3,4,5,6-pentahydroxycyclohexanone = scyllo-inosose
Other name(s): iolW (gene name)
Systematic name: scyllo-inositol:NADP+ 2-oxidoreductase
Comments: The enzyme, found in the bacterium Bacillus subtilis, has no activity with NAD+ [cf. EC 1.1.1.370, scyllo-inositol 2-dehydrogenase (NAD+)].
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Morinaga, T., Ashida, H. and Yoshida, K. Identification of two scyllo-inositol dehydrogenases in Bacillus subtilis. Microbiology 156 (2010) 1538–1546. [DOI] [PMID: 20133360]
[EC 1.1.1.371 created 2014]
 
 
EC 1.1.5.10
Accepted name: D-2-hydroxyacid dehydrogenase (quinone)
Reaction: (R)-2-hydroxyacid + a quinone = 2-oxoacid + a quinol
Other name(s): (R)-2-hydroxy acid dehydrogenase; (R)-2-hydroxy-acid:(acceptor) 2-oxidoreductase; D-lactate dehydrogenase (ambiguous)
Systematic name: (R)-2-hydroxyacid:quinone oxidoreductase
Comments: The enzyme from mammalian kidney contains one mole of FAD per mole of enzyme.(R)-lactate, (R)-malate and meso-tartrate are good substrates. Ubiquinone-1 and the dye 2,6-dichloroindophenol can act as acceptors; NAD+ and NADP+ are not acceptors.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Tubbs, P.K. and Greville, G.D. Dehydrogenation of D-lactate by a soluble enzyme from kidney mitochondria. Biochim. Biophys. Acta 34 (1959) 290–291. [DOI] [PMID: 13839714]
2.  Tubbs, P.K. and Greville, G.D. The oxidation of D-α-hydroxy acids in animal tissues. Biochem. J. 81 (1961) 104–114. [PMID: 13922962]
3.  Cammack, R. Assay, purification and properties of mammalian D-2-hydroxy acid dehydrogenase. Biochem. J. 115 (1969) 55–64. [PMID: 5359443]
4.  Cammack, R. D-2-hydroxy acid dehydrogenase from animal tissue. Methods Enzymol. 41 (1975) 323–329. [DOI] [PMID: 236454]
[EC 1.1.5.10 created 2014]
 
 
EC 1.1.98.4
Accepted name: F420H2:quinone oxidoreductase
Reaction: a quinol + oxidized coenzyme F420 = a quinone + reduced coenzyme F420
Glossary: oxidized coenzyme F420 = N-(N-{O-[5-(8-hydroxy-2,4-dioxo-2,3,4,10-tetrahydropyrimido[4,5-b]quinolin-10-yl)-5-deoxy-L-ribityl-1-phospho]-(S)-lactyl}-γ-L-glutamyl)-L-glutamate
Other name(s): FqoF protein
Systematic name: quinol:coenzyme-F420 oxidoreductase
Comments: An enzyme complex that contains FAD and iron-sulfur clusters. The enzyme has been described in the archaea Methanosarcina mazei and Archaeoglobus fulgidus.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Bruggemann, H., Falinski, F. and Deppenmeier, U. Structure of the F420H2:quinone oxidoreductase of Archaeoglobus fulgidus identification and overproduction of the F420H2-oxidizing subunit. Eur. J. Biochem. 267 (2000) 5810–5814. [DOI] [PMID: 10971593]
2.  Kunow, J., Linder, D., Stetter, K.O. and Thauer, R.K. F420H2: quinone oxidoreductase from Archaeoglobus fulgidus. Characterization of a membrane-bound multisubunit complex containing FAD and iron-sulfur clusters. Eur. J. Biochem. 223 (1994) 503–511. [DOI] [PMID: 8055920]
3.  Abken, H.-J. and Deppenmeier, U. Purification and properties of an F420H2 dehydrogenase from Methanosarcina mazei Gö1. FEMS Microbiol. Lett. 154 (1997) 231–237.
[EC 1.1.98.4 created 2013]
 
 
EC 1.1.98.5
Accepted name: secondary-alcohol dehydrogenase (coenzyme-F420)
Reaction: R-CHOH-R′ + oxidized coenzyme F420 = R-CO-R′ + reduced coenzyme F420
Glossary: oxidized coenzyme F420 = N-(N-{O-[5-(8-hydroxy-2,4-dioxo-2,3,4,10-tetrahydropyrimido[4,5-b]quinolin-10-yl)-5-deoxy-L-ribityl-1-phospho]-(S)-lactyl}-γ-L-glutamyl)-L-glutamate
Other name(s): F420-dependent alcohol dehydrogenase; secondary alcohol:F420 oxidoreductase; F420-dependent secondary alcohol dehydrogenase
Systematic name: secondary-alcohol:coenzyme F420 oxidoreductase
Comments: The enzyme isolated from the methanogenic archaea Methanogenium liminatans catalyses the reversible oxidation of various secondary and cyclic alcohols to the corresponding ketones.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Bleicher, K. and Winter, J. Purification and properties of F420- and NADP+-dependent alcohol dehydrogenases of Methanogenium liminatans and Methanobacterium palustre, specific for secondary alcohols. Eur. J. Biochem. 200 (1991) 43–51. [DOI] [PMID: 1879431]
2.  Aufhammer, S.W., Warkentin, E., Berk, H., Shima, S., Thauer, R.K. and Ermler, U. Coenzyme binding in F420-dependent secondary alcohol dehydrogenase, a member of the bacterial luciferase family. Structure 12 (2004) 361–370. [DOI] [PMID: 15016352]
[EC 1.1.98.5 created 2013]
 
 
*EC 1.1.99.2
Accepted name: L-2-hydroxyglutarate dehydrogenase
Reaction: (S)-2-hydroxyglutarate + acceptor = 2-oxoglutarate + reduced acceptor
Other name(s): α-ketoglutarate reductase; α-hydroxyglutarate dehydrogenase; L-α-hydroxyglutarate dehydrogenase; hydroxyglutaric dehydrogenase; α-hydroxyglutarate oxidoreductase; L-α-hydroxyglutarate:NAD+ 2-oxidoreductase; α-hydroxyglutarate dehydrogenase (NAD+ specific); (S)-2-hydroxyglutarate:(acceptor) 2-oxidoreductase
Systematic name: (S)-2-hydroxyglutarate:acceptor 2-oxidoreductase
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB, CAS registry number: 9028-80-2
References:
1.  Weil-Malherbe, H. The oxidation of l(–)α-hydroxyglutaric acid in animal tissues. Biochem. J. 31 (1937) 2080–2094. [PMID: 16746551]
[EC 1.1.99.2 created 1961, modified 2013]
 
 
*EC 1.1.99.6
Accepted name: D-lactate dehydrogenase (acceptor)
Reaction: (R)-lactate + acceptor = pyruvate + reduced acceptor
Other name(s): D-2-hydroxy acid dehydrogenase; D-2-hydroxy-acid dehydrogenase; (R)-2-hydroxy-acid:acceptor 2-oxidoreductase
Systematic name: (R)-lactate:acceptor 2-oxidoreductase
Comments: The zinc flavoprotein (FAD) from the archaeon Archaeoglobus fulgidus cannot utilize NAD+, cytochrome c, methylene blue or dimethylnaphthoquinone as acceptors. In vitro it is active with artificial electron acceptors such as 2,6-dichlorophenolindophenol, but the physiological acceptor is not yet known.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, CAS registry number: 9028-83-5
References:
1.  Reed, D.W. and Hartzell, P.L. The Archaeoglobus fulgidus D-lactate dehydrogenase is a Zn2+ flavoprotein. J. Bacteriol. 181 (1999) 7580–7587. [PMID: 10601217]
[EC 1.1.99.6 created 1965, modified 2013]
 
 
EC 1.1.99.39
Accepted name: D-2-hydroxyglutarate dehydrogenase
Reaction: (R)-2-hydroxyglutarate + acceptor = 2-oxoglutarate + reduced acceptor
Other name(s): D2HGDH (gene name)
Systematic name: (R)-2-hydroxyglutarate:acceptor 2-oxidoreductase
Comments: Contains FAD. The enzyme has no activity with NAD+ or NADP+, and was assayed in vitro using artificial electron acceptors. It has lower activity with (R)-lactate, (R)-2-hydroxybutyrate and meso-tartrate, and no activity with the (S) isomers. The mammalian enzyme is stimulated by Zn2+, Co2+ and Mn2+.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Engqvist, M., Drincovich, M.F., Flugge, U.I. and Maurino, V.G. Two D-2-hydroxy-acid dehydrogenases in Arabidopsis thaliana with catalytic capacities to participate in the last reactions of the methylglyoxal and β-oxidation pathways. J. Biol. Chem. 284 (2009) 25026–25037. [DOI] [PMID: 19586914]
2.  Achouri, Y., Noel, G., Vertommen, D., Rider, M.H., Veiga-Da-Cunha, M. and Van Schaftingen, E. Identification of a dehydrogenase acting on D-2-hydroxyglutarate. Biochem. J. 381 (2004) 35–42. [DOI] [PMID: 15070399]
[EC 1.1.99.39 created 2013]
 
 
EC 1.2.1.89
Accepted name: D-glyceraldehyde dehydrogenase (NADP+)
Reaction: D-glyceraldehyde + NADP+ + H2O = D-glycerate + NADPH + H+
Other name(s): glyceraldehyde dehydrogenase; GADH
Systematic name: D-glyceraldehyde:NADP+ oxidoreductase
Comments: The enzyme from the archaea Thermoplasma acidophilum and Picrophilus torridus is involved in the non-phosphorylative Entner-Doudoroff pathway. cf. EC 1.2.99.8, glyceraldehyde dehydrogenase (FAD-containing).
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Jung, J.H. and Lee, S.B. Identification and characterization of Thermoplasma acidophilum glyceraldehyde dehydrogenase: a new class of NADP+-specific aldehyde dehydrogenase. Biochem. J. 397 (2006) 131–138. [DOI] [PMID: 16566751]
2.  Reher, M. and Schonheit, P. Glyceraldehyde dehydrogenases from the thermoacidophilic euryarchaeota Picrophilus torridus and Thermoplasma acidophilum, key enzymes of the non-phosphorylative Entner-Doudoroff pathway, constitute a novel enzyme family within the aldehyde dehydrogenase superfamily. FEBS Lett. 580 (2006) 1198–1204. [DOI] [PMID: 16458304]
[EC 1.2.1.89 created 2014]
 
 
*EC 1.3.1.74
Accepted name: 2-alkenal reductase [NAD(P)+]
Reaction: a n-alkanal + NAD(P)+ = an alk-2-enal + NAD(P)H + H+
Other name(s): NAD(P)H-dependent alkenal/one oxidoreductase; NADPH:2-alkenal α,β-hydrogenase; 2-alkenal reductase
Systematic name: n-alkanal:NAD(P)+ 2-oxidoreductase
Comments: Highly specific for 4-hydroxynon-2-enal and non-2-enal. Alk-2-enals of shorter chain have lower affinities. Exhibits high activities also for alk-2-enones such as but-3-en-2-one and pent-3-en-2-one. Inactive with cyclohex-2-en-1-one and 12-oxophytodienoic acid. Involved in the detoxication of α,β-unsaturated aldehydes and ketones [cf. EC 1.3.1.102, 2-alkenal reductase (NADP+)].
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB, CAS registry number: 52227-95-9
References:
1.  Mano, J., Torii, Y., Hayashi, S., Takimoto, K., Matsui, K., Nakamura, K., Inzé, D., Babiychuk, E., Kushnir, S. and Asada, K. The NADPH:quinone oxidoreductase P1-ζ-crystallin in Arabidopsis catalyzes the α,β-hydrogenation of 2-alkenals: detoxication of the lipid peroxide-derived reactive aldehydes. Plant Cell Physiol. 43 (2002) 1445–1455. [PMID: 12514241]
2.  Dick, R.A., Kwak, M.K., Sutter, T.R. and Kensler, T.W. Antioxidative function and substrate specificity of NAD(P)H-dependent alkenal/one oxidoreductase. A new role for leukotriene B4 12-hydroxydehydrogenase/15-oxoprostaglandin 13-reductase. J. Biol. Chem. 276 (2001) 40803–40810. [DOI] [PMID: 11524419]
[EC 1.3.1.74 created 2003, modified 2014]
 
 
EC 1.3.1.105
Accepted name: 2-methylene-furan-3-one reductase
Reaction: 4-hydroxy-2,5-dimethylfuran-3(2H)-one + NADP+ = 4-hydroxy-5-methyl-2-methylenefuran-3(2H)-one + NADPH + H+
Glossary: furaneol = 4-hydroxy-2,5-dimethylfuran-3(2H)-one
homofuraneol = 2-ethyl-4-hydroxy-5-methylfuran-3(2H)-one
Other name(s): FaEO; SIEO; enone oxidoreductase; 4-hydroxy-2,5-dimethylfuran-3(2H)-one:NAD(P)+ oxidoreductase
Systematic name: 4-hydroxy-2,5-dimethylfuran-3(2H)-one:NADP+ oxidoreductase
Comments: The enzyme was dicovered in strawberry (Fragaria x ananassa), where it produces furaneol, one of the major aroma compounds in the fruits. It has also been detected in tomato (Solanum lycopersicum) and pineapple (Ananas comosus). The enzyme can also act on derivatives substituted at the methylene functional group. The enzyme from the yeast Saccharomyces cerevisiae acts on (2E)-2-ethylidene-4-hydroxy-5-methylfuran-3(2H)-one and produces homofuraneol, an important aroma compound in soy sauce and miso. NADPH is the preferred cofactor.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Raab, T., Lopez-Raez, J.A., Klein, D., Caballero, J.L., Moyano, E., Schwab, W. and Munoz-Blanco, J. FaQR, required for the biosynthesis of the strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone, encodes an enone oxidoreductase. Plant Cell 18 (2006) 1023–1037. [DOI] [PMID: 16517758]
2.  Klein, D., Fink, B., Arold, B., Eisenreich, W. and Schwab, W. Functional characterization of enone oxidoreductases from strawberry and tomato fruit. J. Agric. Food Chem. 55 (2007) 6705–6711. [DOI] [PMID: 17636940]
3.  Schiefner, A., Sinz, Q., Neumaier, I., Schwab, W. and Skerra, A. Structural basis for the enzymatic formation of the key strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone. J. Biol. Chem. 288 (2013) 16815–16826. [DOI] [PMID: 23589283]
4.  Uehara, K., Watanabe, J., Mogi, Y. and Tsukioka, Y. Identification and characterization of an enzyme involved in the biosynthesis of the 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone in yeast. J. Biosci. Bioeng. 123 (2017) 333–341. [DOI] [PMID: 27865643]
[EC 1.3.1.105 created 2013]
 
 
EC 1.3.1.106
Accepted name: cobalt-precorrin-6A reductase
Reaction: cobalt-precorrin-6B + NAD+ = cobalt-precorrin-6A + NADH + H+
For diagram of anaerobic corrin biosynthesis (part 2), click here
Other name(s): cbiJ (gene name)
Systematic name: cobalt-precorrin-6B:NAD+ oxidoreductase
Comments: The enzyme, which participates in the anaerobic (early cobalt insertion) pathway of adenosylcobalamin biosynthesis, catalyses the reduction of the double bond between C-18 and C-19 of cobalt-precorrin-6A. The enzyme from the bacterium Bacillus megaterium has no activity with NADPH. See EC 1.3.1.54, precorrin-6A reductase, for the corresponding enzyme that participates in the aerobic cobalamin biosynthesis pathway.
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Kim, W., Major, T.A. and Whitman, W.B. Role of the precorrin 6-X reductase gene in cobamide biosynthesis in Methanococcus maripaludis. Archaea 1 (2005) 375–384. [PMID: 16243778]
2.  Moore, S.J., Lawrence, A.D., Biedendieck, R., Deery, E., Frank, S., Howard, M.J., Rigby, S.E. and Warren, M.J. Elucidation of the anaerobic pathway for the corrin component of cobalamin (vitamin B12). Proc. Natl. Acad. Sci. USA 110 (2013) 14906–14911. [DOI] [PMID: 23922391]
[EC 1.3.1.106 created 2014]
 
 
*EC 1.3.5.1
Accepted name: succinate dehydrogenase
Reaction: succinate + a quinone = fumarate + a quinol
For diagram of the citric acid cycle, click here
Other name(s): succinate dehydrogenase (quinone); succinate dehydrogenase (ubiquinone); succinic dehydrogenase; complex II (ambiguous); succinate dehydrogenase complex; SDH (ambiguous); succinate:ubiquinone oxidoreductase; fumarate reductase (quinol); FRD; menaquinol-fumarate oxidoreductase; succinate dehydrogenase (menaquinone); succinate:menaquinone oxidoreductase; fumarate reductase (menaquinone)
Systematic name: succinate:quinone oxidoreductase
Comments: A complex generally comprising an FAD-containing component that also binds the carboxylate substrate (A subunit), a component that contains three different iron-sulfur centers [2Fe-2S], [4Fe-4S], and [3Fe-4S] (B subunit), and a hydrophobic membrane-anchor component (C, or C and D subunits) that is also the site of the interaction with quinones. The enzyme is found in the inner mitochondrial membrane in eukaryotes and the plasma membrane of bacteria and archaea, with the hydrophilic domain extending into the mitochondrial matrix and the cytoplasm, respectively. Under aerobic conditions the enzyme catalyses succinate oxidation, a key step in the citric acid (TCA) cycle, transferring the electrons to quinones in the membrane, thus linking the TCA cycle with the aerobic respiratory chain (where it is known as complex II). Under anaerobic conditions the enzyme functions as a fumarate reductase, transferring electrons from the quinol pool to fumarate, and participating in anaerobic respiration with fumarate as the terminal electron acceptor. The enzyme interacts with the quinone produced by the organism, such as ubiquinone, menaquinone, caldariellaquinone, thermoplasmaquinone, rhodoquinone etc. Some of the enzymes contain two heme subunits in their membrane anchor subunit. These enzymes catalyse an electrogenic reaction and are thus classified as EC 7.1.1.12, succinate dehydrogenase (electrogenic, proton-motive force generating).
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB, CAS registry number: 9028-11-9
References:
1.  Kita, K., Vibat, C.R., Meinhardt, S., Guest, J.R. and Gennis, R.B. One-step purification from Escherichia coli of complex II (succinate: ubiquinone oxidoreductase) associated with succinate-reducible cytochrome b556. J. Biol. Chem. 264 (1989) 2672–2677. [PMID: 2644269]
2.  Van Hellemond, J.J. and Tielens, A.G. Expression and functional properties of fumarate reductase. Biochem. J. 304 (1994) 321–331. [PMID: 7998964]
3.  Iverson, T.M., Luna-Chavez, C., Cecchini, G. and Rees, D.C. Structure of the Escherichia coli fumarate reductase respiratory complex. Science 284 (1999) 1961–1966. [DOI] [PMID: 10373108]
4.  Cecchini, G., Schroder, I., Gunsalus, R.P. and Maklashina, E. Succinate dehydrogenase and fumarate reductase from Escherichia coli. Biochim. Biophys. Acta 1553 (2002) 140–157. [DOI] [PMID: 11803023]
5.  Figueroa, P., Leon, G., Elorza, A., Holuigue, L., Araya, A. and Jordana, X. The four subunits of mitochondrial respiratory complex II are encoded by multiple nuclear genes and targeted to mitochondria in Arabidopsis thaliana. Plant Mol. Biol. 50 (2002) 725–734. [PMID: 12374303]
6.  Cecchini, G. Function and structure of complex II of the respiratory chain. Annu. Rev. Biochem. 72 (2003) 77–109. [DOI] [PMID: 14527321]
7.  Oyedotun, K.S. and Lemire, B.D. The quaternary structure of the Saccharomyces cerevisiae succinate dehydrogenase. Homology modeling, cofactor docking, and molecular dynamics simulation studies. J. Biol. Chem. 279 (2004) 9424–9431. [DOI] [PMID: 14672929]
8.  Kurokawa, T. and Sakamoto, J. Purification and characterization of succinate:menaquinone oxidoreductase from Corynebacterium glutamicum. Arch. Microbiol. 183 (2005) 317–324. [DOI] [PMID: 15883782]
9.  Iwata, F., Shinjyo, N., Amino, H., Sakamoto, K., Islam, M.K., Tsuji, N. and Kita, K. Change of subunit composition of mitochondrial complex II (succinate-ubiquinone reductase/quinol-fumarate reductase) in Ascaris suum during the migration in the experimental host. Parasitol Int 57 (2008) 54–61. [DOI] [PMID: 17933581]
[EC 1.3.5.1 created 1983 (EC 1.3.99.1 created 1961, incorporated 2014, EC 1.3.5.4 created 2010, incorporated 2022), modified 2022]
 
 
*EC 1.3.5.4
Transferred entry: fumarate reductase (quinol), now included in EC 1.3.5.1, succinate dehydrogenase.
[EC 1.3.5.4 created 2010, modified 2013, deleted 2022]
 
 
EC 1.3.8.10
Accepted name: cyclohex-1-ene-1-carbonyl-CoA dehydrogenase
Reaction: cyclohex-1-ene-1-carbonyl-CoA + electron-transfer flavoprotein = cyclohex-1,5-diene-1-carbonyl-CoA + reduced electron-transfer flavoprotein
Systematic name: cyclohex-1-ene-1-carbonyl-CoA:electron transfer flavoprotein oxidoreductase
Comments: Contains FAD. The enzyme, characterized from the strict anaerobic bacterium Syntrophus aciditrophicus, is involved in production of cyclohexane-1-carboxylate, a byproduct produced by that organism during fermentation of benzoate and crotonate to acetate.
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Kung, J.W., Seifert, J., von Bergen, M. and Boll, M. Cyclohexanecarboxyl-coenzyme A (CoA) and cyclohex-1-ene-1-carboxyl-CoA dehydrogenases, two enzymes involved in the fermentation of benzoate and crotonate in Syntrophus aciditrophicus. J. Bacteriol. 195 (2013) 3193–3200. [DOI] [PMID: 23667239]
[EC 1.3.8.10 created 2013]
 
 
EC 1.3.8.11
Accepted name: cyclohexane-1-carbonyl-CoA dehydrogenase (electron-transfer flavoprotein)
Reaction: cyclohexane-1-carbonyl-CoA + electron-transfer flavoprotein = cyclohex-1-ene-1-carbonyl-CoA + reduced electron-transfer flavoprotein
Other name(s): aliB (gene name); cyclohexane-1-carbonyl-CoA dehydrogenase (ambiguous)
Systematic name: cyclohexane-1-carbonyl-CoA:electron transfer flavoprotein oxidoreductase
Comments: Contains FAD. The enzyme, characterized from the strict anaerobic bacterium Syntrophus aciditrophicus, is involved in production of cyclohexane-1-carboxylate, a byproduct produced by that organism during fermentation of benzoate and crotonate to acetate.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Pelletier, D.A. and Harwood, C.S. 2-Hydroxycyclohexanecarboxyl coenzyme A dehydrogenase, an enzyme characteristic of the anaerobic benzoate degradation pathway used by Rhodopseudomonas palustris. J. Bacteriol. 182 (2000) 2753–2760. [PMID: 10781543]
2.  Kung, J.W., Seifert, J., von Bergen, M. and Boll, M. Cyclohexanecarboxyl-coenzyme A (CoA) and cyclohex-1-ene-1-carboxyl-CoA dehydrogenases, two enzymes involved in the fermentation of benzoate and crotonate in Syntrophus aciditrophicus. J. Bacteriol. 195 (2013) 3193–3200. [DOI] [PMID: 23667239]
[EC 1.3.8.11 created 2013, modified 2020]
 
 
EC 1.3.98.2
Transferred entry: fumarate reductase (CoM/CoB). Now EC 1.3.4.1, fumarate reductase (CoM/CoB)
[EC 1.3.98.2 created 2014, deleted 2014]
 
 
EC 1.3.99.1
Deleted entry: succinate dehydrogenase. The activity is included in EC 1.3.5.1, succinate dehydrogenase (quinone).
[EC 1.3.99.1 created 1961, deleted 2014]
 
 
EC 1.3.99.35
Transferred entry: chlorophyllide a reductase. Now EC 1.3.7.15, chlorophyllide a reductase
[EC 1.3.99.35 created 2014, deleted 2016]
 
 
EC 1.5.3.22
Accepted name: coenzyme F420H2 oxidase
Reaction: 2 reduced coenzyme F420 + O2 = 2 oxidized coenzyme F420 + 2 H2O
For diagram of coenzyme F420 biosynthesis, click here
Glossary: oxidized coenzyme F420 = N-(N-{O-[5-(8-hydroxy-2,4-dioxo-2,3,4,10-tetrahydropyrimido[4,5-b]quinolin-10-yl)-5-deoxy-L-ribityl-1-phospho]-(S)-lactyl}-γ-L-glutamyl)-L-glutamate
Other name(s): FprA
Systematic name: reduced coenzyme F420:oxygen oxidoreductase
Comments: The enzyme contains FMN and a binuclear iron center. The enzyme from the archaeon Methanothermobacter marburgensis is Si-face specific with respect to C-5 of coenzyme F420 [2].
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Seedorf, H., Dreisbach, A., Hedderich, R., Shima, S. and Thauer, R.K. F420H2 oxidase (FprA) from Methanobrevibacter arboriphilus, a coenzyme F420-dependent enzyme involved in O2 detoxification. Arch. Microbiol. 182 (2004) 126–137. [DOI] [PMID: 15340796]
2.  Seedorf, H., Kahnt, J., Pierik, A.J. and Thauer, R.K. Si-face stereospecificity at C5 of coenzyme F420 for F420H2 oxidase from methanogenic Archaea as determined by mass spectrometry. FEBS J. 272 (2005) 5337–5342. [DOI] [PMID: 16218963]
3.  Seedorf, H., Hagemeier, C.H., Shima, S., Thauer, R.K., Warkentin, E. and Ermler, U. Structure of coenzyme F420H2 oxidase (FprA), a di-iron flavoprotein from methanogenic Archaea catalyzing the reduction of O2 to H2O. FEBS J. 274 (2007) 1588–1599. [DOI] [PMID: 17480207]
[EC 1.5.3.22 created 2013]
 
 
EC 1.5.7.2
Accepted name: coenzyme F420 oxidoreductase (ferredoxin)
Reaction: reduced coenzyme F420 + 2 oxidized ferredoxin = oxidized coenzyme F420 + 2 reduced ferredoxin + 2 H+
Glossary: oxidized coenzyme F420 = N-(N-{O-[5-(8-hydroxy-2,4-dioxo-2,3,4,10-tetrahydropyrimido[4,5-b]quinolin-10-yl)-5-deoxy-L-ribityl-1-phospho]-(S)-lactyl}-γ-L-glutamyl)-L-glutamate
Other name(s): Fd:F420 oxidoreductase; FpoF protein; ferredoxin:F420 oxidoreductase
Systematic name: coenzyme F420:ferredoxin oxidoreductase
Comments: The enzyme from the archaeon Methanosarcina mazei contains iron-sulfur centres and FAD.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Welte, C. and Deppenmeier, U. Re-evaluation of the function of the F420 dehydrogenase in electron transport of Methanosarcina mazei. FEBS J. 278 (2011) 1277–1287. [DOI] [PMID: 21306561]
[EC 1.5.7.2 created 2013]
 
 
EC 1.5 Acting on the CH-NH group of donors
 
EC 1.5.98 With other, known, physiological acceptors
 
EC 1.5.98.1
Accepted name: methylenetetrahydromethanopterin dehydrogenase
Reaction: 5,10-methylenetetrahydromethanopterin + oxidized coenzyme F420 = 5,10-methenyltetrahydromethanopterin + reduced coenzyme F420
For diagram of methane biosynthesis, click here
Other name(s): N5,N10-methylenetetrahydromethanopterin dehydrogenase; 5,10-methylenetetrahydromethanopterin dehydrogenase
Systematic name: 5,10-methylenetetrahydromethanopterin:coenzyme-F420 oxidoreductase
Comments: Coenzyme F420 is a 7,8-didemethyl-8-hydroxy-5-deazariboflavin derivative; methanopterin is a pterin analogue. The enzyme is involved in the formation of methane from CO2 in the methanogen Methanothermobacter thermautotrophicus.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, Gene, KEGG, PDB, CAS registry number: 100357-01-5
References:
1.  Hartzell, P.L., Zvilius, G., Escalante-Semerena, J.C. and Donnelly, M.I. Coenzyme F420 dependence of the methylenetetrahydromethanopterin dehydrogenase of Methanobacterium thermoautotrophicum. Biochem. Biophys. Res. Commun. 133 (1985) 884–890. [DOI] [PMID: 4084309]
2.  te Brömmelstroet, B.W., Geerts, W.J., Keltjens, J.T., van der Drift, C. and Vogels, G.D. Purification and properties of 5,10-methylenetetrahydromethanopterin dehydrogenase and 5,10-methylenetetrahydromethanopterin reductase, two coenzyme F420-dependent enzymes, from Methanosarcina barkeri. Biochim. Biophys. Acta 1079 (1991) 293–302. [DOI] [PMID: 1911853]
[EC 1.5.98.1 created 1989 as EC 1.5.99.9, modified 2004, transferred 2014 to EC 1.5.98.1]
 
 
EC 1.5.98.2
Accepted name: 5,10-methylenetetrahydromethanopterin reductase
Reaction: 5-methyltetrahydromethanopterin + oxidized coenzyme F420 = 5,10-methylenetetrahydromethanopterin + reduced coenzyme F420
For diagram of methane biosynthesis, click here
Other name(s): 5,10-methylenetetrahydromethanopterin cyclohydrolase; N5,N10-methylenetetrahydromethanopterin reductase; methylene-H4MPT reductase; coenzyme F420-dependent N5,N10-methenyltetrahydromethanopterin reductase; N5,N10-methylenetetrahydromethanopterin:coenzyme-F420 oxidoreductase
Systematic name: 5-methyltetrahydromethanopterin:coenzyme-F420 oxidoreductase
Comments: Catalyses an intermediate step in methanogenesis from CO2 and H2 in methanogenic archaea.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, Gene, KEGG, PDB
References:
1.  Ma, K. and Thauer, R.K. Purification and properties of N5,N10-methylenetetrahydromethanopterin reductase from Methanobacterium thermoautotrophicum (strain Marburg). Eur. J. Biochem. 191 (1990) 187–193. [DOI] [PMID: 2379499]
2.  te Brömmelstroet, B.W., Geerts, W.J., Keltjens, J.T., van der Drift, C. and Vogels, G.D. Purification and properties of 5,10-methylenetetrahydromethanopterin dehydrogenase and 5,10-methylenetetrahydromethanopterin reductase, two coenzyme F420-dependent enzymes, from Methanosarcina barkeri. Biochim. Biophys. Acta 1079 (1991) 293–302. [DOI] [PMID: 1911853]
3.  Ma, K. and Thauer, R.K. Single step purification of methylenetetrahydromethanopterin reductase from Methanobacterium thermoautotrophicum by specific binding to blue sepharose CL-6B. FEBS Lett. 268 (1990) 59–62. [DOI] [PMID: 1696553]
4.  te Brömmelstroet, B.W., Hensgens, C.M., Keltjens, J.T., van der Drift, C. and Vogels, G.D. Purification and properties of 5,10-methylenetetrahydromethanopterin reductase, a coenzyme F420-dependent enzyme, from Methanobacterium thermoautotrophicum strain ΔH*. J. Biol. Chem. 265 (1990) 1852–1857. [PMID: 2298726]
5.  te Brömmelstroet, B.W., Hensgens, C.M., Geerts, W.J., Keltjens, J.T., van der Drift, C. and Vogels, G.D. Purification and properties of 5,10-methenyltetrahydromethanopterin cyclohydrolase from Methanosarcina barkeri. J. Bacteriol. 172 (1990) 564–571. [DOI] [PMID: 2298699]
[EC 1.5.98.2 created 2000 as EC 1.5.99.11, modified 2004, transferred to EC 1.5.98.2 2014]
 
 
EC 1.5.99.9
Transferred entry: methylenetetrahydromethanopterin dehydrogenase. As the acceptor is known the enzyme has been transferred to EC 1.5.98.1, methylenetetrahydromethanopterin dehydrogenase
[EC 1.5.99.9 created 1989, modified 2004, deleted 2014]
 
 
EC 1.5.99.11
Transferred entry: methylenetetrahydromethanopterin dehydrogenase. As the acceptor is known the enzyme has been transferred to EC 1.5.98.2, 5,10-methylenetetrahydromethanopterin reductase
[EC 1.5.99.11 created 2000, modified 2004, deleted 2014]
 
 
EC 1.6.3.5
Accepted name: renalase
Reaction: (1) 1,2-dihydro-β-NAD(P) + H+ + O2 = β-NAD(P)+ + H2O2
(2) 1,6-dihydro-β-NAD(P) + H+ + O2 = β-NAD(P)+ + H2O2
Other name(s): αNAD(P)H oxidase/anomerase (incorrect); NAD(P)H:oxygen oxidoreductase (H2O2-forming, epimerising) (incorrect)
Systematic name: dihydro-NAD(P):oxygen oxidoreductase (H2O2-forming)
Comments: Requires FAD. Renalase, previously thought to be a hormone, is a flavoprotein secreted into the blood by the kidney that oxidizes the 1,2-dihydro- and 1,6-dihydro- isomeric forms of β-NAD(P)H back to β-NAD(P)+. These isomeric forms, generated by nonspecific reduction of β-NAD(P)+ or by tautomerization of β-NAD(P)H, are potent inhibitors of primary metabolism dehydrogenases and pose a threat to normal respiration.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Xu, J., Li, G., Wang, P., Velazquez, H., Yao, X., Li, Y., Wu, Y., Peixoto, A., Crowley, S. and Desir, G.V. Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure. J. Clin. Invest. 115 (2005) 1275–1280. [DOI] [PMID: 15841207]
2.  Beaupre, B.A., Hoag, M.R., Roman, J., Forsterling, F.H. and Moran, G.R. Metabolic function for human renalase: oxidation of isomeric forms of β-NAD(P)H that are inhibitory to primary metabolism. Biochemistry 54 (2015) 795–806. [DOI] [PMID: 25531177]
[EC 1.6.3.5 created 2014, modified 2015]
 
 
*EC 1.10.2.2
Transferred entry: quinol—cytochrome-c reductase. Now EC 7.1.1.8, quinol—cytochrome-c reductase
[EC 1.10.2.2 created 1978, modified 2013, deleted 2018]
 
 
*EC 1.10.3.11
Accepted name: ubiquinol oxidase (non-electrogenic)
Reaction: 2 ubiquinol + O2 = 2 ubiquinone + 2 H2O
Other name(s): plant alternative oxidase; cyanide-insensitive oxidase; AOX (gene name); ubiquinol oxidase; ubiquinol:O2 oxidoreductase (non-electrogenic)
Systematic name: ubiquinol:oxygen oxidoreductase (non-electrogenic)
Comments: The enzyme, described from the mitochondria of plants and some fungi and protists, is an alternative terminal oxidase that is not sensitive to cyanide inhibition and does not generate a proton motive force. Unlike the electrogenic terminal oxidases that contain hemes (cf. EC 7.1.1.3 and EC 7.1.1.7), this enzyme contains a dinuclear non-heme iron complex. The function of this oxidase is believed to be dissipating excess reducing power, minimizing oxidative stress, and optimizing photosynthesis in response to changing conditions.
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Bendall, D.S. and Bonner, W.D. Cyanide-insensitive respiration in plant mitochondria. Plant Physiol. 47 (1971) 236–245. [PMID: 16657603]
2.  Siedow, J.N., Umbach, A.L. and Moore, A.L. The active site of the cyanide-resistant oxidase from plant mitochondria contains a binuclear iron center. FEBS Lett. 362 (1995) 10–14. [DOI] [PMID: 7698344]
3.  Berthold, D.A., Andersson, M.E. and Nordlund, P. New insight into the structure and function of the alternative oxidase. Biochim. Biophys. Acta 1460 (2000) 241–254. [DOI] [PMID: 11106766]
4.  Williams, B.A., Elliot, C., Burri, L., Kido, Y., Kita, K., Moore, A.L. and Keeling, P.J. A broad distribution of the alternative oxidase in microsporidian parasites. PLoS Pathog. 6:e1000761 (2010). [DOI] [PMID: 20169184]
5.  Gandin, A., Duffes, C., Day, D.A. and Cousins, A.B. The absence of alternative oxidase AOX1A results in altered response of photosynthetic carbon assimilation to increasing CO2 in Arabidopsis thaliana. Plant Cell Physiol. 53 (2012) 1627–1637. [DOI] [PMID: 22848123]
[EC 1.10.3.11 created 2011, modified 2014]
 
 
EC 1.10.3.14
Transferred entry: ubiquinol oxidase (electrogenic, non H+-transporting). Now EC 7.1.1.7, ubiquinol oxidase (electrogenic, proton-motive force generating)
[EC 1.10.3.14 created 2014, modified 2017, deleted 2018]
 
 
EC 1.13.11.77
Accepted name: oleate 10S-lipoxygenase
Reaction: (1) oleate + O2 = (8E,10S)-10-hydroperoxyoctadeca-8-enoate
(2) linoleate + O2 = (8E,10S,12Z)-10-hydroperoxyoctadeca-8,12-dienoate
(3) α-linolenate + O2 = (8E,10S,12Z,15Z)-10-hydroperoxyoctadeca-8,12,15-trienoate
Other name(s): 10S-DOX; (10S)-dioxygenase; 10S-dioxygenase
Systematic name: oleate:oxygen (10S)-oxidoreductase
Comments: Binds Fe2+. The enzyme isolated from the bacterium Pseudomonas sp. 42A2 has similar activity with all the three Δ9 fatty acids. cf. EC 1.13.11.62, linoleate 10R-lipoxygenase.
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Busquets, M., Deroncele, V., Vidal-Mas, J., Rodriguez, E., Guerrero, A. and Manresa, A. Isolation and characterization of a lipoxygenase from Pseudomonas 42A2 responsible for the biotransformation of oleic acid into (S)-(E)-10-hydroxy-8-octadecenoic acid. Antonie Van Leeuwenhoek 85 (2004) 129–139. [DOI] [PMID: 15028873]
[EC 1.13.11.77 created 2013]
 
 
*EC 1.14.11.37
Accepted name: kanamycin B dioxygenase
Reaction: kanamycin B + 2-oxoglutarate + O2 = 2′-dehydrokanamycin A + succinate + NH3 + CO2
For diagram of kanamycin A biosynthesis, click here
Other name(s): kanJ (gene name)
Systematic name: kanamycin-B,2-oxoglutarate:oxygen oxidoreductase (deaminating, 2′-hydroxylating)
Comments: Requires Fe2+ and ascorbate. Found in the bacterium Streptomyces kanamyceticus where it is involved in the conversion of the aminoglycoside antibiotic kanamycin B to kanamycin A.
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Sucipto, H., Kudo, F. and Eguchi, T. The last step of kanamycin biosynthesis: unique deamination reaction catalyzed by the α-ketoglutarate-dependent nonheme iron dioxygenase KanJ and the NADPH-dependent reductase KanK. Angew. Chem. Int. Ed. Engl. 51 (2012) 3428–3431. [DOI] [PMID: 22374809]
[EC 1.14.11.37 created 2013, modified 2013]
 
 
EC 1.14.13.60
Transferred entry: 27-hydroxycholesterol 7α-monooxygenase. Now classified as EC 1.14.14.29, 25/26-hydroxycholesterol 7α-hydroxylase
[EC 1.14.13.60 created 1999, deleted 2013]
 
 
*EC 1.14.13.100
Transferred entry: 25/26-hydroxycholesterol 7α-hydroxylase. Now classified as EC 1.14.14.29, 25/26-hydroxycholesterol 7α-hydroxylase
[EC 1.14.13.100 created 2005, modified 2013 (EC 1.14.13.60 created 1999, incorporated 2013), deleted 2016]
 
 
EC 1.14.13.183
Transferred entry: dammarenediol 12-hydroxylase. Now EC 1.14.14.120, dammarenediol 12-hydroxylase
[EC 1.14.13.183 created 2013, deleted 2018]
 
 
EC 1.14.13.184
Transferred entry: protopanaxadiol 6-hydroxylase. Now EC 1.14.14.121, protopanaxadiol 6-hydroxylase
[EC 1.14.13.184 created 2013, deleted 2018]
 
 
EC 1.14.13.185
Transferred entry: pikromycin synthase. Now EC 1.14.15.33, pikromycin synthase
[EC 1.14.13.185 created 2014, deleted 2018]
 
 
EC 1.14.13.186
Transferred entry: 20-oxo-5-O-mycaminosyltylactone 23-monooxygenase. Now EC 1.14.15.34, 20-oxo-5-O-mycaminosyltylactone 23-monooxygenase
[EC 1.14.13.186 created 2014, deleted 2018]
 
 
EC 1.14.13.187
Accepted name: L-evernosamine nitrososynthase
Reaction: dTDP-β-L-evernosamine + 2 NADPH + 2 H+ + 2 O2 = dTDP-2,3,6-trideoxy-3-C-methyl-4-O-methyl-3-nitroso-β-L-arabino-hexopyranose + 2 NADP+ + 3 H2O (overall reaction)
(1a) dTDP-β-L-evernosamine + NADPH + H+ + O2 = dTDP-N-hydroxy-β-L-evernosamine + NADP+ + H2O
(1b) dTDP-N-hydroxy-β-L-evernosamine + NADPH + H+ + O2 = dTDP-2,3,6-trideoxy-3-C-methyl-4-O-methyl-3-nitroso-β-L-arabino-hexopyranose + NADP+ + 2 H2O
Glossary: dTDP-β-L-evernosamine = dTDP-3-amino-2,3,6-trideoxy-3-C-methyl-4-O-methyl-β-L-arabino-hexopyranose
dTDP-β-L-evernitrose = dTDP-2,3,6-trideoxy-3-C-methyl-4-O-methyl-3-nitro-β-L-arabino-hexopyranose
Systematic name: dTDP-β-L-evernosamine,NADPH:oxygen oxidoreductase (N-hydroxylating)
Comments: Requires FAD. Isolated from the bacterium Micromonospora carbonacea var. africana. The nitroso group is probably spontaneously oxidized to a nitro group giving dTDP-β-L-evernitrose, which is involved in the biosynthesis of the antibiotic everninomycin. The reaction was studied using dTDP-β-L-4-epi-vancosamine (dTDP-4-O-desmethyl-β-L-evernitrosamine).
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Hu, Y., Al-Mestarihi, A., Grimes, C.L., Kahne, D. and Bachmann, B.O. A unifying nitrososynthase involved in nitrosugar biosynthesis. J. Am. Chem. Soc. 130 (2008) 15756–15757. [DOI] [PMID: 18983146]
2.  Vey, J.L., Al-Mestarihi, A., Hu, Y., Funk, M.A., Bachmann, B.O. and Iverson, T.M. Structure and mechanism of ORF36, an amino sugar oxidizing enzyme in everninomicin biosynthesis. Biochemistry 49 (2010) 9306–9317. [DOI] [PMID: 20866105]
[EC 1.14.13.187 created 2014]
 
 
EC 1.14.13.188
Transferred entry: 6-deoxyerythronolide B hydroxylase. Now EC 1.14.15.35, 6-deoxyerythronolide B hydroxylase
[EC 1.14.13.188 created 2014, deleted 2018]
 
 
*EC 1.16.1.7
Accepted name: ferric-chelate reductase (NADH)
Reaction: 2 Fe(II)-siderophore + NAD+ + H+ = 2 Fe(III)-siderophore + NADH
Other name(s): ferric chelate reductase (ambiguous); iron chelate reductase (ambiguous); NADH:Fe3+-EDTA reductase; NADH2:Fe3+ oxidoreductase; ferB (gene name); Fe(II):NAD+ oxidoreductase
Systematic name: Fe(II)-siderophore:NAD+ oxidoreductase
Comments: Contains FAD. The enzyme catalyses the reduction of bound ferric iron in a variety of iron chelators (siderophores), resulting in the release of ferrous iron. The plant enzyme is involved in the transport of iron across plant plasma membranes. The enzyme from the bacterium Paracoccus denitrificans can also reduce chromate. cf. EC 1.16.1.9, ferric-chelate reductase (NADPH) and EC 1.16.1.10, ferric-chelate reductase [NAD(P)H].
Links to other databases: BRENDA, EXPASY, Gene, KEGG, CAS registry number: 120720-17-4
References:
1.  Askerlund, P., Larrson, C. and Widell, S. Localization of donor and acceptor sites of NADH dehydrogenase activities using inside-out and right-side-out plasma membrane vesicles from plants. FEBS Lett. 239 (1988) 23–28.
2.  Brüggemann, W. and Moog, P.R. NADH-dependent Fe3+ EDTA and oxygen reduction by plasma membrane vesicles from barley roots. Physiol. Plant. 75 (1989) 245–254.
3.  Brüggemann, W., Moog, P.R., Nakagawa, H., Janiesch, P. and Kuiper, P.J.C. Plasma membrane-bound NADH:Fe3+-EDTA reductase and iron deficiency in tomato (Lycopersicon esculentum). Is there a Turbo reductase ? Physiol. Plant. 79 (1990) 339–346.
4.  Buckhout, T.J. and Hrubec, T.C. Pyridine nucleotide-dependent ferricyanide reduction associated with isolated plasma membranes of maize (Zea mays L.) roots. Protoplasma 135 (1986) 144–154.
5.  Sandelius, A.S., Barr, R., Crane, F.L. and Morré, D.J. Redox reactions of plasma membranes isolated from soybean hypocotyls by phase partition. Plant Sci. 48 (1986) 1–10.
6.  Mazoch, J., Tesarik, R., Sedlacek, V., Kucera, I. and Turanek, J. Isolation and biochemical characterization of two soluble iron(III) reductases from Paracoccus denitrificans. Eur. J. Biochem. 271 (2004) 553–562. [PMID: 14728682]
[EC 1.16.1.7 created 1992 as EC 1.6.99.13, transferred 2002 to EC 1.16.1.7, modified 2011, modified 2014]
 
 
*EC 1.16.1.9
Accepted name: ferric-chelate reductase (NADPH)
Reaction: 2 Fe(II)-siderophore + NADP+ + H+ = 2 Fe(III)-siderophore + NADPH
Other name(s): ferric chelate reductase (ambiguous); iron chelate reductase (ambiguous); NADPH:Fe3+-EDTA reductase; NADPH-dependent ferric reductase; yqjH (gene name); Fe(II):NADP+ oxidoreductase
Systematic name: Fe(II)-siderophore:NADP+ oxidoreductase
Comments: Contains FAD. The enzyme, which is widespread among bacteria, catalyses the reduction of ferric iron bound to a variety of iron chelators (siderophores), including ferric triscatecholates and ferric dicitrate, resulting in the release of ferrous iron. The enzyme from the bacterium Escherichia coli has the highest efficiency with the hydrolysed ferric enterobactin complex ferric N-(2,3-dihydroxybenzoyl)-L-serine [3]. cf. EC 1.16.1.7, ferric-chelate reductase (NADH) and EC 1.16.1.10, ferric-chelate reductase [NAD(P)H].
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB, CAS registry number: 120720-17-4
References:
1.  Bamford, V.A., Armour, M., Mitchell, S.A., Cartron, M., Andrews, S.C. and Watson, K.A. Preliminary X-ray diffraction analysis of YqjH from Escherichia coli: a putative cytoplasmic ferri-siderophore reductase. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64 (2008) 792–796. [DOI] [PMID: 18765906]
2.  Wang, S., Wu, Y. and Outten, F.W. Fur and the novel regulator YqjI control transcription of the ferric reductase gene yqjH in Escherichia coli. J. Bacteriol. 193 (2011) 563–574. [DOI] [PMID: 21097627]
3.  Miethke, M., Hou, J. and Marahiel, M.A. The siderophore-interacting protein YqjH acts as a ferric reductase in different iron assimilation pathways of Escherichia coli. Biochemistry 50 (2011) 10951–10964. [DOI] [PMID: 22098718]
[EC 1.16.1.9 created 1992 as EC 1.6.99.13, transferred 2002 to EC 1.16.1.7, transferred 2011 to EC 1.16.1.9, modified 2012, modified 2014]
 
 
EC 1.16.1.10
Accepted name: ferric-chelate reductase [NAD(P)H]
Reaction: 2 Fe(II)-siderophore + NAD(P)+ + H+ = 2 Fe(III)-siderophore + NAD(P)H
Other name(s): ferric reductase (ambiguous)
Systematic name: Fe(II)-siderophore:NAD(P)+ oxidoreductase
Comments: A flavoprotein. The enzyme catalyses the reduction of bound ferric iron in a variety of iron chelators (siderophores), resulting in the release of ferrous iron. The enzyme from the hyperthermophilic archaeon Archaeoglobus fulgidus is not active with uncomplexed Fe(III). cf. EC 1.16.1.7, ferric-chelate reductase (NADH) and EC 1.16.1.9, ferric-chelate reductase (NADPH).
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Vadas, A., Monbouquette, H.G., Johnson, E. and Schroder, I. Identification and characterization of a novel ferric reductase from the hyperthermophilic Archaeon Archaeoglobus fulgidus. J. Biol. Chem. 274 (1999) 36715–36721. [DOI] [PMID: 10593977]
2.  Chiu, H.J., Johnson, E., Schroder, I. and Rees, D.C. Crystal structures of a novel ferric reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus and its complex with NADP+. Structure 9 (2001) 311–319. [DOI] [PMID: 11525168]
[EC 1.16.1.10 created 2014]
 
 
EC 1.21.99.2
Transferred entry: EC 1.21.99.2, cyclic dehypoxanthinyl futalosine synthase. Now classified as EC 1.21.98.1, cyclic dehypoxanthinyl futalosine synthase.
[EC 1.21.99.2 created 2014, deleted 2014]
 
 
*EC 2.1.1.57
Accepted name: methyltransferase cap1
Reaction: S-adenosyl-L-methionine + a 5′-(N7-methyl 5′-triphosphoguanosine)-(ribonucleotide)-[mRNA] = S-adenosyl-L-homocysteine + a 5′-(N7-methyl 5′-triphosphoguanosine)-(2′-O-methyl-ribonucleotide)-[mRNA]
Other name(s): FTSJD2 (gene name); messenger ribonucleate nucleoside 2′-methyltransferase; messenger RNA (nucleoside-2′-)-methyltransferase; MTR1; cap1-MTase; mRNA (nucleoside-2′-O)-methyltransferase (ambiguous); S-adenosyl-L-methionine:mRNA (nucleoside-2′-O)-methyltransferase
Systematic name: S-adenosyl-L-methionine:5-(N7-methyl 5-triphosphoguanosine)-(ribonucleotide)-[mRNA] 2-O-methyltransferase
Comments: This enzyme catalyses the methylation of the ribose on the first transcribed nucleotide of mRNA or snRNA molecules. This methylation event is known as cap1, and occurs in all mRNAs and snRNAs of higher eukaryotes, including insects, vertebrates and their viruses. The human enzyme can also methylate mRNA molecules that lack methylation on the capping 5′-triphosphoguanosine [6].
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB, CAS registry number: 61970-02-3
References:
1.  Barbosa, E. and Moss, B. mRNA(nucleoside-2′-)-methyltransferase from vaccinia virus. Purification and physical properties. J. Biol. Chem. 253 (1978) 7692–7697. [PMID: 701281]
2.  Barbosa, E. and Moss, B. mRNA(nucleoside-2′-)-methyltransferase from vaccinia virus. Characteristics and substrate specificity. J. Biol. Chem. 253 (1978) 7698–7702. [PMID: 701282]
3.  Boone, R.F., Ensinger, M.J. and Moss, B. Synthesis of mRNA guanylyltransferase and mRNA methyltransferases in cells infected with vaccinia virus. J. Virol. 21 (1977) 475–483. [PMID: 833934]
4.  Ensinger, M.J., Martin, S.A., Paoletti, E. and Moss, B. Modification of the 5′-terminus of mRNA by soluble guanylyl and methyl transferases from vaccinia virus. Proc. Natl. Acad. Sci. USA 72 (1975) 2525–2529. [DOI] [PMID: 1058472]
5.  Groner, Y., Gilbao, E. and Aviv, H. Methylation and capping of RNA polymerase II primary transcripts by HeLa nuclear homogenates. Biochemistry 17 (1978) 977–982. [PMID: 629955]
6.  Werner, M., Purta, E., Kaminska, K.H., Cymerman, I.A., Campbell, D.A., Mittra, B., Zamudio, J.R., Sturm, N.R., Jaworski, J. and Bujnicki, J.M. 2′-O-ribose methylation of cap2 in human: function and evolution in a horizontally mobile family. Nucleic Acids Res. 39 (2011) 4756–4768. [DOI] [PMID: 21310715]
[EC 2.1.1.57 created 1981 (EC 2.1.1.58 created 1981, incorporated 1984), modified 2014, modified 2021]
 
 
*EC 2.1.1.196
Accepted name: cobalt-precorrin-6B (C15)-methyltransferase [decarboxylating]
Reaction: S-adenosyl-L-methionine + cobalt-precorrin-6B = S-adenosyl-L-homocysteine + cobalt-precorrin-7 + CO2
For diagram of anaerobic corrin biosynthesis (part 2), click here
Other name(s): cbiT (gene name); S-adenosyl-L-methionine:precorrin-7 C15-methyltransferase (C-12-decarboxylating); cobalt-precorrin-7 (C15)-methyltransferase [decarboxylating]
Systematic name: S-adenosyl-L-methionine:precorrin-6B C15-methyltransferase (C-12-decarboxylating)
Comments: This enzyme, which participates in the anaerobic (early cobalt insertion) adenosylcobalamin biosynthesis pathway, catalyses both methylation at C-15 and decarboxylation of the C-12 acetate side chain of cobalt-precorrin-6B. The equivalent activity in the aerobic adenosylcobalamin biosynthesis pathway is catalysed by the bifunctional enzyme EC 2.1.1.132, precorrin-6B C5,15-methyltransferase (decarboxylating).
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Keller, J.P., Smith, P.M., Benach, J., Christendat, D., deTitta, G.T. and Hunt, J.F. The crystal structure of MT0146/CbiT suggests that the putative precorrin-8w decarboxylase is a methyltransferase. Structure 10 (2002) 1475–1487. [DOI] [PMID: 12429089]
2.  Santander, P.J., Kajiwara, Y., Williams, H.J. and Scott, A.I. Structural characterization of novel cobalt corrinoids synthesized by enzymes of the vitamin B12 anaerobic pathway. Bioorg. Med. Chem. 14 (2006) 724–731. [DOI] [PMID: 16198574]
3.  Moore, S.J., Lawrence, A.D., Biedendieck, R., Deery, E., Frank, S., Howard, M.J., Rigby, S.E. and Warren, M.J. Elucidation of the anaerobic pathway for the corrin component of cobalamin (vitamin B12). Proc. Natl. Acad. Sci. USA 110 (2013) 14906–14911. [DOI] [PMID: 23922391]
[EC 2.1.1.196 created 2010, modified 2013]
 
 
*EC 2.1.1.222
Accepted name: 2-polyprenyl-6-hydroxyphenol methylase
Reaction: S-adenosyl-L-methionine + 3-(all-trans-polyprenyl)benzene-1,2-diol = S-adenosyl-L-homocysteine + 2-methoxy-6-(all-trans-polyprenyl)phenol
For diagram of ubiquinol biosynthesis, click here
Other name(s): ubiG (gene name, ambiguous); ubiG methyltransferase (ambiguous); 2-octaprenyl-6-hydroxyphenol methylase
Systematic name: S-adenosyl-L-methionine:3-(all-trans-polyprenyl)benzene-1,2-diol 2-O-methyltransferase
Comments: UbiG catalyses both methylation steps in ubiquinone biosynthesis in Escherichia coli. The second methylation is classified as EC 2.1.1.64 (3-demethylubiquinol 3-O-methyltransferase) [2]. In eukaryotes Coq3 catalyses the two methylation steps in ubiquinone biosynthesis. However, while the second methylation is common to both enzymes, the first methylation by Coq3 occurs at a different position within the pathway, and thus involves a different substrate and is classified as EC 2.1.1.114 (polyprenyldihydroxybenzoate methyltransferase). The substrate of the eukaryotic enzyme (3,4-dihydroxy-5-all-trans-polyprenylbenzoate) differs by an additional carboxylate moiety.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Poon, W.W., Barkovich, R.J., Hsu, A.Y., Frankel, A., Lee, P.T., Shepherd, J.N., Myles, D.C. and Clarke, C.F. Yeast and rat Coq3 and Escherichia coli UbiG polypeptides catalyze both O-methyltransferase steps in coenzyme Q biosynthesis. J. Biol. Chem. 274 (1999) 21665–21672. [DOI] [PMID: 10419476]
2.  Hsu, A.Y., Poon, W.W., Shepherd, J.A., Myles, D.C. and Clarke, C.F. Complementation of coq3 mutant yeast by mitochondrial targeting of the Escherichia coli UbiG polypeptide: evidence that UbiG catalyzes both O-methylation steps in ubiquinone biosynthesis. Biochemistry 35 (1996) 9797–9806. [DOI] [PMID: 8703953]
[EC 2.1.1.222 created 2011, modified 2013]
 
 
*EC 2.1.1.267
Accepted name: flavonoid 3′,5′-methyltransferase
Reaction: (1) S-adenosyl-L-methionine + a 3′-hydroxyflavonoid = S-adenosyl-L-homocysteine + a 3′-methoxyflavonoid
(2) S-adenosyl-L-methionine + a 5′-hydroxy-3′-methoxyflavonoid = S-adenosyl-L-homocysteine + a 3′,5′-dimethoxyflavonoid
For diagram of anthocyanidin glucoside biosynthesis, click here
Glossary: delphinidin = 3,3′,4′,5,5′,7-hexahydroxyflavylium
cyanidin = 3,3′,4′,5,7-pentahydroxyflavylium
myricetin = 3,3′,4′,5,5′,7-hexahydroxyflavone
quercetin = 3,3′,4′,5,7-pentahydroxyflavone
Other name(s): AOMT; CrOMT2
Systematic name: S-adenosyl-L-methionine:flavonoid 3′-O-methyltransferase
Comments: Isolated from Vitis vinifera (grape) [2]. Most active with delphinidin 3-glucoside but also acts on cyanidin 3-glucoside, cyanidin, myricetin, quercetin and quercetin 3-glucoside. The enzyme from Catharanthus roseus was most active with myricetin [1].
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Cacace, S., Schröder, G., Wehinger, E., Strack, D., Schmidt, J. and Schröder, J. A flavonol O-methyltransferase from Catharanthus roseus performing two sequential methylations. Phytochemistry 62 (2003) 127–137. [DOI] [PMID: 12482447]
2.  Hugueney, P., Provenzano, S., Verries, C., Ferrandino, A., Meudec, E., Batelli, G., Merdinoglu, D., Cheynier, V., Schubert, A. and Ageorges, A. A novel cation-dependent O-methyltransferase involved in anthocyanin methylation in grapevine. Plant Physiol. 150 (2009) 2057–2070. [DOI] [PMID: 19525322]
[EC 2.1.1.267 created 2013, modified 2014]
 
 
*EC 2.1.1.282
Accepted name: tRNAPhe 7-[(3-amino-3-carboxypropyl)-4-demethylwyosine37-N4]-methyltransferase
Reaction: S-adenosyl-L-methionine + 7-[(3S)-(3-amino-3-carboxypropyl)]-4-demethylwyosine37 in tRNAPhe = S-adenosyl-L-homocysteine + 7-[(3S)-(3-amino-3-carboxypropyl)]wyosine37 in tRNAPhe
For diagram of wyosine biosynthesis, click here
Glossary: wyosine = 4,6-dimethyl-3-(β-D-ribofuranosyl)-3,4-dihydro-9H-imidazo[1,2-a]purin-9-one
wybutosine = yW = 7-{(3S)-4-methoxy-3-[(methoxycarbonyl)amino]-4-oxobutyl}-4,5-dimethyl-3-(β-D-ribofuranosyl)-3,4-dihydro-9H-imidazo[1,2-a]purin-9-one
Other name(s): TYW3 (gene name); tRNA-yW synthesizing enzyme-3
Systematic name: S-adenosyl-L-methionine:tRNAPhe 7-[(3S)-(3-amino-3-carboxypropyl)-4-demethylwyosine-N4]-methyltransferase
Comments: The enzyme is involved in the biosynthesis of hypermodified tricyclic bases found at position 37 of certain tRNAs. These modifications are important for translational reading-frame maintenance. The enzyme is found in all eukaryotes and in some archaea, but not in bacteria. The eukaryotic enzyme is involved in the biosynthesis of wybutosine.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Noma, A., Kirino, Y., Ikeuchi, Y. and Suzuki, T. Biosynthesis of wybutosine, a hyper-modified nucleoside in eukaryotic phenylalanine tRNA. EMBO J. 25 (2006) 2142–2154. [DOI] [PMID: 16642040]
[EC 2.1.1.282 created 2013, modified 2014]
 
 
EC 2.1.1.289
Accepted name: cobalt-precorrin-7 (C5)-methyltransferase
Reaction: S-adenosyl-L-methionine + cobalt-precorrin-7 = S-adenosyl-L-homocysteine + cobalt-precorrin-8
For diagram of anaerobic corrin biosynthesis (part 2), click here
Other name(s): CbiE
Systematic name: S-adenosyl-L-methionine:precorrin-7 C5-methyltransferase
Comments: This enzyme catalyses the methylation at C-5 of cobalt-precorrin-7, a step in the anaerobic (early cobalt insertion) adenosylcobalamin biosynthesis pathway. The equivalent activity in the aerobic adenosylcobalamin biosynthesis pathway is catalysed by the bifunctional enzyme EC 2.1.1.132, precorrin-6B C5,15-methyltransferase (decarboxylating).
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Santander, P.J., Kajiwara, Y., Williams, H.J. and Scott, A.I. Structural characterization of novel cobalt corrinoids synthesized by enzymes of the vitamin B12 anaerobic pathway. Bioorg. Med. Chem. 14 (2006) 724–731. [DOI] [PMID: 16198574]
2.  Moore, S.J., Lawrence, A.D., Biedendieck, R., Deery, E., Frank, S., Howard, M.J., Rigby, S.E. and Warren, M.J. Elucidation of the anaerobic pathway for the corrin component of cobalamin (vitamin B12). Proc. Natl. Acad. Sci. USA 110 (2013) 14906–14911. [DOI] [PMID: 23922391]
[EC 2.1.1.289 created 2010]
 
 
EC 2.1.1.290
Accepted name: tRNAPhe [7-(3-amino-3-carboxypropyl)wyosine37-O]-methyltransferase
Reaction: S-adenosyl-L-methionine + 7-[(3S)-3-amino-3-carboxypropyl]wyosine37 in tRNAPhe = S-adenosyl-L-homocysteine + 7-[(3S)-3-amino-3-(methoxycarbonyl)propyl]wyosine37 in tRNAPhe
For diagram of wyosine biosynthesis, click here
Glossary: wyosine = 4,6-dimethyl-3-(β-D-ribofuranosyl)-3,4-dihydro-9H-imidazo[1,2-a]purin-9-one
wybutosine = yW = 7-[(3S)-3-(methoxycarbonyl)-3-(methoxycarbonylamino)propyl]-4,5-dimethyl-3-(β-D-ribofuranosyl)-3,4-dihydro-9H-imidazo[1,2-a]purin-9-one
Other name(s): TYW4 (ambiguous); tRNA-yW synthesizing enzyme-4 (ambiguous)
Systematic name: S-adenosyl-L-methionine:tRNAPhe {7-[(3S)-3-amino-3-carboxypropyl]wyosine37-O}-methyltransferase
Comments: The enzyme is found only in eukaryotes, where it is involved in the biosynthesis of wybutosine, a hypermodified tricyclic base found at position 37 of certain tRNAs. The modification is important for translational reading-frame maintenance. In some species that produce hydroxywybutosine the enzyme uses 7-(2-hydroxy-3-amino-3-carboxypropyl)wyosine37 in tRNAPhe as substrate. The enzyme also has the activity of EC 2.3.1.231, tRNAPhe 7-[(3S)-4-methoxy-(3-amino-3-carboxypropyl)wyosine37-O]-carbonyltransferase [2].
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Noma, A., Kirino, Y., Ikeuchi, Y. and Suzuki, T. Biosynthesis of wybutosine, a hyper-modified nucleoside in eukaryotic phenylalanine tRNA. EMBO J. 25 (2006) 2142–2154. [DOI] [PMID: 16642040]
2.  Suzuki, Y., Noma, A., Suzuki, T., Ishitani, R. and Nureki, O. Structural basis of tRNA modification with CO2 fixation and methylation by wybutosine synthesizing enzyme TYW4. Nucleic Acids Res. 37 (2009) 2910–2925. [DOI] [PMID: 19287006]
3.  Kato, M., Araiso, Y., Noma, A., Nagao, A., Suzuki, T., Ishitani, R. and Nureki, O. Crystal structure of a novel JmjC-domain-containing protein, TYW5, involved in tRNA modification. Nucleic Acids Res. 39 (2011) 1576–1585. [DOI] [PMID: 20972222]
[EC 2.1.1.290 created 2013]
 
 
EC 2.1.1.291
Accepted name: (R,S)-reticuline 7-O-methyltransferase
Reaction: (1) S-adenosyl-L-methionine + (S)-reticuline = S-adenosyl-L-homocysteine + (S)-laudanine
(2) S-adenosyl-L-methionine + (R)-reticuline = S-adenosyl-L-homocysteine + (R)-laudanine
For diagram of laudanine biosynthesis, click here
Glossary: (S)-reticuline = (1S)-1-[(3-hydroxy-4-methoxyphenyl)methyl]-6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-ol
(R)-reticuline = (1R)-1-[(3-hydroxy-4-methoxyphenyl)methyl]-6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-ol
(S)-laudanine = 5-[((1S)-6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-1-yl)methyl]-2-methoxyphenol
(R)-laudanine = 5-[((1R)-6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-1-yl)methyl]-2-methoxyphenol
Systematic name: S-adenosyl-L-methionine:(R,S)-reticuline 7-O-methyltransferase
Comments: The enzyme from the plant Papaver somniferum (opium poppy) methylates (S)- and (R)-reticuline with equal efficiency and is involved in the biosynthesis of tetrahydrobenzylisoquinoline alkaloids.
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Ounaroon, A., Decker, G., Schmidt, J., Lottspeich, F. and Kutchan, T.M. (R,S)-Reticuline 7-O-methyltransferase and (R,S)-norcoclaurine 6-O-methyltransferase of Papaver somniferum - cDNA cloning and characterization of methyl transfer enzymes of alkaloid biosynthesis in opium poppy. Plant J. 36 (2003) 808–819. [DOI] [PMID: 14675446]
2.  Weid, M., Ziegler, J. and Kutchan, T.M. The roles of latex and the vascular bundle in morphine biosynthesis in the opium poppy, Papaver somniferum. Proc. Natl. Acad. Sci. USA 101 (2004) 13957–13962. [DOI] [PMID: 15353584]
[EC 2.1.1.291 created 2013]
 
 
EC 2.1.1.292
Accepted name: carminomycin 4-O-methyltransferase
Reaction: S-adenosyl-L-methionine + carminomycin = S-adenosyl-L-homocysteine + daunorubicin
For diagram of daunorubicin biosynthesis, click here
Glossary: daunorubicin = (+)-daunomycin = (8S,10S)-8-acetyl-10-[(2S,4S,5S,6S)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-6,8,11-trihydroxy-1-methoxy-9,10-dihydro-7H-tetracene-5,12-dione
carminomycin = (1S,3S)-3-acetyl-3,5,10,12-tetrahydroxy-6,11-dioxo-1,2,3,4,6,11-hexahydrotetracen-1-yl 3-amino-2,3,6-trideoxy-α-L-lyxo-hexopyranoside = (1S,3S)-3-acetyl-3,5,10,12-tetrahydroxy-6,11-dioxo-1,2,3,4,6,11-hexahydronaphthacen-1-yl 3-amino-2,3,6-trideoxy-α-L-lyxo-hexopyranoside
carubicin = (1S,3S)-3-acetyl-3,5,12-trihydroxy-10-methoxy-6,11-dioxo-1,2,3,4,6,11-hexahydrotetracen-1-yl 3-amino-2,3,6-trideoxy-α-L-lyxo-hexopyranoside
= (8S,10S)-8-acetyl-10-[(3-amino-2,3,6-trideoxy-α-L-lyxo-hexopyranosyl)oxy]-6,8,11-trihydroxy-1-methoxy-7,8,9,10-tetrahydronaphthacene-5,12-dione
Other name(s): DnrK; DauK
Systematic name: S-adenosyl-L-methionine:carminomycin 4-O-methyltransferase
Comments: The enzymes from the Gram-positive bacteria Streptomyces sp. C5 and Streptomyces peucetius are involved in the biosynthesis of the anthracycline daunorubicin. In vitro the enzyme from Streptomyces sp. C5 also catalyses the 4-O-methylation of 13-dihydrocarminomycin, rhodomycin D and 10-carboxy-13-deoxycarminomycin [3].
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Connors, N.C. and Strohl, W.R. Partial purification and properties of carminomycin 4-O-methyltransferase from Streptomyces sp. strain C5. J. Gen. Microbiol. 139 Pt 6 (1993) 1353–1362. [DOI] [PMID: 8360627]
2.  Jansson, A., Koskiniemi, H., Mantsala, P., Niemi, J. and Schneider, G. Crystal structure of a ternary complex of DnrK, a methyltransferase in daunorubicin biosynthesis, with bound products. J. Biol. Chem. 279 (2004) 41149–41156. [DOI] [PMID: 15273252]
3.  Dickens, M.L., Priestley, N.D. and Strohl, W.R. In vivo and in vitro bioconversion of ε-rhodomycinone glycoside to doxorubicin: functions of DauP, DauK, and DoxA. J. Bacteriol. 179 (1997) 2641–2650. [DOI] [PMID: 9098063]
[EC 2.1.1.292 created 2013]
 
 
EC 2.1.1.293
Accepted name: 6-hydroxytryprostatin B O-methyltransferase
Reaction: S-adenosyl-L-methionine + 6-hydroxytryprostatin B = S-adenosyl-L-homocysteine + tryprostatin A
For diagram of fumitremorgin alkaloid biosynthesis (part 1), click here
Glossary: 6-hydroxytryprostatin B = (3S,8aS)-3-{[6-hydroxy-2-(3-methylbut-2-en-1-yl)-1H-indol-3-yl]methyl}hexahydropyrrolo[1,2-a]pyrazine-1,4-dione
tryprostatin A = (3S,8aS)-3-{[6-methoxy-2-(3-methylbut-2-en-1-yl)-1H-indol-3-yl]methyl}hexahydropyrrolo[1,2-a]pyrazine-1,4-dione
Other name(s): ftmD (gene name)
Systematic name: S-adenosyl-L-methionine:6-hydroxytryprostatin B O-methyltransferase
Comments: Involved in the biosynthetic pathways of several indole alkaloids such as tryprostatins, fumitremorgins and verruculogen.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Kato, N., Suzuki, H., Okumura, H., Takahashi, S. and Osada, H. A point mutation in ftmD blocks the fumitremorgin biosynthetic pathway in Aspergillus fumigatus strain Af293. Biosci. Biotechnol. Biochem. 77 (2013) 1061–1067. [DOI] [PMID: 23649274]
[EC 2.1.1.293 created 2013]
 
 
EC 2.1.1.294
Accepted name: 3-O-phospho-polymannosyl GlcNAc-diphospho-ditrans,octacis-undecaprenol 3-phospho-methyltransferase
Reaction: S-adenosyl-L-methionine + 3-O-phospho-α-D-Man-(1→2)-α-D-Man-(1→2)-[α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)]n-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol = S-adenosyl-L-homocysteine + 3-O-methylphospho-α-D-Man-(1→2)-α-D-Man-(1→2)-[α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)]n-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol
Other name(s): WbdD; S-adenosyl-L-methionine:3-O-phospho-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Man-(1→3)]n-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-GlcNAc-α-diphospho-ditrans,octacis-undecaprenol 3-phospho-methyltransferase
Systematic name: S-adenosyl-L-methionine:3-O-phospho-α-D-Man-(1→2)-α-D-Man-(1→2)-[α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)]n-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol 3-phospho-methyltransferase
Comments: The enzyme is involved in the biosynthesis of the polymannose O-polysaccharide in the outer leaflet of the membrane of Escherichia coli serotype O9a. O-Polysaccharide structures vary extensively because of differences in the number and type of sugars in the repeat unit. The dual kinase/methylase WbdD also catalyses the preceding phosphorylation of α-D-Man-(1→2)-α-D-Man-(1→2)-[α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)]n-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol (cf. EC 2.7.1.181, polymannosyl GlcNAc-diphospho-ditrans,octacis-undecaprenol kinase).
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Clarke, B.R., Cuthbertson, L. and Whitfield, C. Nonreducing terminal modifications determine the chain length of polymannose O antigens of Escherichia coli and couple chain termination to polymer export via an ATP-binding cassette transporter. J. Biol. Chem. 279 (2004) 35709–35718. [DOI] [PMID: 15184370]
2.  Clarke, B.R., Greenfield, L.K., Bouwman, C. and Whitfield, C. Coordination of polymerization, chain termination, and export in assembly of the Escherichia coli lipopolysaccharide O9a antigen in an ATP-binding cassette transporter-dependent pathway. J. Biol. Chem. 284 (2009) 30662–30672. [DOI] [PMID: 19734145]
3.  Clarke, B.R., Richards, M.R., Greenfield, L.K., Hou, D., Lowary, T.L. and Whitfield, C. In vitro reconstruction of the chain termination reaction in biosynthesis of the Escherichia coli O9a O-polysaccharide: the chain-length regulator, WbdD, catalyzes the addition of methyl phosphate to the non-reducing terminus of the growing glycan. J. Biol. Chem. 286 (2011) 41391–41401. [DOI] [PMID: 21990359]
4.  Liston, S.D., Clarke, B.R., Greenfield, L.K., Richards, M.R., Lowary, T.L. and Whitfield, C. Domain interactions control complex formation and polymerase specificity in the biosynthesis of the Escherichia coli O9a antigen. J. Biol. Chem. 290 (2015) 1075–1085. [DOI] [PMID: 25422321]
[EC 2.1.1.294 created 2014, modified 2018]
 
 
EC 2.1.1.295
Accepted name: 2-methyl-6-phytyl-1,4-hydroquinone methyltransferase
Reaction: (1) S-adenosyl-L-methionine + 2-methyl-6-phytylbenzene-1,4-diol = S-adenosyl-L-homocysteine + 2,3-dimethyl-6-phytylbenzene-1,4-diol
(2) S-adenosyl-L-methionine + 2-methyl-6-all-trans-nonaprenylbenzene-1,4-diol = S-adenosyl-L-homocysteine + plastoquinol
(3) S-adenosyl-L-methionine + 6-geranylgeranyl-2-methylbenzene-1,4-diol = S-adenosyl-L-homocysteine + 6-geranylgeranyl-2,3-dimethylbenzene-1,4-diol
For diagram of tocopherol biosynthesis, click here and for diagram of tocotrienol biosynthesis, click here
Other name(s): VTE3 (gene name); 2-methyl-6-solanyl-1,4-hydroquinone methyltransferase; MPBQ/MSBQ methyltransferase; MPBQ/MSBQ MT
Systematic name: S-adenosyl-L-methionine:2-methyl-6-phytyl-1,4-benzoquinol C-3-methyltransferase
Comments: Involved in the biosynthesis of plastoquinol, as well as vitamin E (tocopherols and tocotrienols).
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Shintani, D.K., Cheng, Z. and DellaPenna, D. The role of 2-methyl-6-phytylbenzoquinone methyltransferase in determining tocopherol composition in Synechocystis sp. PCC6803. FEBS Lett. 511 (2002) 1–5. [DOI] [PMID: 11821038]
2.  Cheng, Z., Sattler, S., Maeda, H., Sakuragi, Y., Bryant, D.A. and DellaPenna, D. Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in cyanobacteria and photosynthetic eukaryotes. Plant Cell 15 (2003) 2343–2356. [DOI] [PMID: 14508009]
3.  Van Eenennaam, A.L., Lincoln, K., Durrett, T.P., Valentin, H.E., Shewmaker, C.K., Thorne, G.M., Jiang, J., Baszis, S.R., Levering, C.K., Aasen, E.D., Hao, M., Stein, J.C., Norris, S.R. and Last, R.L. Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell 15 (2003) 3007–3019. [DOI] [PMID: 14630966]
[EC 2.1.1.295 created 2014]
 
 
EC 2.1.1.296
Accepted name: methyltransferase cap2
Reaction: S-adenosyl-L-methionine + a 5′-(N7-methyl 5′-triphosphoguanosine)-(2′-O-methyl-ribonucleotide)-(ribonucleotide)-[mRNA] = S-adenosyl-L-homocysteine + a 5′-(N7-methyl 5′-triphosphoguanosine)-(2′-O-methyl-ribonucleotide)-(2′-O-methyl-ribonucleotide)-[mRNA]
Other name(s): CMTR2 (gene name); MTR2; cap2-MTase; mRNA (nucleoside-2′-O)-methyltransferase (ambiguous)
Systematic name: S-adenosyl-L-methionine:5′-(N7-methyl 5′-triphosphoguanosine)-(2′-O-methyl-ribonucleotide)-ribonucleotide-[mRNA] 2′-O-methyltransferase
Comments: The enzyme, found in higher eukaryotes including insects and vertebrates, and their viruses, methylates the ribose of the ribonucleotide at the second transcribed position of mRNAs and snRNAs. This methylation event is known as cap2. The human enzyme can also methylate mRNA molecules where the upstream ribonucleotide is not methylated (see EC 2.1.1.57, methyltransferase cap1), but with lower efficiency [2].
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Arhin, G.K., Ullu, E. and Tschudi, C. 2′-O-methylation of position 2 of the trypanosome spliced leader cap 4 is mediated by a 48 kDa protein related to vaccinia virus VP39. Mol. Biochem. Parasitol. 147 (2006) 137–139. [DOI] [PMID: 16516986]
2.  Werner, M., Purta, E., Kaminska, K.H., Cymerman, I.A., Campbell, D.A., Mittra, B., Zamudio, J.R., Sturm, N.R., Jaworski, J. and Bujnicki, J.M. 2′-O-ribose methylation of cap2 in human: function and evolution in a horizontally mobile family. Nucleic Acids Res. 39 (2011) 4756–4768. [DOI] [PMID: 21310715]
[EC 2.1.1.296 created 2014, modified 2021]
 
 
EC 2.1.1.297
Accepted name: peptide chain release factor N5-glutamine methyltransferase
Reaction: S-adenosyl-L-methionine + [peptide chain release factor 1 or 2]-L-glutamine = S-adenosyl-L-homocysteine + [peptide chain release factor 1 or 2]-N5-methyl-L-glutamine
Other name(s): N5-glutamine S-adenosyl-L-methionine dependent methyltransferase; N5-glutamine MTase; HemK; PrmC
Systematic name: S-adenosyl-L-methionine:[peptide chain release factor 1 or 2]-L-glutamine (N5-glutamine)-methyltransferase
Comments: Modifies the glutamine residue in the universally conserved glycylglycylglutamine (GGQ) motif of peptide chain release factor, resulting in almost complete loss of release activity.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Nakahigashi, K., Kubo, N., Narita, S., Shimaoka, T., Goto, S., Oshima, T., Mori, H., Maeda, M., Wada, C. and Inokuchi, H. HemK, a class of protein methyl transferase with similarity to DNA methyl transferases, methylates polypeptide chain release factors, and hemK knockout induces defects in translational termination. Proc. Natl. Acad. Sci. USA 99 (2002) 1473–1478. [DOI] [PMID: 11805295]
2.  Heurgue-Hamard, V., Champ, S., Engstrom, A., Ehrenberg, M. and Buckingham, R.H. The hemK gene in Escherichia coli encodes the N5-glutamine methyltransferase that modifies peptide release factors. EMBO J. 21 (2002) 769–778. [DOI] [PMID: 11847124]
3.  Schubert, H.L., Phillips, J.D. and Hill, C.P. Structures along the catalytic pathway of PrmC/HemK, an N5-glutamine AdoMet-dependent methyltransferase. Biochemistry 42 (2003) 5592–5599. [DOI] [PMID: 12741815]
4.  Yoon, H.J., Kang, K.Y., Ahn, H.J., Shim, S.M., Ha, J.Y., Lee, S.K., Mikami, B. and Suh, S.W. X-ray crystallographic studies of HemK from Thermotoga maritima, an N5-glutamine methyltransferase. Mol. Cells 16 (2003) 266–269. [PMID: 14651272]
5.  Yang, Z., Shipman, L., Zhang, M., Anton, B.P., Roberts, R.J. and Cheng, X. Structural characterization and comparative phylogenetic analysis of Escherichia coli HemK, a protein (N5)-glutamine methyltransferase. J. Mol. Biol. 340 (2004) 695–706. [DOI] [PMID: 15223314]
6.  Pannekoek, Y., Heurgue-Hamard, V., Langerak, A.A., Speijer, D., Buckingham, R.H. and van der Ende, A. The N5-glutamine S-adenosyl-L-methionine-dependent methyltransferase PrmC/HemK in Chlamydia trachomatis methylates class 1 release factors. J. Bacteriol. 187 (2005) 507–511. [DOI] [PMID: 15629922]
[EC 2.1.1.297 created 2014]
 
 
EC 2.1.1.298
Accepted name: ribosomal protein uL3 N5-glutamine methyltransferase
Reaction: S-adenosyl-L-methionine + [ribosomal protein uL3]-L-glutamine = S-adenosyl-L-homocysteine + [ribosomal protein uL3]-N5-methyl-L-glutamine
Other name(s): YfcB; PrmB
Systematic name: S-adenosyl-L-methionine:[ribosomal protein uL3]-L-glutamine (N5-glutamine)-methyltransferase
Comments: Modifies the glutamine residue in the glycylglycylglutamine (GGQ) motif of ribosomal protein uL3 (Gln150 in the protein from the bacterium Escherichia coli). The enzyme does not act on peptide chain release factor 1 or 2.
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Heurgue-Hamard, V., Champ, S., Engstrom, A., Ehrenberg, M. and Buckingham, R.H. The hemK gene in Escherichia coli encodes the N5-glutamine methyltransferase that modifies peptide release factors. EMBO J. 21 (2002) 769–778. [DOI] [PMID: 11847124]
[EC 2.1.1.298 created 2014, modified 2023]
 
 
EC 2.1.1.299
Accepted name: protein N-terminal monomethyltransferase
Reaction: S-adenosyl-L-methionine + N-terminal-(A,P,S)PK-[protein] = S-adenosyl-L-homocysteine + N-terminal-N-methyl-N-(A,P,S)PK-[protein]
Other name(s): NRMT2 (gene name); METTL11B (gene name); N-terminal monomethylase
Systematic name: S-adenosyl-L-methionine:N-terminal-(A,P,S)PK-[protein] monomethyltransferase
Comments: This enzyme methylates the N-terminus of target proteins containing the N-terminal motif [Ala/Pro/Ser]-Pro-Lys after the initiator L-methionine is cleaved. In contrast to EC 2.1.1.244, protein N-terminal methyltransferase, the protein only adds one methyl group to the N-terminal.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Petkowski, J.J., Bonsignore, L.A., Tooley, J.G., Wilkey, D.W., Merchant, M.L., Macara, I.G. and Schaner Tooley, C.E. NRMT2 is an N-terminal monomethylase that primes for its homologue NRMT1. Biochem. J. 456 (2013) 453–462. [DOI] [PMID: 24090352]
[EC 2.1.1.299 created 2014]
 
 
EC 2.1.1.300
Accepted name: pavine N-methyltransferase
Reaction: S-adenosyl-L-methionine + (±)-pavine = S-adenosyl-L-homocysteine + N-methylpavine
Other name(s): PavNMT
Systematic name: S-adenosyl-L-methionine:(±)-pavine N-methyltransferase
Comments: The enzyme, isolated from the plant Thalictrum flavum, also methylates (R,S)-stylopine and (S)-scoulerine (11%) with lower activity (14% and 11%, respectively).
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Jain, A., Ziegler, J., Liscombe, D.K., Facchini, P.J., Tucker, P.A. and Panjikar, S. Purification, crystallization and X-ray diffraction analysis of pavine N-methyltransferase from Thalictrum flavum. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64 (2008) 1066–1069. [DOI] [PMID: 18997344]
2.  Liscombe, D.K., Ziegler, J., Schmidt, J., Ammer, C. and Facchini, P.J. Targeted metabolite and transcript profiling for elucidating enzyme function: isolation of novel N-methyltransferases from three benzylisoquinoline alkaloid-producing species. Plant J. 60 (2009) 729–743. [DOI] [PMID: 19624470]
[EC 2.1.1.300 created 2014]
 
 
*EC 2.3.1.86
Accepted name: fatty-acyl-CoA synthase system
Reaction: acetyl-CoA + n malonyl-CoA + 2n NADPH + 4n H+ = long-chain-acyl-CoA + n CoA + n CO2 + 2n NADP+
Other name(s): yeast fatty acid synthase; FAS1 (gene name); FAS2 (gene name); fatty-acyl-CoA synthase
Systematic name: acyl-CoA:malonyl-CoA C-acyltransferase (decarboxylating, oxoacyl- and enoyl-reducing)
Comments: The enzyme from yeasts (Ascomycota and Basidiomycota) is a multi-functional protein complex composed of two subunits. One subunit catalyses the reactions EC 1.1.1.100, 3-oxoacyl-[acyl-carrier-protein] reductase and EC 2.3.1.41, β-ketoacyl-[acyl-carrier-protein] synthase I, while the other subunit catalyses the reactions of EC 2.3.1.38, [acyl-carrier-protein] S-acetyltransferase, EC 2.3.1.39, [acyl-carrier-protein] S-malonyltransferase, EC 4.2.1.59, 3-hydroxyacyl-[acyl-carrier-protein] dehydratase, EC 1.3.1.10, enoyl-[acyl-carrier-protein] reductase (NADPH, Si-specific) and EC 1.1.1.279, (R)-3-hydroxyacid-ester dehydrogenase. The enzyme system differs from the animal system (EC 2.3.1.85, fatty-acid synthase system) in that the enoyl reductase domain requires FMN as a cofactor, and the ultimate product is an acyl-CoA (usually palmitoyl-CoA) instead of a free fatty acid.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB, CAS registry number: 94219-29-1
References:
1.  Schweitzer, E., Kniep, B., Castorph, H. and Holzner, U. Pantetheine-free mutants of the yeast fatty-acid-synthetase complex. Eur. J. Biochem. 39 (1973) 353–362. [DOI] [PMID: 4590449]
2.  Wakil, S.J., Stoops, J.K. and Joshi, V.C. Fatty acid synthesis and its regulation. Annu. Rev. Biochem. 52 (1983) 537–579. [DOI] [PMID: 6137188]
3.  Tehlivets, O., Scheuringer, K. and Kohlwein, S.D. Fatty acid synthesis and elongation in yeast. Biochim. Biophys. Acta 1771 (2007) 255–270. [DOI] [PMID: 16950653]
[EC 2.3.1.86 created 1984, modified 2003, modified 2013, modified 2019]
 
 
EC 2.3.1.230
Accepted name: 2-heptyl-4(1H)-quinolone synthase
Reaction: octanoyl-CoA + (2-aminobenzoyl)acetate = 2-heptyl-4-quinolone + CoA + CO2 + H2O (overall reaction)
(1a) octanoyl-CoA + L-cysteinyl-[PqsC protein] = S-octanoyl-L-cysteinyl-[PqsC protein] + CoA
(1b) S-octanoyl-L-cysteinyl-[PqsC protein] + (2-aminobenzoyl)acetate = 1-(2-aminophenyl)decane-1,3-dione + CO2 + L-cysteinyl-[PqsC protein]
(1c) 1-(2-aminophenyl)decane-1,3-dione = 2-heptyl-4-quinolone + H2O
Glossary: 2-heptyl-4-quinolone = 2-heptylquinolin-4(1H)-one
Other name(s): pqsBC (gene names); malonyl-CoA:anthraniloyl-CoA C-acetyltransferase (decarboxylating)
Systematic name: octanoyl-CoA:(2-aminobenzoyl)acetate octanoyltransferase
Comments: The enzyme, characterized from the bacterium Pseudomonas aeruginosa, is a heterodimeric complex. The PqsC subunit acquires an octanoyl group from octanoyl-CoA and attaches it to an internal cysteine residue. Together with the PqsB subunit, the proteins catalyse the coupling of the octanoyl group with (2-aminobenzoyl)acetate, leading to decarboxylation and dehydration events that result in closure of the quinoline ring.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Dulcey, C.E., Dekimpe, V., Fauvelle, D.A., Milot, S., Groleau, M.C., Doucet, N., Rahme, L.G., Lepine, F. and Deziel, E. The end of an old hypothesis: the pseudomonas signaling molecules 4-hydroxy-2-alkylquinolines derive from fatty acids, not 3-ketofatty acids. Chem. Biol. 20 (2013) 1481–1491. [DOI] [PMID: 24239007]
2.  Drees, S.L., Li, C., Prasetya, F., Saleem, M., Dreveny, I., Williams, P., Hennecke, U., Emsley, J. and Fetzner, S. PqsBC, a condensing enzyme in the biosynthesis of the Pseudomonas aeruginosa quinolone signal: crystal structure, inhibition, and reaction mechanism. J. Biol. Chem. 291 (2016) 6610–6624. [DOI] [PMID: 26811339]
[EC 2.3.1.230 created 2013, modified 2017]
 
 
EC 2.3.1.231
Accepted name: tRNAPhe {7-[3-amino-3-(methoxycarbonyl)propyl]wyosine37-N}-methoxycarbonyltransferase
Reaction: S-adenosyl-L-methionine + 7-[(3S)-3-amino-3-(methoxycarbonyl)propyl]wyosine37 in tRNAPhe + CO2 = S-adenosyl-L-homocysteine + wybutosine37 in tRNAPhe
For diagram of wyosine biosynthesis, click here
Glossary: wyosine = 4,6-dimethyl-3-(β-D-ribofuranosyl)-3,4-dihydro-9H-imidazo[1,2-a]purin-9-one
wybutosine = yW = 7-{(3S)-3-(methoxycarbonyl)-3-(methoxycarbonylamino)propyl}-4,5-dimethyl-3-(β-D-ribofuranosyl)-3,4-dihydro-9H-imidazo[1,2-a]purin-9-one
Other name(s): TYW4 (ambiguous); tRNA-yW synthesizing enzyme-4 (ambiguous)
Systematic name: S-adenosyl-L-methionine:tRNAPhe {7-[(3S)-3-amino-3-(methoxycarbonyl)propyl]wyosine37-N}-methyltransferase (carbon dioxide-adding)
Comments: The enzyme is found only in eukaryotes, where it is involved in the biosynthesis of wybutosine, a hypermodified tricyclic base found at position 37 of certain tRNAs. The modification is important for translational reading-frame maintenance. In some species that produce hydroxywybutosine the enzyme uses 7-[2-hydroxy-3-amino-3-(methoxycarbonyl)propyl]wyosine37 in tRNAPhe as substrate. The enzyme also has the activity of EC 2.1.1.290, tRNAPhe [7-(3-amino-3-carboxypropyl)wyosine37-O]-methyltransferase [2].
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Noma, A., Kirino, Y., Ikeuchi, Y. and Suzuki, T. Biosynthesis of wybutosine, a hyper-modified nucleoside in eukaryotic phenylalanine tRNA. EMBO J. 25 (2006) 2142–2154. [DOI] [PMID: 16642040]
2.  Suzuki, Y., Noma, A., Suzuki, T., Ishitani, R. and Nureki, O. Structural basis of tRNA modification with CO2 fixation and methylation by wybutosine synthesizing enzyme TYW4. Nucleic Acids Res. 37 (2009) 2910–2925. [DOI] [PMID: 19287006]
3.  Kato, M., Araiso, Y., Noma, A., Nagao, A., Suzuki, T., Ishitani, R. and Nureki, O. Crystal structure of a novel JmjC-domain-containing protein, TYW5, involved in tRNA modification. Nucleic Acids Res. 39 (2011) 1576–1585. [DOI] [PMID: 20972222]
[EC 2.3.1.231 created 2013]
 
 
EC 2.3.1.232
Accepted name: methanol O-anthraniloyltransferase
Reaction: anthraniloyl-CoA + methanol = CoA + O-methyl anthranilate
Glossary: anthraniloyl-CoA = 2-aminobenzoyl-CoA
Other name(s): AMAT; anthraniloyl-coenzyme A (CoA):methanol acyltransferase
Systematic name: anthraniloyl-CoA:methanol O-anthraniloyltransferase
Comments: The enzyme from Concord grape (Vitis labrusca) is solely responsible for the production of O-methyl anthranilate, an important aroma and flavor compound in the grape. The enzyme has a broad substrate specificity, and can use a range of alcohols with substantial activity, the best being butanol, benzyl alcohol, iso-pentanol, octanol and 2-propanol. It can use benzoyl-CoA and acetyl-CoA as acyl donors with lower efficiency. In addition to O-methyl anthranilate, the enzyme might be responsible for the production of ethyl butanoate, methyl-3-hydroxy butanoate and ethyl-3-hydroxy butanoate, which are present in large quantities in the grapes. Also catalyses EC 2.3.1.196, benzyl alcohol O-benzoyltransferase.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Wang, J. and De Luca, V. The biosynthesis and regulation of biosynthesis of Concord grape fruit esters, including ’foxy’ methylanthranilate. Plant J. 44 (2005) 606–619. [DOI] [PMID: 16262710]
[EC 2.3.1.232 created 2014]
 
 
*EC 2.3.3.1
Accepted name: citrate (Si)-synthase
Reaction: acetyl-CoA + H2O + oxaloacetate = citrate + CoA
For diagram of the citric acid cycle, click here and for diagram of the glyoxylate cycle, click here
Other name(s): (R)-citric synthase; citrate oxaloacetate-lyase [(pro-3S)-CH2COO-→acetyl-CoA]
Systematic name: acetyl-CoA:oxaloacetate C-acetyltransferase [thioester-hydrolysing, (pro-S)-carboxymethyl-forming]
Comments: The stereospecificity of this enzyme is opposite to that of EC 2.3.3.3, citrate (Re)-synthase, which is found in some anaerobes. Citrate synthase for which the stereospecificity with respect to C-2 of oxaloacetate has not been established are included in EC 2.3.3.16, citrate synthase (unknown stereospecificity).
Links to other databases: BRENDA, EXPASY, Gene, GTD, KEGG, PDB, CAS registry number: 9027-96-7
References:
1.  Lenz, H., Buckel, W., Wunderwald, P., Biedermann, G., Buschmeier, V., Eggerer, H., Cornforth, J.W., Redmond, J.W. and Mallaby, R. Stereochemistry of si-citrate synthase and ATP-citrate-lyase reactions. Eur. J. Biochem. 24 (1971) 207–215. [DOI] [PMID: 5157292]
2.  Karpusas, M., Branchaud, B. and Remington, S.J. Proposed mechanism for the condensation reaction of citrate synthase: 1.9-Å structure of the ternary complex with oxaloacetate and carboxymethyl coenzyme A. Biochemistry 29 (1990) 2213–2219. [PMID: 2337600]
3.  van Rooyen, J.P., Mienie, L.J., Erasmus, E., De Wet, W.J., Ketting, D., Duran, M. and Wadman, S.K. Identification of the stereoisomeric configurations of methylcitric acid produced by si-citrate synthase and methylcitrate synthase using capillary gas chromatography-mass spectrometry. J. Inherit. Metab. Dis. 17 (1994) 738–747. [PMID: 7707698]
[EC 2.3.3.1 created 1961 as EC 4.1.3.7, transferred 2002 to EC 2.3.3.1, modified 2014]
 
 
EC 2.3.3.16
Accepted name: citrate synthase (unknown stereospecificity)
Reaction: acetyl-CoA + H2O + oxaloacetate = citrate + CoA
Other name(s): citrate condensing enzyme; CoA-acetylating citrate oxaloacetate-lyase; citrate synthetase; citric synthase; citric-condensing enzyme; citrogenase; condensing enzyme (ambiguous); oxaloacetate transacetase; oxalacetic transacetase
Systematic name: acetyl-CoA:oxaloacetate C-acetyltransferase (thioester-hydrolysing)
Comments: This entry has been included to accommodate those citrate synthases for which the stereospecificity with respect to C-2 of oxaloacetate has not been established [cf. EC 2.3.3.1, citrate (Si)-synthase and EC 2.3.3.3, citrate (Re)-synthase].
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Lohlein-Werhahn, G., Goepfert, P. and Eggerer, H. Purification and properties of an archaebacterial enzyme: citrate synthase from Sulfolobus solfataricus. Biol. Chem. Hoppe Seyler 369 (1988) 109–113. [PMID: 3130075]
2.  Sievers, M., Stockli, M. and Teuber, M. Purification and properties of citrate synthase from Acetobacter europaeus. FEMS Microbiol. Lett. 146 (1997) 53–58. [DOI] [PMID: 8997706]
3.  Belova, L.L., Sokolov, A.P., Morgunov, I.G. and Trotsenko YuA. Purification and characterization of citrate synthase from Methylobacterium extorquens—a methylotrophic producer of polyhydroxybutyrate. Biochemistry (Mosc.) 62 (1997) 71–76. [PMID: 9113733]
4.  Lee, S., Park, C. and Yim, J. Characterization of citrate synthase purified from Drosophila melanogaster. Mol. Cells 7 (1997) 599–604. [PMID: 9387145]
5.  Maurus, R., Nguyen, N.T., Stokell, D.J., Ayed, A., Hultin, P.G., Duckworth, H.W. and Brayer, G.D. Insights into the evolution of allosteric properties. The NADH binding site of hexameric type II citrate synthases. Biochemistry 42 (2003) 5555–5565. [DOI] [PMID: 12741811]
[EC 2.3.3.16 created 2014]
 
 
*EC 2.4.1.161
Accepted name: oligosaccharide 4-α-D-glucosyltransferase
Reaction: Transfers the non-reducing terminal α-D-glucose residue from a (1→4)-α-D-glucan to the 4-position of a free glucose or of a glucosyl residue at the non-reducing terminus of a (1→4)-α-D-glucan, thus bringing about the rearrangement of oligosaccharides
Other name(s): amylase III; 1,4-α-glucan:1,4-α-glucan 4-α-glucosyltransferase; 1,4-α-D-glucan:1,4-α-D-glucan 4-α-D-glucosyltransferase; α-1,4-transglucosylase
Systematic name: (1→4)-α-D-glucan:(1→4)-α-D-glucan 4-α-D-glucosyltransferase
Comments: The enzyme acts on amylose, amylopectin, glycogen and maltooligosaccharides. No detectable free glucose is formed, indicating the enzyme does not act as a hydrolase. The enzyme from the bacterium Cellvibrio japonicus has the highest activity with maltotriose as a donor, and also accepts maltose [3], while the enzyme from amoeba does not accept maltose [1,2]. Oligosaccharides with 1→6 linkages cannot function as donors, but can act as acceptors [3]. Unlike EC 2.4.1.25, 4-α-glucanotransferase, this enzyme can transfer only a single glucosyl residue.
Links to other databases: BRENDA, EXPASY, KEGG, PDB, CAS registry number: 9000-92-4
References:
1.  Nebinger, P. Separation and characterization of four different amylases of Entamoeba histolytica. I. Purification and properties. Biol. Chem. Hoppe-Seyler 367 (1986) 161–167. [PMID: 2423097]
2.  Nebinger, P. Separation and characterization of four different amylases of Entamoeba histolytica. II. Characterization of amylases. Biol. Chem. Hoppe-Seyler 367 (1986) 169–176. [PMID: 2423098]
3.  Larsbrink, J., Izumi, A., Hemsworth, G.R., Davies, G.J. and Brumer, H. Structural enzymology of Cellvibrio japonicus Agd31B protein reveals α-transglucosylase activity in glycoside hydrolase family 31. J. Biol. Chem. 287 (2012) 43288–43299. [DOI] [PMID: 23132856]
[EC 2.4.1.161 created 1989, modified 2013]
 
 
*EC 2.4.1.277
Accepted name: 10-deoxymethynolide desosaminyltransferase
Reaction: dTDP-3-dimethylamino-3,4,6-trideoxy-α-D-glucopyranose + 10-deoxymethynolide = dTDP + 10-deoxymethymycin
For diagram of methymycin biosynthesis, click here and for diagram of pikromycin biosynthesis, click here
Glossary: dTDP-3-dimethylamino-3,4,6-trideoxy-α-D-glucopyranose = dTDP-D-desosamine
Other name(s): glycosyltransferase DesVII; DesVII
Systematic name: dTDP-3-dimethylamino-3,4,6-trideoxy-α-D-glucopyranose:10-deoxymethynolide 3-dimethylamino-4,6-dideoxy-α-D-glucosyltransferase
Comments: DesVII is the glycosyltransferase responsible for the attachment of dTDP-D-desosamine to 10-deoxymethynolide or narbonolide during the biosynthesis of methymycin, neomethymycin, narbomycin, and pikromycin in the bacterium Streptomyces venezuelae. Activity requires an additional protein partner, DesVIII.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Borisova, S.A. and Liu, H.W. Characterization of glycosyltransferase DesVII and its auxiliary partner protein DesVIII in the methymycin/picromycin biosynthetic pathway. Biochemistry 49 (2010) 8071–8084. [DOI] [PMID: 20695498]
2.  Borisova, S.A., Kim, H.J., Pu, X. and Liu, H.W. Glycosylation of acyclic and cyclic aglycone substrates by macrolide glycosyltransferase DesVII/DesVIII: analysis and implications. ChemBioChem 9 (2008) 1554–1558. [DOI] [PMID: 18548476]
3.  Hong, J.S., Park, S.J., Parajuli, N., Park, S.R., Koh, H.S., Jung, W.S., Choi, C.Y. and Yoon, Y.J. Functional analysis of DesVIII homologues involved in glycosylation of macrolide antibiotics by interspecies complementation. Gene 386 (2007) 123–130. [DOI] [PMID: 17049185]
[EC 2.4.1.277 created 2011, modified 2014]
 
 
*EC 2.4.1.278
Accepted name: 3-α-mycarosylerythronolide B desosaminyl transferase
Reaction: dTDP-D-desosamine + 3-α-L-mycarosylerythronolide B = dTDP + erythromycin D
For diagram of erythromycin biosynthesis, click here
Glossary: dTDP-D-desosamine = dTDP-3,4,6-trideoxy-3-(dimethylamino)-α-D-xylo-hexopyranose
erythromycin D = (3R,4S,5S,6R,7R,9R,11R,12S,13R,14R)-4-(2,6-dideoxy-3-C-methyl-α-L-ribo-hexopyranosyloxy)-14-ethyl-7,12-dihydroxy-6-[3,4,6-trideoxy-3-(dimethylamino)-β-D-xylo-hexopyranosyloxy]-3,5,7,9,11,13-hexamethyloxacyclotetradecane-2,10-dione
3-O-α-mycarosylerythronolide B = (3R,4S,5R,6R,7R,9R,11R,12S,13R,14R)-4-(2,6-dideoxy-3-C-methyl-α-L-ribo-hexopyranosyloxy)-14-ethyl-6,7,12-trihydroxy-3,5,7,9,11,13-hexamethyloxacyclotetradecane-2,10-dione
Other name(s): EryCIII; dTDP-3-dimethylamino-4,6-dideoxy-α-D-glucopyranose:3-α-mycarosylerythronolide B 3-dimethylamino-4,6-dideoxy-α-D-glucosyltransferase
Systematic name: dTDP-3-dimethylamino-3,4,6-trideoxy-α-D-glucopyranose:3-α-mycarosylerythronolide B 3-dimethylamino-3,4,6-trideoxy-β-D-glucosyltransferase
Comments: The enzyme is involved in erythromycin biosynthesis.
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Yuan, Y., Chung, H.S., Leimkuhler, C., Walsh, C.T., Kahne, D. and Walker, S. In vitro reconstitution of EryCIII activity for the preparation of unnatural macrolides. J. Am. Chem. Soc. 127 (2005) 14128–14129. [DOI] [PMID: 16218575]
2.  Lee, H.Y., Chung, H.S., Hang, C., Khosla, C., Walsh, C.T., Kahne, D. and Walker, S. Reconstitution and characterization of a new desosaminyl transferase, EryCIII, from the erythromycin biosynthetic pathway. J. Am. Chem. Soc. 126 (2004) 9924–9925. [DOI] [PMID: 15303858]
3.  Moncrieffe, M.C., Fernandez, M.J., Spiteller, D., Matsumura, H., Gay, N.J., Luisi, B.F. and Leadlay, P.F. Structure of the glycosyltransferase EryCIII in complex with its activating P450 homologue EryCII. J. Mol. Biol. 415 (2012) 92–101. [DOI] [PMID: 22056329]
[EC 2.4.1.278 created 2012, modified 2014]
 
 
EC 2.4.1.310
Accepted name: vancomycin aglycone glucosyltransferase
Reaction: UDP-α-D-glucose + vancomycin aglycone = UDP + devancosaminyl-vancomycin
For diagram of chloroorienticin biosynthesis, click here
Glossary: devancosaminyl-vancomycin = vancomycin pseudoaglycone
Other name(s): GtfB (ambiguous)
Systematic name: UDP-α-D-glucose:vancomycin aglycone 48-O-β-glucosyltransferase
Comments: The enzyme from the bacterium Amycolatopsis orientalis is involved in the biosynthesis of the glycopeptide antibiotic chloroeremomycin.
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Losey, H.C., Peczuh, M.W., Chen, Z., Eggert, U.S., Dong, S.D., Pelczer, I., Kahne, D. and Walsh, C.T. Tandem action of glycosyltransferases in the maturation of vancomycin and teicoplanin aglycones: novel glycopeptides. Biochemistry 40 (2001) 4745–4755. [DOI] [PMID: 11294642]
2.  Mulichak, A.M., Losey, H.C., Walsh, C.T. and Garavito, R.M. Structure of the UDP-glucosyltransferase GtfB that modifies the heptapeptide aglycone in the biosynthesis of vancomycin group antibiotics. Structure 9 (2001) 547–557. [DOI] [PMID: 11470430]
[EC 2.4.1.310 created 2013]
 
 
EC 2.4.1.311
Accepted name: chloroorienticin B synthase
Reaction: dTDP-β-L-4-epi-vancosamine + desvancosaminyl-vancomycin = dTDP + chloroorienticin B
For diagram of chloroorienticin biosynthesis, click here
Glossary: dTDP-β-L-4-epi-vancosamine = dTDP-3-amino-2,3,6-trideoxy-3-methyl-β-L-arabino-hexopyranose
desvancosaminyl-vancomycin = vanomycin pseudoaglycone
Other name(s): GtfA
Systematic name: dTDP-L-4-epi-vancosamine:desvancosaminyl-vancomycin vancosaminyltransferase
Comments: The enzyme from the bacterium Amycolatopsis orientalis is involved in the biosynthesis of the glycopeptide antibiotic chloroeremomycin.
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Mulichak, A.M., Losey, H.C., Lu, W., Wawrzak, Z., Walsh, C.T. and Garavito, R.M. Structure of the TDP-epi-vancosaminyltransferase GtfA from the chloroeremomycin biosynthetic pathway. Proc. Natl. Acad. Sci. USA 100 (2003) 9238–9243. [DOI] [PMID: 12874381]
2.  Lu, W., Oberthur, M., Leimkuhler, C., Tao, J., Kahne, D. and Walsh, C.T. Characterization of a regiospecific epivancosaminyl transferase GtfA and enzymatic reconstitution of the antibiotic chloroeremomycin. Proc. Natl. Acad. Sci. USA 101 (2004) 4390–4395. [DOI] [PMID: 15070728]
[EC 2.4.1.311 created 2013]
 
 
EC 2.4.1.312
Accepted name: protein O-mannose β-1,4-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + 3-O-(α-D-mannosyl)-L-threonyl-[protein] = UDP + 3-O-[N-acetyl-β-D-glucosaminyl-(1→4)-α-D-mannosyl]-L-threonyl-[protein]
For diagram of glycoprotein biosynthesis, click here
Other name(s): GTDC2 (gene name); POMGNT2
Systematic name: UDP-N-acetyl-α-D-glucosamine:α-D-mannosyl-threonyl-[protein] 4-β-N-acetyl-D-glucosaminyltransferase
Comments: The human protein is involved in the formation of a phosphorylated trisaccharide on a threonine residue of α-dystroglycan, an extracellular peripheral glycoprotein that acts as a receptor for extracellular matrix proteins containing laminin-G domains.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Yoshida-Moriguchi, T., Willer, T., Anderson, M.E., Venzke, D., Whyte, T., Muntoni, F., Lee, H., Nelson, S.F., Yu, L. and Campbell, K.P. SGK196 is a glycosylation-specific O-mannose kinase required for dystroglycan function. Science 341 (2013) 896–899. [DOI] [PMID: 23929950]
[EC 2.4.1.312 created 2013]
 
 
EC 2.4.1.313
Accepted name: protein O-mannose β-1,3-N-acetylgalactosaminyltransferase
Reaction: UDP-N-acetyl-α-D-galactosamine + 3-O-[N-acetyl-β-D-glucosaminyl-(1→4)-α-D-mannosyl]-L-threonyl-[protein] = UDP + 3-O-[N-acetyl-β-D-galactosaminyl-(1→3)-N-acetyl-β-D-glucosaminyl-(1→4)-α-D-mannosyl]-L-threonyl-[protein]
For diagram of glycoprotein biosynthesis, click here
Other name(s): B3GALNT2
Systematic name: UDP-N-acetyl-α-D-galactosamine:N-acetyl-β-D-glucosaminyl-(1→4)-α-D-mannosyl-threonyl-[protein] 3-β-N-acetyl-D-galactosaminyltransferase
Comments: The human protein is specific for UDP-N-acetyl-α-D-galactosamine as donor [1]. The enzyme is involved in the formation of a phosphorylated trisaccharide on a threonine residue of α-dystroglycan, an extracellular peripheral glycoprotein that acts as a receptor for extracellular matrix proteins containing laminin-G domains.
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Hiruma, T., Togayachi, A., Okamura, K., Sato, T., Kikuchi, N., Kwon, Y.D., Nakamura, A., Fujimura, K., Gotoh, M., Tachibana, K., Ishizuka, Y., Noce, T., Nakanishi, H. and Narimatsu, H. A novel human β1,3-N-acetylgalactosaminyltransferase that synthesizes a unique carbohydrate structure, GalNAcβ1-3GlcNAc. J. Biol. Chem. 279 (2004) 14087–14095. [DOI] [PMID: 14724282]
2.  Yoshida-Moriguchi, T., Willer, T., Anderson, M.E., Venzke, D., Whyte, T., Muntoni, F., Lee, H., Nelson, S.F., Yu, L. and Campbell, K.P. SGK196 is a glycosylation-specific O-mannose kinase required for dystroglycan function. Science 341 (2013) 896–899. [DOI] [PMID: 23929950]
[EC 2.4.1.313 created 2013]
 
 
EC 2.4.1.314
Accepted name: ginsenoside Rd glucosyltransferase
Reaction: UDP-α-D-glucose + ginsenoside Rd = UDP + ginsenoside Rb1
For diagram of protopanaxadiol ginsenosides ginsenosidases, click here
Glossary: ginsenoside Rd = 20-(β-D-glucopyranosyl)oxy-3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rb1 = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyloxy]dammar-24-en-12β-ol
Other name(s): UDPG:ginsenoside Rd glucosyltransferase; UDP-glucose:ginsenoside Rd glucosyltransferase; UGRdGT
Systematic name: UDP-glucose:ginsenoside-Rd β-1,6-glucosyltransferase
Comments: The glucosyl group forms a 1→6 bond to the glucosyloxy moiety at C-20 of ginsenoside Rd. Isolated from sanchi ginseng (Panax notoginseng).
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Yue, C.-J. and Zhong J.-J. Purification and characterization of UDPG:ginsenoside Rd glucosyltransferase from suspended cells of Panax notoginseng. Process Biochem. 40 (2005) 3742–3748.
[EC 2.4.1.314 created 2013]
 
 
EC 2.4.1.315
Accepted name: diglucosyl diacylglycerol synthase (1,6-linking)
Reaction: (1) UDP-α-D-glucose + 1,2-diacyl-3-O-(β-D-glucopyranosyl)-sn-glycerol = 1,2-diacyl-3-O-[β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosyl]-sn-glycerol + UDP
(2) UDP-α-D-glucose + 1,2-diacyl-3-O-[β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosyl]-sn-glycerol = 1,2-diacyl-3-O-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosyl]-sn-glycerol + UDP
Other name(s): monoglucosyl diacylglycerol (1→6) glucosyltransferase; MGlcDAG (1→6) glucosyltransferase; DGlcDAG synthase (ambiguous); UGT106B1; ypfP (gene name)
Systematic name: UDP-α-D-glucose:1,2-diacyl-3-O-(β-D-glucopyranosyl)-sn-glycerol 6-glucosyltransferase
Comments: The enzyme is found in several bacterial species. The enzyme from Bacillus subtilis is specific for glucose [1]. The enzyme from Mycoplasma genitalium can incoporate galactose with similar efficiency, but forms mainly 1,2-diacyl-diglucopyranosyl-sn-glycerol in vivo [3]. The enzyme from Staphylococcus aureus can also form glucosyl-glycero-3-phospho-(1′-sn-glycerol) [2].
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Jorasch, P., Wolter, F.P., Zahringer, U. and Heinz, E. A UDP glucosyltransferase from Bacillus subtilis successively transfers up to four glucose residues to 1,2-diacylglycerol: expression of ypfP in Escherichia coli and structural analysis of its reaction products. Mol. Microbiol. 29 (1998) 419–430. [DOI] [PMID: 9720862]
2.  Jorasch, P., Warnecke, D.C., Lindner, B., Zahringer, U. and Heinz, E. Novel processive and nonprocessive glycosyltransferases from Staphylococcus aureus and Arabidopsis thaliana synthesize glycoglycerolipids, glycophospholipids, glycosphingolipids and glycosylsterols. Eur. J. Biochem. 267 (2000) 3770–3783. [DOI] [PMID: 10848996]
3.  Andres, E., Martinez, N. and Planas, A. Expression and characterization of a Mycoplasma genitalium glycosyltransferase in membrane glycolipid biosynthesis: potential target against mycoplasma infections. J. Biol. Chem. 286 (2011) 35367–35379. [DOI] [PMID: 21835921]
[EC 2.4.1.315 created 2014]
 
 
EC 2.4.1.316
Accepted name: tylactone mycaminosyltransferase
Reaction: tylactone + dTDP-α-D-mycaminose = dTDP + 5-O-β-D-mycaminosyltylactone
For diagram of tylactone biosynthesis, click here
Glossary: tylactone = (4R,5S,6S,7S,9R,11E,13E,15S,16R)-7,16-diethyl-4,6-dihydroxy-5,9,13,15-tetramethyloxacyclohexadeca-11,13-diene-2,10-dione
dTDP-α-D-mycaminose = dTDP-3,6-dideoxy-3-dimethylamino-α-D-glucopyranose
Other name(s): tylM2 (gene name)
Systematic name: dTDP-α-D-mycaminose:tylactone 5-O-β-D-mycaminosyltransferase
Comments: The enzyme participates in the biosynthetic pathway of the macrolide antibiotic tylosin, which is produced by several species of Streptomyces bacteria. Activity is significantly enhanced by the presence of an accessory protein encoded by the tylM3 gene.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Gandecha, A.R., Large, S.L. and Cundliffe, E. Analysis of four tylosin biosynthetic genes from the tylLM region of the Streptomyces fradiae genome. Gene 184 (1997) 197–203. [DOI] [PMID: 9031628]
2.  Melancon, C.E., 3rd, Takahashi, H. and Liu, H.W. Characterization of tylM3/tylM2 and mydC/mycB pairs required for efficient glycosyltransfer in macrolide antibiotic biosynthesis. J. Am. Chem. Soc. 126 (2004) 16726–16727. [DOI] [PMID: 15612702]
[EC 2.4.1.316 created 2014]
 
 
EC 2.4.1.317
Accepted name: O-mycaminosyltylonolide 6-deoxyallosyltransferase
Reaction: 5-O-β-D-mycaminosyltylonolide + dTDP-6-deoxy-α-D-allose = dTDP + demethyllactenocin
For diagram of tylosin biosynthesis, click here
Glossary: mycaminose = 3,6-dideoxy-3-dimethylamino-glucopyranose
tylonolide = 2-[(4R,5S,6S,7R,9R,11E,13E,15R,16R)-16-ethyl-4,6-dihydroxy-15-(hydroxymethyl)-5,9,13-trimethyl-2,10-dioxooxacyclohexadeca-11,13-dien-7-yl]acetaldehyde
demethyllactenocin = [(2R,3R,4E,6E,9R,11R,12S,13S,14R)-12-{[3,6-dideoxy-3-(dimethylamino)-D-glucopyranosyl]oxy}-2-ethyl-14-hydroxy-5,9,13-trimethyl-8,16-dioxo-11-(2-oxoethyl)oxacyclohexadeca-4,6-dien-3-yl]methyl 6-deoxy-β-D-allopyranoside
Other name(s): tylN (gene name)
Systematic name: dTDP-6-deoxy-α-D-allose:5-O-β-D-mycaminosyltylonolide 23-O-6-deoxy-α-D-allosyltransferase
Comments: The enzyme participates in the biosynthetic pathway of the macrolide antibiotic tylosin, which is produced by several species of Streptomyces bacteria.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Wilson, V.T. and Cundliffe, E. Characterization and targeted disruption of a glycosyltransferase gene in the tylosin producer, Streptomyces fradiae. Gene 214 (1998) 95–100. [DOI] [PMID: 9651492]
[EC 2.4.1.317 created 2014]
 
 
EC 2.4.1.318
Accepted name: demethyllactenocin mycarosyltransferase
Reaction: dTDP-β-L-mycarose + demethyllactenocin = dTDP + demethylmacrocin
For diagram of tylosin biosynthesis, click here
Glossary: dTDP-β-L-mycarose = dTDP-2,6-dideoxy-3-C-methyl-β-L-ribo-hexose
demethyllactenocin = [(2R,3R,4E,6E,9R,11R,12S,13S,14R)-12-{[3,6-dideoxy-3-(dimethylamino)-D-glucopyranosyl]oxy}-2-ethyl-14-hydroxy-5,9,13-trimethyl-8,16-dioxo-11-(2-oxoethyl)oxacyclohexadeca-4,6-dien-3-yl]methyl 6-deoxy-D-allopyranoside
Other name(s): tylCV (gene name); tylC5 (gene name)
Systematic name: dTDP-β-L-mycarose:demethyllactenocin 4′-O-α-L-mycarosyltransferase
Comments: The enzyme participates in the biosynthetic pathway of the macrolide antibiotic tylosin, which is produced by several species of Streptomyces bacteria.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Bate, N., Butler, A.R., Smith, I.P. and Cundliffe, E. The mycarose-biosynthetic genes of Streptomyces fradiae, producer of tylosin. Microbiology 146 (2000) 139–146. [DOI] [PMID: 10658660]
[EC 2.4.1.318 created 2014]
 
 
EC 2.4.1.319
Accepted name: β-1,4-mannooligosaccharide phosphorylase
Reaction: [(1→4)-β-D-mannosyl]n + phosphate = [(1→4)-β-D-mannosyl]n-1 + α-D-mannose 1-phosphate
Other name(s): RaMP2
Systematic name: 1,4-β-D-mannooligosaccharide:phosphate α-D-mannosyltransferase
Comments: The enzyme, isolated from the ruminal bacterium Ruminococcus albus, catalyses the reversible phosphorolysis of β-1,4-mannooligosaccharide with a minimum size of three monomers.
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Kawahara, R., Saburi, W., Odaka, R., Taguchi, H., Ito, S., Mori, H. and Matsui, H. Metabolic mechanism of mannan in a ruminal bacterium, Ruminococcus albus, involving two mannoside phosphorylases and cellobiose 2-epimerase: discovery of a new carbohydrate phosphorylase, β-1,4-mannooligosaccharide phosphorylase. J. Biol. Chem. 287 (2012) 42389–42399. [DOI] [PMID: 23093406]
[EC 2.4.1.319 created 2014]
 
 
EC 2.4.1.320
Accepted name: 1,4-β-mannosyl-N-acetylglucosamine phosphorylase
Reaction: 4-O-β-D-mannopyranosyl-N-acetyl-D-glucosamine + phosphate = N-acetyl-D-glucosamine + α-D-mannose 1-phosphate
Other name(s): BT1033
Systematic name: 4-O-β-D-mannopyranosyl-N-acetyl-D-glucosamine:phosphate α-D-mannosyltransferase
Comments: The enzyme isolated from the anaerobic bacterium Bacteroides thetaiotaomicron is involved in the degradation of host-derived N-glycans.
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Nihira, T., Suzuki, E., Kitaoka, M., Nishimoto, M., Ohtsubo, K. and Nakai, H. Discovery of β-1,4-D-mannosyl-N-acetyl-D-glucosamine phosphorylase involved in the metabolism of N-glycans. J. Biol. Chem. 288 (2013) 27366–27374. [DOI] [PMID: 23943617]
[EC 2.4.1.320 created 2014]
 
 
EC 2.4.1.321
Accepted name: cellobionic acid phosphorylase
Reaction: 4-O-β-D-glucopyranosyl-D-gluconate + phosphate = α-D-glucose 1-phosphate + D-gluconate
Glossary: 4-O-β-D-glucopyranosyl-D-gluconate = cellobionate
Systematic name: 4-O-β-D-glucopyranosyl-D-gluconate:phosphate α-D-glucosyltransferase
Comments: The enzyme occurs in cellulolytic bacteria and fungi. It catalyses the reversible phosphorolysis of cellobionic acid. In the synthetic direction it produces 4-O-β-D-glucopyranosyl-D-glucuronate from α-D-glucose 1-phosphate and D-glucuronate with low activity.
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Nihira, T., Saito, Y., Nishimoto, M., Kitaoka, M., Igarashi, K., Ohtsubo, K. and Nakai, H. Discovery of cellobionic acid phosphorylase in cellulolytic bacteria and fungi. FEBS Lett. 587 (2013) 3556–3561. [DOI] [PMID: 24055472]
[EC 2.4.1.321 created 2014]
 
 
EC 2.4.1.322
Accepted name: devancosaminyl-vancomycin vancosaminetransferase
Reaction: dTDP-β-L-vancosamine + devancosaminyl-vancomycin = dTDP + vancomycin
For diagram of chloroorienticin biosynthesis, click here
Glossary: dTDP-β-L-vancosamine = dTDP-3-amino-2,3,6-trideoxy-3-C-methyl-β-L-lyxo-hexopyranose
Other name(s): devancosaminyl-vancomycin TDP-vancosaminyltransferase; GtfD; dTDP-β-L-vancomycin:desvancosaminyl-vancomycin β-L-vancosaminetransferase; desvancosaminyl-vancomycin vancosaminetransferase
Systematic name: dTDP-β-L-vancomycin:devancosaminyl-vancomycin β-L-vancosaminetransferase
Comments: The enzyme, isolated from the bacterium Amycolatopsis orientalis, catalyses the ultimate step in the biosynthesis of the antibiotic vancomycin.
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Losey, H.C., Peczuh, M.W., Chen, Z., Eggert, U.S., Dong, S.D., Pelczer, I., Kahne, D. and Walsh, C.T. Tandem action of glycosyltransferases in the maturation of vancomycin and teicoplanin aglycones: novel glycopeptides. Biochemistry 40 (2001) 4745–4755. [DOI] [PMID: 11294642]
2.  Mulichak, A.M., Lu, W., Losey, H.C., Walsh, C.T. and Garavito, R.M. Crystal structure of vancosaminyltransferase GtfD from the vancomycin biosynthetic pathway: interactions with acceptor and nucleotide ligands. Biochemistry 43 (2004) 5170–5180. [DOI] [PMID: 15122882]
[EC 2.4.1.322 created 2014]
 
 
EC 2.4.1.323
Accepted name: 7-deoxyloganetic acid glucosyltransferase
Reaction: UDP-α-D-glucose + 7-deoxyloganetate = UDP + 7-deoxyloganate
For diagram of secologanin biosynthesis, click here
Other name(s): UGT8
Systematic name: UDP-α-D-glucose:7-deoxyloganetate O-D-glucosyltransferase
Comments: Isolated from the plant Catharanthus roseus (Madagascar periwinkle). Involved in loganin and secologanin biosynthesis. Does not react with 7-deoxyloganetin. cf. EC 2.4.1.324 7-deoxyloganetin glucosyltransferase.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Asada, K., Salim, V., Masada-Atsumi, S., Edmunds, E., Nagatoshi, M., Terasaka, K., Mizukami, H. and De Luca, V. A 7-deoxyloganetic acid glucosyltransferase contributes a key step in secologanin biosynthesis in madagascar periwinkle. Plant Cell 25 (2013) 4123–4134. [DOI] [PMID: 24104568]
[EC 2.4.1.323 created 2014]
 
 
EC 2.4.1.324
Accepted name: 7-deoxyloganetin glucosyltransferase
Reaction: UDP-α-D-glucose + 7-deoxyloganetin = UDP + 7-deoxyloganin
For diagram of secologanin biosynthesis, click here
Other name(s): UDPglucose:iridoid glucosyltransferase; UGT6; UGT85A24
Systematic name: UDP-α-D-glucose:7-deoxyloganetin O-D-glucosyltransferase
Comments: Isolated from the plants Catharanthus roseus (Madagascar periwinkle) and Gardenia jasminoides (cape jasmine). With Gardenia it also acts on genipin. Involved in loganin and secologanin biosynthesis. Does not react with 7-deoxyloganetate. cf. EC 2.4.1.323 7-deoxyloganetic acid glucosyltransferase.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Nagatoshi, M., Terasaka, K., Nagatsu, A. and Mizukami, H. Iridoid-specific glucosyltransferase from Gardenia jasminoides. J. Biol. Chem. 286 (2011) 32866–32874. [DOI] [PMID: 21799001]
2.  Asada, K., Salim, V., Masada-Atsumi, S., Edmunds, E., Nagatoshi, M., Terasaka, K., Mizukami, H. and De Luca, V. A 7-deoxyloganetic acid glucosyltransferase contributes a key step in secologanin biosynthesis in madagascar periwinkle. Plant Cell 25 (2013) 4123–4134. [DOI] [PMID: 24104568]
[EC 2.4.1.324 created 2014]
 
 
*EC 2.4.2.35
Accepted name: flavonol-3-O-glycoside xylosyltransferase
Reaction: UDP-α-D-xylose + a flavonol 3-O-glycoside = UDP + a flavonol 3-[β-D-xylosyl-(1→2)-β-D-glycoside]
For diagram of quercetin 3-o-glycoside derivatives biosynthesis, click here
Other name(s): UDP-D-xylose:flavonol-3-O-glycoside 2′′-O-β-D-xylosyltransferase
Systematic name: UDP-α-D-xylose:flavonol-3-O-glycoside 2′′-O-β-D-xylosyltransferase
Comments: Flavonol 3-O-glucoside, flavonol 3-O-galactoside and, more slowly, rutin, can act as acceptors.
Links to other databases: BRENDA, EXPASY, KEGG, CAS registry number: 83380-90-9
References:
1.  Kleinehollenhorst, G., Behrens, H., Pegels, G., Srunk, N. and Wiermann, R. Formation of flavonol 3-O-diglycosides and flavonol 3-O-triglycosides by enzyme extracts from anthers of Tulipa cv apeldoorn - characterization and activity of 3 different O-glycosyltransferases during anther development. Z. Natursforsch. C: Biosci. 37 (1982) 587–599.
[EC 2.4.2.35 created 1986, modified 2014]
 
 
EC 2.4.2.55
Accepted name: nicotinate D-ribonucleotide:phenol phospho-D-ribosyltransferase
Reaction: nicotinate D-ribonucleotide + phenol = nicotinate + phenyl 5-phospho-α-D-ribofuranoside
Other name(s): ArsAB
Systematic name: nicotinate D-ribonucleotide:phenol phospho-D-ribosyltransferase
Comments: The enzyme is involved in the biosynthesis of phenolic cobamides in the Gram-positive bacterium Sporomusa ovata. It can also transfer the phospho-D-ribosyl group to 4-methylphenol and 5,6-dimethylbenzimidazole. The related EC 2.4.2.21, nicotinate-nucleotide dimethylbenzimidazole phosphoribosyltransferase, also transfers the phospho-D-ribosyl group from nicotinate D-ribonucleotide to 5,6-dimethylbenzimidazole, but shows no activity with 4-methylphenol or phenol.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Chan, C.H. and Escalante-Semerena, J.C. ArsAB, a novel enzyme from Sporomusa ovata activates phenolic bases for adenosylcobamide biosynthesis. Mol. Microbiol. 81 (2011) 952–967. [DOI] [PMID: 21696461]
[EC 2.4.2.55 created 2013]
 
 
EC 2.4.2.56
Accepted name: kaempferol 3-O-xylosyltransferase
Reaction: UDP-α-D-xylose + kaempferol = UDP + kaempferol 3-O-β-D-xyloside
For diagram of kaempferol biosynthesis, click here
Other name(s): F3XT; UDP-D-xylose:flavonol 3-O-xylosyltransferase; flavonol 3-O-xylosyltransferase
Systematic name: UDP-α-D-xylose:kaempferol 3-O-D-xylosyltransferase
Comments: The enzyme from the plant Euonymus alatus also catalyses the 3-O-D-xylosylation of other flavonols (e.g. quercetin, isorhamnetin, rhamnetin, myricetin, fisetin) with lower activity.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Ishikura, N. and Yang, Z.Q. UDP-D-xylose: flavonol 3-O-xylosyltransferase from young leaves of Euonymus alatus f. ciliato-dentatus. Z. Naturforsch. C: Biosci. 46 (1991) 1003–1010.
[EC 2.4.2.56 created 2013]
 
 
EC 2.4.2.57
Accepted name: AMP phosphorylase
Reaction: (1) AMP + phosphate = adenine + α-D-ribose 1,5-bisphosphate
(2) CMP + phosphate = cytosine + α-D-ribose 1,5-bisphosphate
(3) UMP + phosphate = uracil + α-D-ribose 1,5-bisphosphate
For diagram of AMP catabolism, click here
Other name(s): AMPpase; nucleoside monophosphate phosphorylase; deoA (gene name)
Systematic name: AMP:phosphate α-D-ribosyl 5′-phosphate-transferase
Comments: The enzyme from archaea is involved in AMP metabolism and CO2 fixation through type III RubisCO enzymes. The activity with CMP and UMP requires activation by cAMP [2].
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Sato, T., Atomi, H. and Imanaka, T. Archaeal type III RuBisCOs function in a pathway for AMP metabolism. Science 315 (2007) 1003–1006. [DOI] [PMID: 17303759]
2.  Aono, R., Sato, T., Yano, A., Yoshida, S., Nishitani, Y., Miki, K., Imanaka, T. and Atomi, H. Enzymatic characterization of AMP phosphorylase and ribose-1,5-bisphosphate isomerase functioning in an archaeal AMP metabolic pathway. J. Bacteriol. 194 (2012) 6847–6855. [DOI] [PMID: 23065974]
3.  Nishitani, Y., Aono, R., Nakamura, A., Sato, T., Atomi, H., Imanaka, T. and Miki, K. Structure analysis of archaeal AMP phosphorylase reveals two unique modes of dimerization. J. Mol. Biol. 425 (2013) 2709–2721. [DOI] [PMID: 23659790]
[EC 2.4.2.57 created 2014]
 
 
EC 2.4.99.20
Accepted name: 2′-phospho-ADP-ribosyl cyclase/2′-phospho-cyclic-ADP-ribose transferase
Reaction: NADP+ + nicotinate = nicotinate-adenine dinucleotide phosphate + nicotinamide (overall reaction)
(1a) NADP+ = 2′-phospho-cyclic ADP-ribose + nicotinamide
(1b) 2′-phospho-cyclic ADP-ribose + nicotinate = nicotinate-adenine dinucleotide phosphate
For diagram of cyclic ADP-ribose biosynthesis, click here
Glossary: 2′-phospho-cyclic ADP-ribose = cADPRP
nicotinic acid-adenine dinucleotide phosphate = NAADP+
Other name(s): diphosphopyridine nucleosidase (ambiguous); CD38 (gene name); BST1 (gene name)
Systematic name: NADP+:nicotinate ADP-ribosyltransferase
Comments: This multiunctional enzyme catalyses both the removal of nicotinamide from NADP+, forming 2′-phospho-cyclic ADP-ribose, and the addition of nicotinate to the cyclic product, forming NAADP+, a calcium messenger that can mobilize intracellular Ca2+ stores and activate Ca2+ influx to regulate a wide range of physiological processes. In addition, the enzyme also catalyses EC 3.2.2.6, ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Chini, E.N., Chini, C.C., Kato, I., Takasawa, S. and Okamoto, H. CD38 is the major enzyme responsible for synthesis of nicotinic acid-adenine dinucleotide phosphate in mammalian tissues. Biochem. J. 362 (2002) 125–130. [PMID: 11829748]
2.  Moreschi, I., Bruzzone, S., Melone, L., De Flora, A. and Zocchi, E. NAADP+ synthesis from cADPRP and nicotinic acid by ADP-ribosyl cyclases. Biochem. Biophys. Res. Commun. 345 (2006) 573–580. [DOI] [PMID: 16690024]
[EC 2.4.99.20 created 2014]
 
 
EC 2.5.1.112
Accepted name: adenylate dimethylallyltransferase (ADP/ATP-dependent)
Reaction: (1) prenyl diphosphate + ADP = diphosphate + N6-prenyladenosine 5′-diphosphate
(2) prenyl diphosphate + ATP = diphosphate + N6-prenyladenosine 5′-triphosphate
For diagram of N6-(Dimethylallyl)adenosine phosphates biosynthesis, click here
Other name(s): cytokinin synthase (ambiguous); isopentenyltransferase (ambiguous); 2-isopentenyl-diphosphate:ADP/ATP Δ2-isopentenyltransferase; adenylate isopentenyltransferase (ambiguous); dimethylallyl diphosphate:ATP/ADP isopentenyltransferase: IPT; dimethylallyl-diphosphate:ADP/ATP dimethylallyltransferase
Systematic name: prenyl-diphosphate:ADP/ATP prenyltransferase
Comments: Involved in the biosynthesis of cytokinins in plants. The IPT4 isoform from the plant Arabidopsis thaliana is specific for ADP and ATP [1]. Other isoforms, such as IPT1 from Arabidopsis thaliana [1,2] and the enzyme from the common hop, Humulus lupulus [3], also have a lower activity with AMP (cf. EC 2.5.1.27, adenylate dimethylallyltransferase).
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Kakimoto, T. Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate:ATP/ADP isopentenyltransferases. Plant Cell Physiol. 42 (2001) 677–685. [PMID: 11479373]
2.  Takei, K., Sakakibara, H. and Sugiyama, T. Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. J. Biol. Chem. 276 (2001) 26405–26410. [DOI] [PMID: 11313355]
3.  Sakano, Y., Okada, Y., Matsunaga, A., Suwama, T., Kaneko, T., Ito, K., Noguchi, H. and Abe, I. Molecular cloning, expression, and characterization of adenylate isopentenyltransferase from hop (Humulus lupulus L.). Phytochemistry 65 (2004) 2439–2446. [DOI] [PMID: 15381407]
[EC 2.5.1.112 created 2013]
 
 
EC 2.5.1.113
Accepted name: [CysO sulfur-carrier protein]-thiocarboxylate-dependent cysteine synthase
Reaction: O-phospho-L-serine + [CysO sulfur-carrier protein]-Gly-NH-CH2-C(O)SH = [CysO sulfur-carrier protein]-Gly-NH-CH2-C(O)-S-L-cysteine + phosphate
Other name(s): CysM
Systematic name: O-phospho-L-serine:thiocarboxylated [CysO sulfur-carrier protein] 2-amino-2-carboxyethyltransferase
Comments: A pyridoxal-phosphate protein. The enzyme participates in an alternative pathway for L-cysteine biosynthesis that involves a protein-bound thiocarboxylate as the sulfide donor. The enzyme from the bacterium Mycobacterium tuberculosis also has very low activity with O3-acetyl-L-serine (cf. EC 2.5.1.65, O-phosphoserine sulfhydrylase).
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  O'Leary, S.E., Jurgenson, C.T., Ealick, S.E. and Begley, T.P. O-Phospho-L-serine and the thiocarboxylated sulfur carrier protein CysO-COSH are substrates for CysM, a cysteine synthase from Mycobacterium tuberculosis. Biochemistry 47 (2008) 11606–11615. [DOI] [PMID: 18842002]
2.  Jurgenson, C.T., Burns, K.E., Begley, T.P. and Ealick, S.E. Crystal structure of a sulfur carrier protein complex found in the cysteine biosynthetic pathway of Mycobacterium tuberculosis. Biochemistry 47 (2008) 10354–10364. [DOI] [PMID: 18771296]
3.  Ågren, D., Schnell, R., Oehlmann, W., Singh, M. and Schneider, G. Cysteine synthase (CysM) of Mycobacterium tuberculosis is an O-phosphoserine sulfhydrylase: evidence for an alternative cysteine biosynthesis pathway in mycobacteria. J. Biol. Chem. 283 (2008) 31567–31574. [DOI] [PMID: 18799456]
4.  Ågren, D., Schnell, R. and Schneider, G. The C-terminal of CysM from Mycobacterium tuberculosis protects the aminoacrylate intermediate and is involved in sulfur donor selectivity. FEBS Lett. 583 (2009) 330–336. [DOI] [PMID: 19101553]
[EC 2.5.1.113 created 2013]
 
 
EC 2.5.1.114
Accepted name: tRNAPhe (4-demethylwyosine37-C7) aminocarboxypropyltransferase
Reaction: S-adenosyl-L-methionine + 4-demethylwyosine37 in tRNAPhe = S-methyl-5′-thioadenosine + 7-[(3S)-3-amino-3-carboxypropyl]-4-demethylwyosine37 in tRNAPhe
For diagram of wyosine biosynthesis, click here
Glossary: 4-demethylwyosine = imG-14 = 6-methyl-3-(β-D-ribofuranosyl)-3,5-dihydro-9H-imidazo[1,2-a]purin-9-one
7-[(3S)-3-amino-3-carboxypropyl]-4-demethylwyosine = yW-89
Other name(s): TYW2; tRNA-yW synthesizing enzyme-2; TRM12 (gene name); taw2 (gene name)
Systematic name: S-adenosyl-L-methionine:tRNAPhe (4-demethylwyosine37-C7)-[(3S)-3-amino-3-carboxypropyl]transferase
Comments: The enzyme, which is found in all eukaryotes and in the majority of Euryarchaeota (but not in the Crenarchaeota), is involved in the hypermodification of the guanine nucleoside at position 37 of tRNA leading to formation of assorted wye bases. This modification is essential for translational reading-frame maintenance. The eukaryotic enzyme is involved in biosynthesis of the tricyclic base wybutosine, which is found only in tRNAPhe.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Umitsu, M., Nishimasu, H., Noma, A., Suzuki, T., Ishitani, R. and Nureki, O. Structural basis of AdoMet-dependent aminocarboxypropyl transfer reaction catalyzed by tRNA-wybutosine synthesizing enzyme, TYW2. Proc. Natl. Acad. Sci. USA 106 (2009) 15616–15621. [DOI] [PMID: 19717466]
2.  Rodriguez, V., Vasudevan, S., Noma, A., Carlson, B.A., Green, J.E., Suzuki, T. and Chandrasekharappa, S.C. Structure-function analysis of human TYW2 enzyme required for the biosynthesis of a highly modified Wybutosine (yW) base in phenylalanine-tRNA. PLoS One 7:e39297 (2012). [DOI] [PMID: 22761755]
3.  de Crecy-Lagard, V., Brochier-Armanet, C., Urbonavicius, J., Fernandez, B., Phillips, G., Lyons, B., Noma, A., Alvarez, S., Droogmans, L., Armengaud, J. and Grosjean, H. Biosynthesis of wyosine derivatives in tRNA: an ancient and highly diverse pathway in Archaea. Mol. Biol. Evol. 27 (2010) 2062–2077. [DOI] [PMID: 20382657]
[EC 2.5.1.114 created 2013]
 
 
EC 2.5.1.115
Accepted name: homogentisate phytyltransferase
Reaction: phytyl diphosphate + homogentisate = diphosphate + 2-methyl-6-phytylbenzene-1,4-diol + CO2
For diagram of the homogentisate pathways, click here
Glossary: 2-methyl-6-phytylbenzene-1,4-diol = MPBQ
Other name(s): HPT; VTE2 (gene name)
Systematic name: phytyl-diphosphate:homogentisate phytyltransferase
Comments: Requires Mg2+ for activity [3]. Involved in the biosynthesis of the vitamin E tocopherols. While the enzyme from the cyanobacterium Synechocystis PCC 6803 has an appreciable activity with geranylgeranyl diphosphate (EC 2.5.1.116, homogentisate geranylgeranyltransferase), the enzyme from the plant Arabidopsis thaliana has only a low activity with that substrate [1,3,4].
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Collakova, E. and DellaPenna, D. Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol. 127 (2001) 1113–1124. [PMID: 11706191]
2.  Savidge, B., Weiss, J.D., Wong, Y.H., Lassner, M.W., Mitsky, T.A., Shewmaker, C.K., Post-Beittenmiller, D. and Valentin, H.E. Isolation and characterization of homogentisate phytyltransferase genes from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol. 129 (2002) 321–332. [DOI] [PMID: 12011362]
3.  Sadre, R., Gruber, J. and Frentzen, M. Characterization of homogentisate prenyltransferases involved in plastoquinone-9 and tocochromanol biosynthesis. FEBS Lett. 580 (2006) 5357–5362. [DOI] [PMID: 16989822]
4.  Yang, W., Cahoon, R.E., Hunter, S.C., Zhang, C., Han, J., Borgschulte, T. and Cahoon, E.B. Vitamin E biosynthesis: functional characterization of the monocot homogentisate geranylgeranyl transferase. Plant J. 65 (2011) 206–217. [DOI] [PMID: 21223386]
[EC 2.5.1.115 created 2014]
 
 
EC 2.5.1.116
Accepted name: homogentisate geranylgeranyltransferase
Reaction: geranylgeranyl diphosphate + homogentisate = diphosphate + 6-geranylgeranyl-2-methylbenzene-1,4-diol + CO2
For diagram of the homogentisate pathways, click here
Glossary: 6-geranylgeranyl-2-methylbenzene-1,4-diol = MGGBQ
Other name(s): HGGT; slr1736 (gene name)
Systematic name: geranylgeranyl-diphosphate:homogentisate geranylgeranyltransferase
Comments: Requires Mg2+ for activity. Involved in the biosynthesis of the vitamin E, tocotrienols. While the enzyme from the bacterium Synechocystis PCC 6803 has higher activity with phytyl diphosphate (EC 2.5.1.115, homogentisate phytyltransferase), the enzymes from barley, rice and wheat have only a low activity with that substrate [2].
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Collakova, E. and DellaPenna, D. Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol. 127 (2001) 1113–1124. [PMID: 11706191]
2.  Cahoon, E.B., Hall, S.E., Ripp, K.G., Ganzke, T.S., Hitz, W.D. and Coughlan, S.J. Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat. Biotechnol. 21 (2003) 1082–1087. [DOI] [PMID: 12897790]
3.  Yang, W., Cahoon, R.E., Hunter, S.C., Zhang, C., Han, J., Borgschulte, T. and Cahoon, E.B. Vitamin E biosynthesis: functional characterization of the monocot homogentisate geranylgeranyl transferase. Plant J. 65 (2011) 206–217. [DOI] [PMID: 21223386]
[EC 2.5.1.116 created 2014]
 
 
EC 2.5.1.117
Accepted name: homogentisate solanesyltransferase
Reaction: all-trans-nonaprenyl diphosphate + homogentisate = diphosphate + 2-methyl-6-all-trans-nonaprenylbenzene-1,4-diol + CO2
For diagram of the homogentisate pathways, click here
Glossary: 2-methyl-6-all-trans-nonaprenylbenzene-1,4-diol = 2-methyl-6-solanesylbenzene-1,4-diol = MSBQ
Other name(s): HST; PDS2 (gene name)
Systematic name: all-trans-nonaprenyl-diphosphate:homogentisate nonaprenyltransferase
Comments: Requires Mg2+ for activity. Part of the biosynthesis pathway of plastoquinol-9. The enzymes purified from the plant Arabidopsis thaliana and the alga Chlamydomonas reinhardtii are also active in vitro with unsaturated C10 to C20 prenyl diphosphates, producing main products that are not decarboxylated [2].
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Sadre, R., Gruber, J. and Frentzen, M. Characterization of homogentisate prenyltransferases involved in plastoquinone-9 and tocochromanol biosynthesis. FEBS Lett. 580 (2006) 5357–5362. [DOI] [PMID: 16989822]
2.  Sadre, R., Frentzen, M., Saeed, M. and Hawkes, T. Catalytic reactions of the homogentisate prenyl transferase involved in plastoquinone-9 biosynthesis. J. Biol. Chem. 285 (2010) 18191–18198. [DOI] [PMID: 20400515]
[EC 2.5.1.117 created 2014]
 
 
EC 2.5.1.118
Accepted name: β-(isoxazolin-5-on-2-yl)-L-alanine synthase
Reaction: O-acetyl-L-serine + isoxazolin-5-one = 3-(5-oxoisoxazolin-2-yl)-L-alanine + acetate
For diagram of O3-Acetyl-L-serine metabolism, click here
Systematic name: O-acetyl-L-serine:isoxazolin-5-one 2-(2-amino-2-carboxyethyl)transferase
Comments: The enzyme from the plants Lathyrus odoratus (sweet pea) and L. sativus (grass pea) also forms 3-(5-oxoisoxazolin-4-yl)-L-alanine in vitro (cf. EC 2.5.1.119). However, only 3-(5-oxoisoxazolin-2-yl)-L-alanine is formed in vivo. 3-(5-oxoisoxazolin-2-yl)-L-alanine is the biosynthetic precursor of the neurotoxin N3-oxalyl-L-2,3-diaminopropanoic acid, the cause of lathyrism. Closely related and possibly identical to EC 2.5.1.47, cysteine synthase, and EC 2.5.1.51, β-pyrazolylalanine synthase.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Ikegami, F., Kamiya, M., Kuo, Y.H., Lambein, F. and Murakoshi, I. Enzymatic synthesis of two isoxazolylalanine isomers by cysteine synthases in Lathyrus species. Biol. Pharm. Bull. 19 (1996) 1214–1215. [PMID: 8889043]
[EC 2.5.1.118 created 2014]
 
 
EC 2.5.1.119
Accepted name: β-(isoxazolin-5-on-4-yl)-L-alanine synthase
Reaction: O-acetyl-L-serine + isoxazolin-5-one = 3-(5-oxoisoxazolin-4-yl)-L-alanine + acetate
For diagram of O3-Acetyl-L-serine metabolism, click here
Systematic name: O-acetyl-L-serine:isoxazolin-5-one 4-(2-amino-2-carboxyethyl)transferase
Comments: 3-(5-Oxoisoxazolin-4-yl)-L-alanine is an antifungal antibiotic produced by the bacterium Streptomyces platensis. The enzymes from the plants Lathyrus odoratus (sweet pea), L. sativus (grass pea) and Citrullus vulgaris (watermelon) that catalyse EC 2.5.1.118 (β-(isoxazolin-5-on-2-yl)-L-alanine synthase) also catalyse this reaction in vitro, but not in vivo. Closely related and possibly identical to EC 2.5.1.47, cysteine synthase, and EC 2.5.1.51, β-pyrazolylalanine synthase.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Ikegami, F., Kamiya, M., Kuo, Y.H., Lambein, F. and Murakoshi, I. Enzymatic synthesis of two isoxazolylalanine isomers by cysteine synthases in Lathyrus species. Biol. Pharm. Bull. 19 (1996) 1214–1215. [PMID: 8889043]
[EC 2.5.1.119 created 2014]
 
 
EC 2.5.1.120
Accepted name: aminodeoxyfutalosine synthase
Reaction: S-adenosyl-L-methionine + 3-[(1-carboxyvinyl)oxy]benzoate + H2O = 6-amino-6-deoxyfutalosine + L-methionine + HCO3-
For diagram of the futalosine pathway, click here
Glossary: 6-amino-6-deoxyfutalosine = 3-{3-[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl]propanoyl}benzoate
Other name(s): MqnE; AFL synthase; aminofutalosine synthase; S-adenosyl-L-methionine:3-[(1-carboxyvinyl)-oxy]benzoate adenosyltransferase (bicarbonate-hydrolysing, 6-amino-6-deoxyfutalosine-forming)
Systematic name: S-adenosyl-L-methionine:3-[(1-carboxyvinyl)-oxy]benzoate adenosyltransferase (HCO3--hydrolysing, 6-amino-6-deoxyfutalosine-forming)
Comments: This enzyme is a member of the ‘AdoMet radical’ (radical SAM) family. S-Adenosyl-L-methionine acts as both a radical generator and as the source of the transferred adenosyl group. The enzyme, found in several bacterial species, is part of the futalosine pathway for menaquinone biosynthesis.
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Mahanta, N., Fedoseyenko, D., Dairi, T. and Begley, T.P. Menaquinone biosynthesis: formation of aminofutalosine requires a unique radical SAM enzyme. J. Am. Chem. Soc. 135 (2013) 15318–15321. [DOI] [PMID: 24083939]
[EC 2.5.1.120 created 2014]
 
 
EC 2.6.1.103
Accepted name: (S)-3,5-dihydroxyphenylglycine transaminase
Reaction: (S)-3,5-dihydroxyphenylglycine + 2-oxoglutarate = 2-(3,5-dihydroxyphenyl)-2-oxoacetate + L-glutamate
Glossary: (S)-3,5-dihydroxyphenylglycine = (2S)-2-amino-2-(3,5-dihydroxyphenyl)acetic acid
Other name(s): HpgT
Systematic name: (S)-3,5-dihydroxyphenylglycine:2-oxoglutarate aminotransferase
Comments: A pyridoxal-5′-phosphate protein. The enzyme from the bacterium Amycolatopsis orientalis catalyses the reaction in the reverse direction as part of the biosynthesis of the (S)-3,5-dihydroxyphenylglycine constituent of the glycopeptide antibiotic chloroeremomycin.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Sandercock, A.M., Charles, E.H., Scaife, W., Kirkpatrick, P.N., O'Brien, S.W., Papageorgiou, E.A., Spencer, J.B. and Williams, D.H. Biosynthesis of the di-meta-hydroxyphenylglycine constituent of the vancomycin-group antibiotic chloroeremomycin. Chem. Comm. (2001) 1252–1253.
[EC 2.6.1.103 created 2013]
 
 
EC 2.6.1.104
Accepted name: 3-dehydro-glucose-6-phosphate—glutamate transaminase
Reaction: kanosamine 6-phosphate + 2-oxoglutarate = 3-dehydro-D-glucose 6-phosphate + L-glutamate
For diagram of kanosamine biosynthesis, click here
Glossary: kanosamine = 3-amino-3-deoxy-D-glucose
Other name(s): 3-oxo-glucose-6-phosphate:glutamate aminotransferase; ntdA (gene name)
Systematic name: kanosamine 6-phosphate:2-oxoglutarate aminotransferase
Comments: A pyridoxal-phosphate protein. The enzyme, found in the bacterium Bacillus subtilis, is involved in a kanosamine biosynthesis pathway.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  van Straaten, K.E., Langill, D.M., Palmer, D.R. and Sanders, D.A. Purification, crystallization and preliminary X-ray analysis of NtdA, a putative pyridoxal phosphate-dependent aminotransferase from Bacillus subtilis. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 65 (2009) 426–429. [DOI] [PMID: 19342798]
2.  Vetter, N.D., Langill, D.M., Anjum, S., Boisvert-Martel, J., Jagdhane, R.C., Omene, E., Zheng, H., van Straaten, K.E., Asiamah, I., Krol, E.S., Sanders, D.A. and Palmer, D.R. A previously unrecognized kanosamine biosynthesis pathway in Bacillus subtilis. J. Am. Chem. Soc. 135 (2013) 5970–5973. [DOI] [PMID: 23586652]
[EC 2.6.1.104 created 2014]
 
 
EC 2.6.1.105
Accepted name: lysine—8-amino-7-oxononanoate transaminase
Reaction: L-lysine + 8-amino-7-oxononanoate = (S)-2-amino-6-oxohexanoate + 7,8-diaminononanoate
Glossary: (S)-2-amino-6-oxohexanoate = L-2-aminoadipate 6-semialdehyde = L-allysine
Other name(s): DAPA aminotransferase (ambiguous); bioA (gene name) (ambiguous); bioK (gene name)
Systematic name: L-lysine:8-amino-7-oxononanoate aminotransferase
Comments: A pyridoxal 5′-phosphate enzyme [2]. Participates in the pathway for biotin biosynthesis. The enzyme from the bacterium Bacillus subtilis cannot use S-adenosyl-L-methionine as amino donor and catalyses an alternative reaction for the conversion of 8-amino-7-oxononanoate to 7,8-diaminononanoate (cf. EC 2.6.1.62, adenosylmethionine—8-amino-7-oxononanoate transaminase).
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Van Arsdell, S.W., Perkins, J.B., Yocum, R.R., Luan, L., Howitt, C.L., Chatterjee, N.P. and Pero, J.G. Removing a bottleneck in the Bacillus subtilis biotin pathway: bioA utilizes lysine rather than S-adenosylmethionine as the amino donor in the KAPA-to-DAPA reaction. Biotechnol. Bioeng. 91 (2005) 75–83. [DOI] [PMID: 15880481]
2.  Dey, S., Lane, J.M., Lee, R.E., Rubin, E.J. and Sacchettini, J.C. Structural characterization of the Mycobacterium tuberculosis biotin biosynthesis enzymes 7,8-diaminopelargonic acid synthase and dethiobiotin synthetase. Biochemistry 49 (2010) 6746–6760. [DOI] [PMID: 20565114]
[EC 2.6.1.105 created 2014]
 
 
EC 2.6.1.106
Accepted name: dTDP-3-amino-3,4,6-trideoxy-α-D-glucose transaminase
Reaction: dTDP-3-amino-3,4,6-trideoxy-α-D-glucose + 2-oxoglutarate = dTDP-3-dehydro-4,6-deoxy-α-D-glucose + L-glutamate
For diagram of dTDP-D-desosamine biosynthesis, click here
Glossary: dTDP-α-D-desosamine = dTDP-3-(dimethylamino)-3,4,6-trideoxy-α-D-glucose
Other name(s): desV (gene name); megDII (gene name); eryCI (gene name)
Systematic name: dTDP-3-amino-3,4,6-trideoxy-α-D-glucose:2-oxoglutarate aminotransferase
Comments: A pyridoxal-phosphate protein. The enzyme is involved in the biosynthesis of dTDP-α-D-desosamine, a sugar found in several bacterial macrolide antibiotics including erythromycin, megalomicin A, mycinamicin II, and oleandomycin. The reaction occurs in the reverse direction.
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Burgie, E.S., Thoden, J.B. and Holden, H.M. Molecular architecture of DesV from Streptomyces venezuelae: a PLP-dependent transaminase involved in the biosynthesis of the unusual sugar desosamine. Protein Sci. 16 (2007) 887–896. [DOI] [PMID: 17456741]
[EC 2.6.1.106 created 2014]
 
 
EC 2.6.1.107
Accepted name: β-methylphenylalanine transaminase
Reaction: (2S,3S)-3-methylphenylalanine + 2-oxoglutarate = (3S)-2-oxo-3-phenylbutanoate + L-glutamate
Glossary: (3S)-2-oxo-3-phenylbutanoate = (3S)-β-methyl-phenylpyruvate
Other name(s): TyrB
Systematic name: (2S,3S)-3-methylphenylalanine:2-oxoglutarate aminotransferase
Comments: Requires pyridoxal phosphate. Isolated from the bacterium Streptomyces hygroscopicus NRRL3085. It is involved in the biosynthesis of the glycopeptide antibiotic mannopeptimycin.
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Huang, Y.T., Lyu, S.Y., Chuang, P.H., Hsu, N.S., Li, Y.S., Chan, H.C., Huang, C.J., Liu, Y.C., Wu, C.J., Yang, W.B. and Li, T.L. In vitro characterization of enzymes involved in the synthesis of nonproteinogenic residue (2S,3S)-β-methylphenylalanine in glycopeptide antibiotic mannopeptimycin. ChemBioChem 10 (2009) 2480–2487. [DOI] [PMID: 19731276]
[EC 2.6.1.107 created 2014]
 
 
EC 2.6.99.4
Transferred entry: N6-L-threonylcarbamoyladenine synthase. Now EC 2.3.1.234, N6-L-threonylcarbamoyladenine synthase.
[EC 2.6.99.4 created 2014, deleted 2014]
 
 
*EC 2.7.1.107
Accepted name: diacylglycerol kinase (ATP)
Reaction: ATP + 1,2-diacyl-sn-glycerol = ADP + 1,2-diacyl-sn-glycerol 3-phosphate
Glossary: 1,2-diacyl-sn-glycerol 3-phosphate = phosphatidate
Other name(s): diglyceride kinase (ambiguous); 1,2-diacylglycerol kinase (phosphorylating) (ambiguous); 1,2-diacylglycerol kinase (ambiguous); sn-1,2-diacylglycerol kinase (ambiguous); DG kinase (ambiguous); DGK (ambiguous); ATP:diacylglycerol phosphotransferase; arachidonoyl-specific diacylglycerol kinase; diacylglycerol:ATP kinase; ATP:1,2-diacylglycerol 3-phosphotransferase; diacylglycerol kinase (ATP dependent)
Systematic name: ATP:1,2-diacyl-sn-glycerol 3-phosphotransferase
Comments: Involved in synthesis of membrane phospholipids and the neutral lipid triacylglycerol. Activity is stimulated by certain phospholipids [4,7]. In plants and animals the product 1,2-diacyl-sn-glycerol 3-phosphate is an important second messenger. cf. EC 2.7.1.174, diacylglycerol kinase (CTP).
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB, CAS registry number: 60382-71-0
References:
1.  Hokin, L.E. and Hokin, M.R. Diglyceride kinase and other pathways for phosphatidic acid synthesis in the erythrocyte membrane. Biochim. Biophys. Acta 67 (1963) 470–484. [PMID: 13961253]
2.  Weissbach, H., Thomas, E. and Kaback, H.R. Studies on the metabolism of ATP by isolated bacterial membranes: formation and metabolism of membrane-bound phosphatidic acid. Arch. Biochem. Biophys. 147 (1971) 249–254. [DOI] [PMID: 4940043]
3.  Daleo, G.R., Piras, M.M. and Piras, R. Diglyceride kinase activity of microtubules. Characterization and comparison with the protein kinase and ATPase activities associated with vinblastine-isolated tubulin of chick embryonic muscles. Eur. J. Biochem. 68 (1976) 339–346. [DOI] [PMID: 185051]
4.  Walsh, J.P. and Bell, R.M. sn-1,2-Diacylglycerol kinase of Escherichia coli. Structural and kinetic analysis of the lipid cofactor dependence. J. Biol. Chem. 261 (1986) 15062–15069. [PMID: 3021764]
5.  Russ, E., Kaiser, U. and Sandermann, H., Jr. Lipid-dependent membrane enzymes. Purification to homogeneity and further characterization of diacylglycerol kinase from Escherichia coli. Eur. J. Biochem. 171 (1988) 335–342. [PMID: 2828054]
6.  Walsh, J.P. and Bell, R.M. Diacylglycerol kinase from Escherichia coli. Methods Enzymol. 209 (1992) 153–162. [DOI] [PMID: 1323028]
7.  Wissing, J.B. and Wagner, K.G. Diacylglycerol kinase from suspension cultured plant cells : characterization and subcellular localization. Plant Physiol. 98 (1992) 1148–1153. [PMID: 16668739]
[EC 2.7.1.107 created 1984, modified 2013]
 
 
*EC 2.7.1.174
Accepted name: diacylglycerol kinase (CTP)
Reaction: CTP + 1,2-diacyl-sn-glycerol = CDP + 1,2-diacyl-sn-glycerol 3-phosphate
Glossary: 1,2-diacyl-sn-glycerol 3-phosphate = phosphatidate
Other name(s): DAG kinase; CTP-dependent diacylglycerol kinase; diglyceride kinase (ambiguous); DGK1 (gene name); diacylglycerol kinase (CTP dependent)
Systematic name: CTP:1,2-diacyl-sn-glycerol 3-phosphotransferase
Comments: Requires Ca2+ or Mg2+ for activity. Involved in synthesis of membrane phospholipids and the neutral lipid triacylglycerol. Unlike the diacylglycerol kinases from bacteria, plants, and animals [cf. EC 2.7.1.107, diacylglycerol kinase (ATP)], the enzyme from Saccharomyces cerevisiae utilizes CTP. The enzyme can also use dCTP, but not ATP, GTP or UTP.
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Han, G.S., O'Hara, L., Carman, G.M. and Siniossoglou, S. An unconventional diacylglycerol kinase that regulates phospholipid synthesis and nuclear membrane growth. J. Biol. Chem. 283 (2008) 20433–20442. [DOI] [PMID: 18458075]
2.  Han, G.S., O'Hara, L., Siniossoglou, S. and Carman, G.M. Characterization of the yeast DGK1-encoded CTP-dependent diacylglycerol kinase. J. Biol. Chem. 283 (2008) 20443–20453. [DOI] [PMID: 18458076]
3.  Fakas, S., Konstantinou, C. and Carman, G.M. DGK1-encoded diacylglycerol kinase activity is required for phospholipid synthesis during growth resumption from stationary phase in Saccharomyces cerevisiae. J. Biol. Chem. 286 (2011) 1464–1474. [DOI] [PMID: 21071438]
[EC 2.7.1.174 created 2012, modified 2013]
 
 
EC 2.7.1.180
Accepted name: FAD:protein FMN transferase
Reaction: FAD + [protein]-L-threonine = [protein]-FMN-L-threonine + AMP
Other name(s): flavin transferase; apbE (gene name)
Systematic name: FAD:protein riboflavin-5′-phosphate transferase
Comments: The enzyme catalyses the transfer of the FMN portion of FAD and its covalent binding to the hydroxyl group of an L-threonine residue in a target flavin-binding protein such as the B and C subunits of EC 7.2.1.1, NADH:ubiquinone reductase (Na+-transporting). Requires Mg2+.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Bertsova, Y.V., Fadeeva, M.S., Kostyrko, V.A., Serebryakova, M.V., Baykov, A.A. and Bogachev, A.V. Alternative pyrimidine biosynthesis protein ApbE is a flavin transferase catalyzing covalent attachment of FMN to a threonine residue in bacterial flavoproteins. J. Biol. Chem. 288 (2013) 14276–14286. [PMID: 23558683]
[EC 2.7.1.180 created 2013, modified 2018]
 
 
EC 2.7.1.181
Accepted name: polymannosyl GlcNAc-diphospho-ditrans,octacis-undecaprenol kinase
Reaction: ATP + α-D-Man-(1→2)-α-D-Man-(1→2)-[α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)]n-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol = ADP + 3-O-phospho-α-D-Man-(1→2)-α-D-Man-(1→2)-[α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)]n-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol
Other name(s): WbdD; ATP:α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Man-(1→3)]n-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol 3-phosphotransferase
Systematic name: ATP:α-D-Man-(1→2)-α-D-Man-(1→2)-[α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)]n-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol 3-phosphotransferase
Comments: The enzyme is involved in the biosynthesis of the polymannose O-polysaccharide in the outer leaflet of the membrane of Escherichia coli serotype O9a. O-Polysaccharide structures vary extensively because of differences in the number and type of sugars in the repeat unit. The dual kinase/methylase WbdD also catalyses the methylation of 3-phospho-α-D-Man-(1→2)-α-D-Man-(1→2)-[α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)]n-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-Man-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol (cf. EC 2.1.1.294, 3-O-phospho-polymannosyl GlcNAc-diphospho-ditrans,octacis-undecaprenol 3-phospho-methyltransferase).
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Clarke, B.R., Cuthbertson, L. and Whitfield, C. Nonreducing terminal modifications determine the chain length of polymannose O antigens of Escherichia coli and couple chain termination to polymer export via an ATP-binding cassette transporter. J. Biol. Chem. 279 (2004) 35709–35718. [DOI] [PMID: 15184370]
2.  Clarke, B.R., Greenfield, L.K., Bouwman, C. and Whitfield, C. Coordination of polymerization, chain termination, and export in assembly of the Escherichia coli lipopolysaccharide O9a antigen in an ATP-binding cassette transporter-dependent pathway. J. Biol. Chem. 284 (2009) 30662–30672. [DOI] [PMID: 19734145]
3.  Clarke, B.R., Richards, M.R., Greenfield, L.K., Hou, D., Lowary, T.L. and Whitfield, C. In vitro reconstruction of the chain termination reaction in biosynthesis of the Escherichia coli O9a O-polysaccharide: the chain-length regulator, WbdD, catalyzes the addition of methyl phosphate to the non-reducing terminus of the growing glycan. J. Biol. Chem. 286 (2011) 41391–41401. [DOI] [PMID: 21990359]
4.  Liston, S.D., Clarke, B.R., Greenfield, L.K., Richards, M.R., Lowary, T.L. and Whitfield, C. Domain interactions control complex formation and polymerase specificity in the biosynthesis of the Escherichia coli O9a antigen. J. Biol. Chem. 290 (2015) 1075–1085. [DOI] [PMID: 25422321]
[EC 2.7.1.181 created 2014, modified 2017]
 
 
EC 2.7.1.182
Accepted name: phytol kinase
Reaction: CTP + phytol = CDP + phytyl phosphate
Other name(s): VTE5 (gene name)
Systematic name: CTP:phytol O-phosphotransferase
Comments: The enzyme is found in plants and photosynthetic algae [2] and is involved in phytol salvage [1]. It can use UTP as an alternative phosphate donor with lower activity [2].
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Ischebeck, T., Zbierzak, A.M., Kanwischer, M. and Dormann, P. A salvage pathway for phytol metabolism in Arabidopsis. J. Biol. Chem. 281 (2006) 2470–2477. [DOI] [PMID: 16306049]
2.  Valentin, H.E., Lincoln, K., Moshiri, F., Jensen, P.K., Qi, Q., Venkatesh, T.V., Karunanandaa, B., Baszis, S.R., Norris, S.R., Savidge, B., Gruys, K.J. and Last, R.L. The Arabidopsis vitamin E pathway gene5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Plant Cell 18 (2006) 212–224. [DOI] [PMID: 16361393]
[EC 2.7.1.182 created 2014]
 
 
*EC 2.7.4.21
Accepted name: inositol-hexakisphosphate 5-kinase
Reaction: (1) ATP + 1D-myo-inositol hexakisphosphate = ADP + 1D-myo-inositol 5-diphosphate 1,2,3,4,6-pentakisphosphate
(2) ATP + 1D-myo-inositol 1-diphosphate 2,3,4,5,6-pentakisphosphate = ADP + 1D-myo-inositol 1,5-bis(diphosphate) 2,3,4,6-tetrakisphosphate
Other name(s): ATP:1D-myo-inositol-hexakisphosphate phosphotransferase; IP6K; inositol-hexakisphosphate kinase (ambiguous)
Systematic name: ATP:1D-myo-inositol-hexakisphosphate 5-phosphotransferase
Comments: Three mammalian isoforms are known to exist.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB, CAS registry number: 176898-37-6
References:
1.  Saiardi, A., Erdjument-Bromage, H., Snowman, A.M., Tempst, P. and Snyder, S.H. Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Curr. Biol. 9 (1999) 1323–1326. [DOI] [PMID: 10574768]
2.  Schell, M.J., Letcher, A.J., Brearley, C.A., Biber, J., Murer, H. and Irvine, R.F. PiUS (Pi uptake stimulator) is an inositol hexakisphosphate kinase. FEBS Lett. 461 (1999) 169–172. [DOI] [PMID: 10567691]
3.  Albert, C., Safrany, S.T., Bembenek, M.E., Reddy, K.M., Reddy, K.K., Falck, J.-R., Bröcker, M., Shears, S.B. and Mayr, G.W. Biological variability in the structures of diphosphoinositol polyphosphates in Dictyostelium discoideum and mammalian cells. Biochem. J. 327 (1997) 553–560. [DOI] [PMID: 9359429]
4.  Lin, H., Fridy, P.C., Ribeiro, A.A., Choi, J.H., Barma, D.K., Vogel, G., Falck, J.R., Shears, S.B., York, J.D. and Mayr, G.W. Structural analysis and detection of biological inositol pyrophosphates reveal that the family of VIP/diphosphoinositol pentakisphosphate kinases are 1/3-kinases. J. Biol. Chem. 284 (2009) 1863–1872. [DOI] [PMID: 18981179]
5.  Wang, H., Falck, J.R., Hall, T.M. and Shears, S.B. Structural basis for an inositol pyrophosphate kinase surmounting phosphate crowding. Nat. Chem. Biol. 8 (2012) 111–116. [DOI] [PMID: 22119861]
[EC 2.7.4.21 created 2002 as EC 2.7.1.152, transferred 2003 to EC 2.7.4.21, modified 2013, modified 2022]
 
 
*EC 2.7.4.24
Accepted name: diphosphoinositol-pentakisphosphate 1-kinase
Reaction: (1) ATP + 1D-myo-inositol 5-diphosphate 1,2,3,4,6-pentakisphosphate = ADP + 1D-myo-inositol 1,5-bis(diphosphate) 2,3,4,6-tetrakisphosphate
(2) ATP + 1D-myo-inositol hexakisphosphate = ADP + 1D-myo-inositol 1-diphosphate 2,3,4,5,6-pentakisphosphate
Other name(s): PP-IP5 kinase; diphosphoinositol pentakisphosphate kinase; ATP:5-diphospho-1D-myo-inositol-pentakisphosphate phosphotransferase; PP-InsP5 kinase; PPIP5K; PPIP5K1; PPIP5K2; VIP1; VIP2; diphosphoinositol-pentakisphosphate 1/3-kinase (incorrect); diphosphoinositol-pentakisphosphate kinase (ambiguous)
Systematic name: ATP:1D-myo-inositol-5-diphosphate-pentakisphosphate 1-phosphotransferase
Comments: This enzyme is activated by osmotic shock [4]. Ins(1,3,4,5,6)P5, 1D-myo-inositol diphosphate tetrakisphosphate and 1D-myo-inositol bisdiphosphate triphosphate are not substrates [4]. The enzyme specifically phosphorylates the 1-position of the substrates [6].
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Shears, S.B., Ali, N., Craxton, A. and Bembenek, M.E. Synthesis and metabolism of bis-diphosphoinositol tetrakisphosphate in vitro and in vivo. J. Biol. Chem. 270 (1995) 10489–10497. [DOI] [PMID: 7737983]
2.  Albert, C., Safrany, S.T., Bembenek, M.E., Reddy, K.M., Reddy, K.K., Falck, J.-R., Bröcker, M., Shears, S.B. and Mayr, G.W. Biological variability in the structures of diphosphoinositol polyphosphates in Dictyostelium discoideum and mammalian cells. Biochem. J. 327 (1997) 553–560. [DOI] [PMID: 9359429]
3.  Fridy, P.C., Otto, J.C., Dollins, D.E. and York, J.D. Cloning and characterization of two human VIP1-like inositol hexakisphosphate and diphosphoinositol pentakisphosphate kinases. J. Biol. Chem. 282 (2007) 30754–30762. [DOI] [PMID: 17690096]
4.  Choi, J.H., Williams, J., Cho, J., Falck, J.R. and Shears, S.B. Purification, sequencing, and molecular identification of a mammalian PP-InsP5 kinase that Is activated when cells are exposed to hyperosmotic stress. J. Biol. Chem. 282 (2007) 30763–30775. [DOI] [PMID: 17702752]
5.  Lin, H., Fridy, P.C., Ribeiro, A.A., Choi, J.H., Barma, D.K., Vogel, G., Falck, J.R., Shears, S.B., York, J.D. and Mayr, G.W. Structural analysis and detection of biological inositol pyrophosphates reveal that the family of VIP/diphosphoinositol pentakisphosphate kinases are 1/3-kinases. J. Biol. Chem. 284 (2009) 1863–1872. [DOI] [PMID: 18981179]
6.  Wang, H., Falck, J.R., Hall, T.M. and Shears, S.B. Structural basis for an inositol pyrophosphate kinase surmounting phosphate crowding. Nat. Chem. Biol. 8 (2012) 111–116. [DOI] [PMID: 22119861]
[EC 2.7.4.24 created 2003 as EC 2.7.1.155, transferred 2007 to EC 2.7.4.24, modified 2014, modified 2022]
 
 
EC 2.8.2.36
Accepted name: desulfo-A47934 sulfotransferase
Reaction: 3′-phosphoadenylyl sulfate + desulfo-A47934 = adenosine 3′,5′-bisphosphate + A47934
Glossary: desulfo-A47934 = LY 154989 = 7-demethyl-64-O-demethyl-19-deoxy-22,31,45-trichloro-11-sulfo-ristomycin A aglycone
Other name(s): StaL; 3′-phosphoadenylyl-sulfate:desulfo-A47934 sulfotransferase
Systematic name: 3′-phosphoadenylyl-sulfate:desulfo-A47934 sulfonotransferase
Comments: The enzyme from the bacterium Streptomyces toyocaensis catalyses the final step in the biosynthesis of the glycopeptide antibiotic A47934, a naturally occuring antibiotic of the vancomycin group.
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Lamb, S.S., Patel, T., Koteva, K.P. and Wright, G.D. Biosynthesis of sulfated glycopeptide antibiotics by using the sulfotransferase StaL. Chem. Biol. 13 (2006) 171–181. [DOI] [PMID: 16492565]
2.  Shi, R., Lamb, S.S., Bhat, S., Sulea, T., Wright, G.D., Matte, A. and Cygler, M. Crystal structure of StaL, a glycopeptide antibiotic sulfotransferase from Streptomyces toyocaensis. J. Biol. Chem. 282 (2007) 13073–13086. [DOI] [PMID: 17329243]
[EC 2.8.2.36 created 2014]
 
 
EC 2.8.3.7
Deleted entry: succinate—citramalate CoA-transferase. The activity has now been shown to be due to two separate enzymes described by EC 2.8.3.22, succinyl-CoA—L-malate CoA-transferase, and EC 2.8.3.20, succinyl-CoA—D-citramalate CoA-transferase
[EC 2.8.3.7 created 1972, deleted 2014]
 
 
EC 2.8.3.19
Accepted name: CoA:oxalate CoA-transferase
Reaction: acetyl-CoA + oxalate = acetate + oxalyl-CoA
Other name(s): acetyl-coenzyme A transferase; acetyl-CoA oxalate CoA-transferase; ACOCT; YfdE; UctC
Systematic name: acetyl-CoA:oxalate CoA-transferase
Comments: The enzymes characterized from the bacteria Escherichia coli and Acetobacter aceti can also use formyl-CoA and oxalate (EC 2.8.3.16, formyl-CoA transferase) or formyl-CoA and acetate, with significantly reduced specific activities.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Mullins, E.A., Sullivan, K.L. and Kappock, T.J. Function and X-Ray crystal structure of Escherichia coli YfdE. PLoS One 8 (2013) e67901. [DOI] [PMID: 23935849]
[EC 2.8.3.19 created 2013]
 
 
EC 2.8.3.20
Accepted name: succinyl-CoA—D-citramalate CoA-transferase
Reaction: (1) succinyl-CoA + (R)-citramalate = succinate + (R)-citramalyl-CoA
(2) succinyl-CoA + (R)-malate = succinate + (R)-malyl-CoA
Glossary: (R)-citramalate = (2R)-2-hydroxy-2-methylbutanedioate
(R)-malate = (2R)-2-hydroxybutanedioate
(R)-malyl-CoA = (3R)-3-carboxy-3-hydroxypropanoyl-CoA
Other name(s): Sct
Systematic name: succinyl-CoA:(R)-citramalate CoA-transferase
Comments: The enzyme, purified from the bacterium Clostridium tetanomorphum, can also accept itaconate as acceptor, with lower efficiency.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Friedmann, S., Alber, B.E. and Fuchs, G. Properties of succinyl-coenzyme A:D-citramalate coenzyme A transferase and its role in the autotrophic 3-hydroxypropionate cycle of Chloroflexus aurantiacus. J. Bacteriol. 188 (2006) 6460–6468. [DOI] [PMID: 16952935]
[EC 2.8.3.20 created 2014]
 
 
EC 2.8.3.21
Accepted name: L-carnitine CoA-transferase
Reaction: (1) (E)-4-(trimethylammonio)but-2-enoyl-CoA + L-carnitine = (E)-4-(trimethylammonio)but-2-enoate + L-carnitinyl-CoA
(2) 4-trimethylammoniobutanoyl-CoA + L-carnitine = 4-trimethylammoniobutanoate + L-carnitinyl-CoA
Glossary: L-carnitine = (3R)-3-hydroxy-4-(trimethylammonio)butanoate
(E)-4-(trimethylammonio)but-2-enoate = crotonobetaine
4-trimethylammoniobutanoate = γ-butyrobetaine
Other name(s): CaiB; crotonobetainyl/γ-butyrobetainyl-CoA:carnitine CoA-transferase
Systematic name: (E)-4-(trimethylammonio)but-2-enoyl-CoA:L-carnitine CoA-transferase
Comments: The enzyme is found in gammaproteobacteria such as Proteus sp. and Escherichia coli. It has similar activity with both substrates.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Engemann, C., Elssner, T. and Kleber, H.P. Biotransformation of crotonobetaine to L-(–)-carnitine in Proteus sp. Arch. Microbiol. 175 (2001) 353–359. [PMID: 11409545]
2.  Elssner, T., Engemann, C., Baumgart, K. and Kleber, H.P. Involvement of coenzyme A esters and two new enzymes, an enoyl-CoA hydratase and a CoA-transferase, in the hydration of crotonobetaine to L-carnitine by Escherichia coli. Biochemistry 40 (2001) 11140–11148. [DOI] [PMID: 11551212]
3.  Stenmark, P., Gurmu, D. and Nordlund, P. Crystal structure of CaiB, a type-III CoA transferase in carnitine metabolism. Biochemistry 43 (2004) 13996–14003. [DOI] [PMID: 15518548]
4.  Engemann, C., Elssner, T., Pfeifer, S., Krumbholz, C., Maier, T. and Kleber, H.P. Identification and functional characterisation of genes and corresponding enzymes involved in carnitine metabolism of Proteus sp. Arch. Microbiol. 183 (2005) 176–189. [DOI] [PMID: 15731894]
5.  Rangarajan, E.S., Li, Y., Iannuzzi, P., Cygler, M. and Matte, A. Crystal structure of Escherichia coli crotonobetainyl-CoA: carnitine CoA-transferase (CaiB) and its complexes with CoA and carnitinyl-CoA. Biochemistry 44 (2005) 5728–5738. [DOI] [PMID: 15823031]
[EC 2.8.3.21 created 2014]
 
 
EC 2.8.3.22
Accepted name: succinyl-CoA—L-malate CoA-transferase
Reaction: (1) succinyl-CoA + (S)-malate = succinate + (S)-malyl-CoA
(2) succinyl-CoA + (S)-citramalate = succinate + (S)-citramalyl-CoA
For diagram of the 3-hydroxypropanoate cycle, click here
Glossary: (S)-citramalate = (2S)-2-hydroxy-2-methylbutanedioate
(S)-malate = (2S)-2-hydroxybutanedioate
(S)-malyl-CoA = (3S)-3-carboxy-3-hydroxypropanoyl-CoA
Other name(s): SmtAB
Systematic name: succinyl-CoA:(S)-malate CoA-transferase
Comments: The enzyme, purified from the bacterium Chloroflexus aurantiacus, can also accept itaconate as acceptor, with lower efficiency. It is part of the 3-hydroxypropanoate cycle for carbon assimilation.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Friedmann, S., Steindorf, A., Alber, B.E. and Fuchs, G. Properties of succinyl-coenzyme A:L-malate coenzyme A transferase and its role in the autotrophic 3-hydroxypropionate cycle of Chloroflexus aurantiacus. J. Bacteriol. 188 (2006) 2646–2655. [DOI] [PMID: 16547052]
[EC 2.8.3.22 created 2014]
 
 
EC 2.8.4.3
Accepted name: tRNA-2-methylthio-N6-dimethylallyladenosine synthase
Reaction: N6-(3-methylbut-2-en-1-yl)-adenine37 in tRNA + sulfur-(sulfur carrier) + 2 S-adenosyl-L-methionine + reduced electron acceptor = N6-(3-methylbut-2-en-1-yl)-2-(methylsulfanyl)adenine37 in tRNA + S-adenosyl-L-homocysteine + (sulfur carrier) + L-methionine + 5′-deoxyadenine + electron acceptor (overall reaction)
(1a) N6-(3-methylbut-2-en-1-yl)-adenine37 in tRNA + sulfur-(sulfur carrier) + S-adenosyl-L-methionine + reduced electron acceptor = N6-(3-methylbut-2-en-1-yl)-2-thioadenine37 in tRNA + (sulfur carrier) + L-methionine + 5′-deoxyadenine + electron acceptor
(1b) S-adenosyl-L-methionine + N6-(3-methylbut-2-en-1-yl)-2-thioadenine37 in tRNA = S-adenosyl-L-homocysteine + N6-(3-methylbut-2-en-1-yl)-2-(methylsulfanyl)adenine37 in tRNA
For diagram of N6-(dimethylallyl)adenosine37 modified tRNA biosynthesis, click here
Glossary: N6-(3-methylbut-2-en-1-yl)-adenine37 in tRNA = N6-dimethylallyladenine37 in tRNA
Other name(s): MiaB; 2-methylthio-N-6-isopentenyl adenosine synthase; tRNA-i6A37 methylthiotransferase; tRNA (N6-dimethylallyladenosine37):sulfur-(sulfur carrier),S-adenosyl-L-methionine C2-methylthiotransferase
Systematic name: tRNA N6-(3-methylbut-2-en-1-yl)-adenine37:sulfur-(sulfur carrier),S-adenosyl-L-methionine C2-(methylsulfanyl)transferase
Comments: This bacterial enzyme binds two [4Fe-4S] clusters as well as the transferred sulfur [3]. The enzyme is a member of the superfamily of S-adenosyl-L-methionine-dependent radical (radical AdoMet) enzymes. The sulfur donor is believed to be one of the [4Fe-4S] clusters, which is sacrificed in the process, so that in vitro the reaction is a single turnover. The identity of the electron donor is not known.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Pierrel, F., Bjork, G.R., Fontecave, M. and Atta, M. Enzymatic modification of tRNAs: MiaB is an iron-sulfur protein. J. Biol. Chem. 277 (2002) 13367–13370. [DOI] [PMID: 11882645]
2.  Pierrel, F., Hernandez, H.L., Johnson, M.K., Fontecave, M. and Atta, M. MiaB protein from Thermotoga maritima. Characterization of an extremely thermophilic tRNA-methylthiotransferase. J. Biol. Chem. 278 (2003) 29515–29524. [DOI] [PMID: 12766153]
3.  Pierrel, F., Douki, T., Fontecave, M. and Atta, M. MiaB protein is a bifunctional radical-S-adenosylmethionine enzyme involved in thiolation and methylation of tRNA. J. Biol. Chem. 279 (2004) 47555–47563. [DOI] [PMID: 15339930]
4.  Hernandez, H.L., Pierrel, F., Elleingand, E., Garcia-Serres, R., Huynh, B.H., Johnson, M.K., Fontecave, M. and Atta, M. MiaB, a bifunctional radical-S-adenosylmethionine enzyme involved in the thiolation and methylation of tRNA, contains two essential [4Fe-4S] clusters. Biochemistry 46 (2007) 5140–5147. [DOI] [PMID: 17407324]
5.  Landgraf, B.J., Arcinas, A.J., Lee, K.H. and Booker, S.J. Identification of an intermediate methyl carrier in the radical S-adenosylmethionine methylthiotransferases RimO and MiaB. J. Am. Chem. Soc. 135 (2013) 15404–15416. [DOI] [PMID: 23991893]
[EC 2.8.4.3 created 2014, modified 2015]
 
 
EC 2.8.4.4
Accepted name: [ribosomal protein uS12] (aspartate89-C3)-methylthiotransferase
Reaction: L-aspartate89-[ribosomal protein uS12] + sulfur-(sulfur carrier) + 2 S-adenosyl-L-methionine + reduced acceptor = 3-(methylsulfanyl)-L-aspartate89-[ribosomal protein uS12] + S-adenosyl-L-homocysteine + (sulfur carrier) + L-methionine + 5′-deoxyadenosine + oxidized acceptor (overall reaction)
(1a) S-adenosyl-L-methionine + L-aspartate89-[ribosomal protein uS12] + sulfur-(sulfur carrier) = S-adenosyl-L-homocysteine + L-aspartate89-[ribosomal protein uS12]-methanethiol + (sulfur carrier)
(1b) L-aspartate89-[ribosomal protein uS12]-methanethiol + S-adenosyl-L-methionine + reduced acceptor = 3-(methylsulfanyl)-L-aspartate89-[ribosomal protein uS12] + L-methionine + 5′-deoxyadenosine + oxidized acceptor
Other name(s): RimO; [ribosomal protein S12]-Asp89:sulfur-(sulfur carrier),S-adenosyl-L-methionine C3-methylthiotransferase; [ribosomal protein S12]-L-aspartate89:sulfur-(sulfur carrier),S-adenosyl-L-methionine C3-methylthiotransferase
Systematic name: [ribosomal protein uS12]-L-aspartate89:sulfur-(sulfur carrier),S-adenosyl-L-methionine C3-(methylsulfanyl)transferase
Comments: This bacterial enzyme binds two [4Fe-4S] clusters [2,3]. A bridge of five sulfur atoms is formed between the free Fe atoms of the two [4Fe-4S] clusters [6]. In the first reaction the enzyme transfers a methyl group from AdoMet to the external sulfur ion of the sulfur bridge. In the second reaction the enzyme catalyses the reductive fragmentation of a second molecule of AdoMet, yielding a 5′-deoxyadenosine radical, which then attacks the methylated sulfur atom of the polysulfide bridge, resulting in the transfer of a methylsulfanyl group to aspartate89 [5,6]. The enzyme is a member of the superfamily of S-adenosyl-L-methionine-dependent radical (radical AdoMet) enzymes.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Anton, B.P., Saleh, L., Benner, J.S., Raleigh, E.A., Kasif, S. and Roberts, R.J. RimO, a MiaB-like enzyme, methylthiolates the universally conserved Asp88 residue of ribosomal protein S12 in Escherichia coli. Proc. Natl. Acad. Sci. USA 105 (2008) 1826–1831. [DOI] [PMID: 18252828]
2.  Lee, K.H., Saleh, L., Anton, B.P., Madinger, C.L., Benner, J.S., Iwig, D.F., Roberts, R.J., Krebs, C. and Booker, S.J. Characterization of RimO, a new member of the methylthiotransferase subclass of the radical SAM superfamily. Biochemistry 48 (2009) 10162–10174. [DOI] [PMID: 19736993]
3.  Arragain, S., Garcia-Serres, R., Blondin, G., Douki, T., Clemancey, M., Latour, J.M., Forouhar, F., Neely, H., Montelione, G.T., Hunt, J.F., Mulliez, E., Fontecave, M. and Atta, M. Post-translational modification of ribosomal proteins: structural and functional characterization of RimO from Thermotoga maritima, a radical S-adenosylmethionine methylthiotransferase. J. Biol. Chem. 285 (2010) 5792–5801. [DOI] [PMID: 20007320]
4.  Strader, M.B., Costantino, N., Elkins, C.A., Chen, C.Y., Patel, I., Makusky, A.J., Choy, J.S., Court, D.L., Markey, S.P. and Kowalak, J.A. A proteomic and transcriptomic approach reveals new insight into β-methylthiolation of Escherichia coli ribosomal protein S12. Mol. Cell. Proteomics 10:M110.005199 (2011). [DOI] [PMID: 21169565]
5.  Landgraf, B.J., Arcinas, A.J., Lee, K.H. and Booker, S.J. Identification of an intermediate methyl carrier in the radical S-adenosylmethionine methylthiotransferases RimO and MiaB. J. Am. Chem. Soc. 135 (2013) 15404–15416. [DOI] [PMID: 23991893]
6.  Forouhar, F., Arragain, S., Atta, M., Gambarelli, S., Mouesca, J.M., Hussain, M., Xiao, R., Kieffer-Jaquinod, S., Seetharaman, J., Acton, T.B., Montelione, G.T., Mulliez, E., Hunt, J.F. and Fontecave, M. Two Fe-S clusters catalyze sulfur insertion by radical-SAM methylthiotransferases. Nat. Chem. Biol. 9 (2013) 333–338. [DOI] [PMID: 23542644]
[EC 2.8.4.4 created 2014, modified 2014, modified 2023]
 
 
EC 2.8.4.5
Accepted name: tRNA (N6-L-threonylcarbamoyladenosine37-C2)-methylthiotransferase
Reaction: N6-L-threonylcarbamoyladenine37 in tRNA + sulfur-(sulfur carrier) + 2 S-adenosyl-L-methionine + reduced electron acceptor = 2-(methylsulfanyl)-N6-L-threonylcarbamoyladenine37 in tRNA + S-adenosyl-L-homocysteine + (sulfur carrier) + L-methionine + 5′-deoxyadenosine + electron acceptor (overall reaction)
(1a) N6-L-threonylcarbamoyladenine37 in tRNA + sulfur-(sulfur carrier) + S-adenosyl-L-methionine + reduced electron acceptor = 2-sulfanyl-N6-L-threonylcarbamoyladenine37 in tRNA + (sulfur carrier) + L-methionine + 5′-deoxyadenosine + electron acceptor
(1b) S-adenosyl-L-methionine + 2-sulfanyl-N6-L-threonylcarbamoyladenine37 in tRNA = S-adenosyl-L-homocysteine + 2-(methylsulfanyl)-N6-L-threonylcarbamoyladenine37 in tRNA
For diagram of N6-L-Threonylcarbamoyladenosine37 modified tRNA biosynthesis, click here
Glossary: N6-L-threonylcarbamoyladenine37 = t6A37
2-sulfanyl-N6-L-threonylcarbamoyladenine37 = ms2t6A37
Other name(s): MtaB; methylthio-threonylcarbamoyl-adenosine transferase B; CDKAL1 (gene name); tRNA (N6-L-threonylcarbamoyladenosine37):sulfur-(sulfur carrier),S-adenosyl-L-methionine C2-methylthiotransferase
Systematic name: tRNA (N6-L-threonylcarbamoyladenosine37):sulfur-(sulfur carrier),S-adenosyl-L-methionine C2-(methylsulfanyl)transferase
Comments: The enzyme, which is a member of the S-adenosyl-L-methionine-dependent radical (radical AdoMet) enzymes superfamily, binds two [4Fe-4S] clusters as well as the transferred sulfur. The sulfur donor is believed to be one of the [4Fe-4S] clusters, which is sacrificed in the process, so that in vitro the reaction is a single turnover. The identity of the electron donor is not known.
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Arragain, S., Handelman, S.K., Forouhar, F., Wei, F.Y., Tomizawa, K., Hunt, J.F., Douki, T., Fontecave, M., Mulliez, E. and Atta, M. Identification of eukaryotic and prokaryotic methylthiotransferase for biosynthesis of 2-methylthio-N6-threonylcarbamoyladenosine in tRNA. J. Biol. Chem. 285 (2010) 28425–28433. [DOI] [PMID: 20584901]
[EC 2.8.4.5 created 2014, modified 2015]
 
 
EC 3.1.2.30
Accepted name: (3S)-malyl-CoA thioesterase
Reaction: (S)-malyl-CoA + H2O = (S)-malate + CoA
Glossary: (S)-malate = (2S)-2-hydroxybutanedioate
(S)-malyl-CoA = (3S)-3-carboxy-3-hydroxypropanoyl-CoA
Other name(s): mcl2 (gene name)
Systematic name: (S)-malyl-CoA hydrolase
Comments: Stimulated by Mg2+ or Mn2+. The enzyme has no activity with (2R,3S)-2-methylmalyl-CoA (cf. EC 4.1.3.24, malyl-CoA lyase) or other CoA esters.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Erb, T.J., Frerichs-Revermann, L., Fuchs, G. and Alber, B.E. The apparent malate synthase activity of Rhodobacter sphaeroides is due to two paralogous enzymes, (3S)-malyl-coenzyme A (CoA)/β-methylmalyl-CoA lyase and (3S)-malyl-CoA thioesterase. J. Bacteriol. 192 (2010) 1249–1258. [DOI] [PMID: 20047909]
[EC 3.1.2.30 created 2014]
 
 
*EC 3.1.3.16
Accepted name: protein-serine/threonine phosphatase
Reaction: [a protein]-serine/threonine phosphate + H2O = [a protein]-serine/threonine + phosphate
Other name(s): phosphoprotein phosphatase (ambiguous); protein phosphatase-1; protein phosphatase-2A; protein phosphatase-2B; protein phosphatase-2C; protein D phosphatase; phosphospectrin phosphatase; casein phosphatase; Aspergillus awamori acid protein phosphatase; calcineurin; phosphatase 2A; phosphatase 2B; phosphatase II; phosphatase IB; phosphatase C-II; polycation modulated (PCM-) phosphatase; phosphopyruvate dehydrogenase phosphatase; phosphatase SP; branched-chain α-keto acid dehydrogenase phosphatase; BCKDH phosphatase; 3-hydroxy 3-methylglutaryl coenzymeA reductase phosphatase; HMG-CoA reductase phosphatase; phosphatase H-II; phosphatase III; phosphatase I; protein phosphatase; phosphatase IV; phosphoprotein phosphohydrolase
Systematic name: protein-serine/threonine-phosphate phosphohydrolase
Comments: A group of enzymes removing the serine- or threonine-bound phosphate group from a wide range of phosphoproteins, including a number of enzymes that have been phosphorylated under the action of a kinase (cf. EC 3.1.3.48 protein-tyrosine-phosphatase). The spleen enzyme also acts on phenolic phosphates and phosphamides (cf. EC 3.9.1.1, phosphoamidase).
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB, CAS registry number: 9025-75-6
References:
1.  Deutscher, J., Kessler, U. and Hengstenberg, W. Streptococcal phosphoenolpyruvate: sugar phosphotransferase system: purification and characterization of a phosphoprotein phosphatase which hydrolyzes the phosphoryl bond in seryl-phosphorylated histidine-containing protein. J. Bacteriol. 163 (1985) 1203–1209. [PMID: 2993239]
2.  Ingebritsen, T.S. and Cohen, P. The protein phosphatases involved in cellular regulation. 1. Classification and substrate specificities. Eur. J. Biochem. 132 (1983) 255–261. [DOI] [PMID: 6301824]
3.  Sundarajan, T.A. and Sarma, P.S. Substrate specificity of phosphoprotein phosphatase from spleen. Biochem. J. 71 (1959) 537–544. [PMID: 13638262]
4.  Tonks, N.K. and Cohen, P. The protein phosphatases involved in cellular regulation. Identification of the inhibitor-2 phosphatases in rabbit skeletal muscle. Eur. J. Biochem. 145 (1984) 65–70. [DOI] [PMID: 6092084]
[EC 3.1.3.16 created 1961, modified 1989, modified 2013]
 
 
EC 3.1.3.93
Accepted name: L-galactose 1-phosphate phosphatase
Reaction: β-L-galactose 1-phosphate + H2O = L-galactose + phosphate
Other name(s): VTC4 (gene name) (ambiguous); IMPL2 (gene name) (ambiguous)
Systematic name: β-L-galactose-1-phosphate phosphohydrolase
Comments: The enzyme from plants also has the activity of EC 3.1.3.25, inositol-phosphate phosphatase. The enzymes have very low activity with D-galactose 1-phosphate (cf. EC 3.1.3.94, D-galactose 1-phosphate phosphatase).
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Laing, W.A., Bulley, S., Wright, M., Cooney, J., Jensen, D., Barraclough, D. and MacRae, E. A highly specific L-galactose-1-phosphate phosphatase on the path to ascorbate biosynthesis. Proc. Natl. Acad. Sci. USA 101 (2004) 16976–16981. [DOI] [PMID: 15550539]
2.  Torabinejad, J., Donahue, J.L., Gunesekera, B.N., Allen-Daniels, M.J. and Gillaspy, G.E. VTC4 is a bifunctional enzyme that affects myoinositol and ascorbate biosynthesis in plants. Plant Physiol. 150 (2009) 951–961. [DOI] [PMID: 19339506]
3.  Petersen, L.N., Marineo, S., Mandala, S., Davids, F., Sewell, B.T. and Ingle, R.A. The missing link in plant histidine biosynthesis: Arabidopsis myoinositol monophosphatase-like2 encodes a functional histidinol-phosphate phosphatase. Plant Physiol. 152 (2010) 1186–1196. [DOI] [PMID: 20023146]
[EC 3.1.3.93 created 2014]
 
 
EC 3.1.3.94
Accepted name: D-galactose 1-phosphate phosphatase
Reaction: α-D-galactose 1-phosphate + H2O = D-galactose + phosphate
Systematic name: α-D-galactose-1-phosphate phosphohydrolase
Comments: The human enzyme also has the activity of EC 3.1.3.25, inositol-phosphate phosphatase. The enzyme has very low activity with L-galactose 1-phosphate (cf. EC 3.1.3.93, L-galactose 1-phosphate phosphatase).
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Parthasarathy, R., Parthasarathy, L. and Vadnal, R. Brain inositol monophosphatase identified as a galactose 1-phosphatase. Brain Res. 778 (1997) 99–106. [DOI] [PMID: 9462881]
[EC 3.1.3.94 created 2014]
 
 
EC 3.1.3.95
Accepted name: phosphatidylinositol-3,5-bisphosphate 3-phosphatase
Reaction: 1-phosphatidyl-1D-myo-inositol 3,5-bisphosphate + H2O = 1-phosphatidyl-1D-myo-inositol 5-phosphate + phosphate
Glossary: 1-phosphatidyl-1D-myo-inositol 5-phosphate = PtdIns5P
1-phosphatidyl-1D-myo-inositol 3,5-bisphosphate = PtdIns(3,5)P2
Other name(s): MTMR; PtdIns-3,5-P2 3-Ptase
Systematic name: 1-phosphatidyl-1D-myo-inositol-3,5-bisphosphate 3-phosphohydrolase
Comments: The enzyme is found in both plants and animals. It also has the activity of EC 3.1.3.64 (phosphatidylinositol-3-phosphatase).
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Walker, D.M., Urbe, S., Dove, S.K., Tenza, D., Raposo, G. and Clague, M.J. Characterization of MTMR3. an inositol lipid 3-phosphatase with novel substrate specificity. Curr. Biol. 11 (2001) 1600–1605. [DOI] [PMID: 11676921]
2.  Berger, P., Bonneick, S., Willi, S., Wymann, M. and Suter, U. Loss of phosphatase activity in myotubularin-related protein 2 is associated with Charcot-Marie-Tooth disease type 4B1. Hum. Mol. Genet. 11 (2002) 1569–1579. [DOI] [PMID: 12045210]
3.  Ding, Y., Lapko, H., Ndamukong, I., Xia, Y., Al-Abdallat, A., Lalithambika, S., Sadder, M., Saleh, A., Fromm, M., Riethoven, J.J., Lu, G. and Avramova, Z. The Arabidopsis chromatin modifier ATX1, the myotubularin-like AtMTM and the response to drought. Plant Signal. Behav. 4 (2009) 1049–1058. [PMID: 19901554]
[EC 3.1.3.95 created 2014]
 
 
*EC 3.1.21.2
Accepted name: deoxyribonuclease IV
Reaction: Endonucleolytic cleavage of ssDNA at apurinic/apyrimidinic sites to 5′-phosphooligonucleotide end-products
Other name(s): deoxyribonuclease IV (phage-T4-induced) (misleading); endodeoxyribonuclease IV (phage T4-induced) (misleading); E. coli endonuclease IV; endodeoxyribonuclease (misleading); redoxyendonuclease; deoxriboendonuclease (misleading); endonuclease II; endonuclease IV; DNA-adenine-transferase; nfo (gene name)
Comments: The enzyme is an apurinic/apyrimidinic (AP) site endonuclease that primes DNA repair synthesis at AP sites. It specifically cleaves the DNA backbone at AP sites and also removes 3′ DNA-blocking groups such as 3′ phosphates, 3′ phosphoglycolates, and 3′ α,β-unsaturated aldehydes that arise from oxidative base damage and the activity of combined glycosylase/lyase enzymes. It is also the only known repair enzyme that is able to cleave the DNA backbone 5′ of the oxidative lesion α-deoxyadenosine. The enzyme has a strong preference for single-stranded DNA.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB, CAS registry number: 63363-78-0
References:
1.  Friedberg, E.C. and Goldthwait, D.A. Endonuclease II of E. coli. I. Isolation and purification. Proc. Natl. Acad. Sci. USA 62 (1969) 934–940. [DOI] [PMID: 4895219]
2.  Friedberg, E.C., Hadi, S.-M. and Goldthwait, D.A. Endonuclease II of Escherichia coli. II. Enzyme properties and studies on the degradation of alkylated and native deoxyribonucleic acid. J. Biol. Chem. 244 (1969) 5879–5889. [PMID: 4981786]
3.  Hadi, S.M. and Goldthwait, D.A. Endonuclease II of Escherichia coli. Degradation of partially depurinated deoxyribonucleic acid. Biochemistry 10 (1971) 4986–4993. [PMID: 4944066]
4.  Cunningham, R.P., Saporito, S.M., Spitzer, S.G. and Weiss, B. Endonuclease IV (nfo) mutant of Escherichia coli. J. Bacteriol. 168 (1986) 1120–1127. [DOI] [PMID: 2430946]
5.  Ide, H., Tedzuka, K., Shimzu, H., Kimura, Y., Purmal, A.A., Wallace, S.S. and Kow, Y.W. Alpha-deoxyadenosine, a major anoxic radiolysis product of adenine in DNA, is a substrate for Escherichia coli endonuclease IV. Biochemistry 33 (1994) 7842–7847. [PMID: 7516707]
6.  Hosfield, D.J., Guan, Y., Haas, B.J., Cunningham, R.P. and Tainer, J.A. Structure of the DNA repair enzyme endonuclease IV and its DNA complex: double-nucleotide flipping at abasic sites and three-metal-ion catalysis. Cell 98 (1999) 397–408. [DOI] [PMID: 10458614]
[EC 3.1.21.2 created 1972 as EC 3.1.4.30, transferred 1978 to EC 3.1.21.2, modified 2014]
 
 
EC 3.1.21.8
Accepted name: T4 deoxyribonuclease II
Reaction: Endonucleolytic nicking and cleavage of cytosine-containing double-stranded DNA.
Other name(s): T4 endonuclease II; EndoII (ambiguous); denA (gene name)
Comments: Requires Mg2+. This phage T4 enzyme is involved in degradation of host DNA. The enzyme primarily catalyses nicking of the bottom strand of double stranded DNA between the first and second base pair to the right of a top-strand CCGC motif. Double-stranded breaks are produced 5- to 10-fold less frequently [3]. It does not cleave the T4 native DNA, which contains 5-hydroxymethylcytosine instead of cytosine.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Carlson, K., Krabbe, M., Nystrom, A.C. and Kosturko, L.D. DNA determinants of restriction. Bacteriophage T4 endonuclease II-dependent cleavage of plasmid DNA in vivo. J. Biol. Chem. 268 (1993) 8908–8918. [PMID: 8386173]
2.  Carlson, K. and Kosturko, L.D. Endonuclease II of coliphage T4: a recombinase disguised as a restriction endonuclease. Mol. Microbiol. 27 (1998) 671–676. [DOI] [PMID: 9515694]
3.  Carlson, K., Kosturko, L.D. and Nystrom, A.C. Sequence-specific cleavage by bacteriophage T4 endonuclease II in vitro. Mol. Microbiol. 31 (1999) 1395–1405. [DOI] [PMID: 10200960]
4.  Andersson, C.E., Lagerback, P. and Carlson, K. Structure of bacteriophage T4 endonuclease II mutant E118A, a tetrameric GIY-YIG enzyme. J. Mol. Biol. 397 (2010) 1003–1016. [DOI] [PMID: 20156453]
[EC 3.1.21.8 created 2014]
 
 
EC 3.1.21.9
Accepted name: T4 deoxyribonuclease IV
Reaction: Endonucleolytic cleavage of the 5′ phosphodiester bond of deoxycytidine in single-stranded DNA.
Other name(s): T4 endonuclease IV; EndoIV (ambiguous); denB (gene name)
Comments: This phage T4 enzyme is involved in degradation of host DNA. The enzyme does not cleave double-stranded DNA or native T4 DNA, which contains 5-hydroxymethylcytosine instead of cytosine.
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Sadowski, P.D. and Hurwitz, J. Enzymatic breakage of deoxyribonucleic acid. II. Purification and properties of endonuclease IV from T4 phage-infected Escherichia coli. J. Biol. Chem. 244 (1969) 6192–6198. [PMID: 4900512]
2.  Ling, V. Partial digestion of 32P-fd DNA with T4 endonuclease IV. FEBS Lett. 19 (1971) 50–54. [DOI] [PMID: 11946172]
3.  Sadowski, P.D. and Bakyta, I. T4 endonuclease IV. Improved purification procedure and resolution from T4 endonuclease 3. J. Biol. Chem. 247 (1972) 405–412. [PMID: 4550601]
4.  Bernardi, A., Maat, J., de Waard, A. and Bernardi, G. Preparation and specificity of endonuclease IV induced by bacteriophage T4. Eur. J. Biochem. 66 (1976) 175–179. [DOI] [PMID: 782881]
5.  Hirano, N., Ohshima, H. and Takahashi, H. Biochemical analysis of the substrate specificity and sequence preference of endonuclease IV from bacteriophage T4, a dC-specific endonuclease implicated in restriction of dC-substituted T4 DNA synthesis. Nucleic Acids Res. 34 (2006) 4743–4751. [DOI] [PMID: 16971463]
6.  Ohshima, H., Hirano, N. and Takahashi, H. A hexanucleotide sequence (dC1-dC6 tract) restricts the dC-specific cleavage of single-stranded DNA by endonuclease IV of bacteriophage T4. Nucleic Acids Res. 35 (2007) 6681–6689. [DOI] [PMID: 17940096]
[EC 3.1.21.9 created 2014]
 
 
EC 3.1.27.9
Transferred entry: tRNA-intron endonuclease. Now EC 4.6.1.16, tRNA-intron lyase
[EC 3.1.27.9 created 1992, deleted 2014]
 
 
EC 3.2.1.187
Accepted name: (Ara-f)3-Hyp β-L-arabinobiosidase
Reaction: 4-O-(β-L-arabinofuranosyl-(1→2)-β-L-arabinofuranosyl-(1→2)-β-L-arabinofuranosyl)-(2S,4S)-4-hydroxyproline + H2O = 4-O-(β-L-arabinofuranosyl)-(2S,4S)-4-hydroxyproline + β-L-arabinofuranosyl-(1→2)-β-L-arabinofuranose
Glossary: 4-O-(β-L-arabinofuranosyl-(1→2)-β-L-arabinofuranosyl-(1→2)-β-L-arabinofuranosyl)-(2S,4S)-4-hydroxyproline = (Ara-f)3-Hyp
Other name(s): hypBA2 (gene name); β-L-arabinobiosidase
Systematic name: 4-O-(β-L-arabinofuranosyl-(1→2)-β-L-arabinofuranosyl-(1→2)-β-L-arabinofuranosyl)-(2S,4S)-4-hydroxyproline β-L-arabinofuranosyl-(1→2)-β-L-arabinofuranose hydrolase
Comments: The enzyme, which was identified in the bacterium Bifidobacterium longum JCM1217, is specific for (Ara-f)3-Hyp, a sugar chain found in hydroxyproline-rich glyoproteins such as extensin and lectin. The enzyme was not able to accept (Ara-f)2-Hyp or (Ara-f)4-Hyp as substrates. In the presence of 1-alkanols, the enzyme demonstrates transglycosylation activity, retaining the anomeric configuration of the arabinofuranose residue.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Fujita, K., Sakamoto, S., Ono, Y., Wakao, M., Suda, Y., Kitahara, K. and Suganuma, T. Molecular cloning and characterization of a β-L-Arabinobiosidase in Bifidobacterium longum that belongs to a novel glycoside hydrolase family. J. Biol. Chem. 286 (2011) 5143–5150. [DOI] [PMID: 21149454]
[EC 3.2.1.187 created 2013]
 
 
EC 3.2.1.188
Accepted name: avenacosidase
Reaction: avenacoside B + H2O = 26-desgluco-avenacoside B + D-glucose
Glossary: avenacoside B = (22S,25S)-3β-{β-D-glucopyranosyl-(1→3)-β-D-glucopyranosyl-(1→4)-[α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranosyloxy}-26-(β-D-glucopyranosyloxy)-22,25-epoxyfurost-5-ene
26-desgluco-avenacoside B = (22S,25S)-3β-{β-D-glucopyranosyl-(1→3)-β-D-glucopyranosyl-(1→4)-[α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranosyloxy}-22,25-epoxyfurost-5-en-26-ol
Other name(s): As-P60
Systematic name: avenacoside B 26-β-D-glucohydrolase
Comments: Isolated from oat (Avena sativa) seedlings. The product acts as a defense system against fungal infection. Also acts on avenacoside A.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Gus-Mayer, S., Brunner, H., Schneider-Poetsch, H.A. and Rudiger, W. Avenacosidase from oat: purification, sequence analysis and biochemical characterization of a new member of the BGA family of β-glucosidases. Plant Mol. Biol. 26 (1994) 909–921. [PMID: 8000004]
2.  Gus-Mayer, S., Brunner, H., Schneider-Poetsch, H.A., Lottspeich, F., Eckerskorn, C., Grimm, R. and Rudiger, W. The amino acid sequence previously attributed to a protein kinase or a TCP1-related molecular chaperone and co-purified with phytochrome is a β-glucosidase. FEBS Lett. 347 (1994) 51–54. [DOI] [PMID: 8013661]
[EC 3.2.1.188 created 2013]
 
 
EC 3.2.1.189
Accepted name: dioscin glycosidase (diosgenin-forming)
Reaction: 3-O-[α-L-Rha-(1→4)-[α-L-Rha-(1→2)]-β-D-Glc]diosgenin + 3 H2O = D-glucose + 2 L-rhamnose + diosgenin
For diagram of diosgenin catabolism, click here
Glossary: 3-O-[α-L-Rha-(1→4)-[α-L-Rha-(1→2)]-β-D-Glc]diosgenin = (3β,25R)-spirost-5-en-3-yl 6-deoxy-α-L-mannopyranosyl-(1→2)-[6-deoxy-α-L-mannopyranosyl-(1→4)]-β-D-glucopyranoside = dioscin
diosgenin = (3β,25R)-spirost-5-en-3-ol
Other name(s): dioscin glycosidase (aglycone-forming)
Systematic name: 3-O-[α-L-Rha-(1→4)-[α-L-Rha-(1→2)]-β-D-Glc]diosgenin hydrolase (diosgenin-forming)
Comments: The enzyme is involved in degradation of the steroid saponin dioscin by some fungi of the Absidia genus. The enzyme can also hydrolyse 3-O-[α-L-Ara-(1→4)-[α-L-Rha-(1→2)]-β-D-Glc]diosgenin into diosgenin and free sugars as the final products. cf. EC 3.2.1.190, dioscin glycosidase (3-O-β-D-Glc-diosgenin-forming).
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Fu, Y., Yu, H., Tang, S.H., Hu, X., Wang, Y., Liu, B., Yu, C. and Jin, F. New dioscin-glycosidase hydrolyzing multi-glycosides of dioscin from Absidia strain. J. Microbiol. Biotechnol. 20 (2010) 1011–1017. [PMID: 20622501]
[EC 3.2.1.189 created 2013]
 
 
EC 3.2.1.190
Accepted name: dioscin glycosidase (3-O-β-D-Glc-diosgenin-forming)
Reaction: 3-O-[α-L-Rha-(1→4)-[α-L-Rha-(1→2)]-β-D-Glc]diosgenin + 2 H2O = 2 L-rhamnopyranose + diosgenin 3-O-β-D-glucopyranoside
For diagram of diosgenin catabolism, click here
Glossary: 3-O-[α-L-Rha-(1→4)-[α-L-Rha-(1→2)]-β-D-Glc]diosgenin = (3β,25R)-spirost-5-en-3-yl 6-deoxy-α-L-mannopyranosyl-(1→2)-[6-deoxy-α-L-mannopyranosyl-(1→4)]-β-D-glucopyranoside = dioscin
diosgenin = (3β,25R)-spirost-5-en-3-ol
Other name(s): dioscin-α-L-rhamnosidase
Systematic name: 3-O-[α-L-Rha-(1→4)-[α-L-Rha-(1→2)]-β-D-Glc]diosgenin (3-O-β-D-Glc-diosgenin-forming)
Comments: The enzyme is involved in the hydrolysis of the steroid saponin dioscin by the digestive system of Sus scrofa (pig). cf. EC 3.2.1.189, dioscin glycosidase (diosgenin-forming).
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Qian, S., Yu, H., Zhang, C., Lu, M., Wang, H. and Jin, F. Purification and characterization of dioscin-α-L-rhamnosidase from pig liver. Chem Pharm Bull (Tokyo) 53 (2005) 911–914. [PMID: 16079518]
[EC 3.2.1.190 created 2013]
 
 
EC 3.2.1.191
Accepted name: ginsenosidase type III
Reaction: a protopanaxadiol-type ginsenoside with two glucosyl residues at position 3 + 2 H2O = a protopanaxadiol-type ginsenoside with no glycosidic modification at position 3 + 2 D-glucopyranose (overall reaction)
(1a) a protopanaxadiol-type ginsenoside with two glucosyl residues at position 3 + H2O = a protopanaxadiol-type ginsenoside with one glucosyl residue at position 3 + D-glucopyranose
(1b) a protopanaxadiol-type ginsenoside with one glucosyl residue at position 3 + H2O = a protopanaxadiol-type ginsenoside with no glycosidic modification at position 3 + D-glucopyranose
For diagram of protopanaxadiol ginsenosides ginsenosidases, click here
Glossary: ginsenoside Rb1 = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyloxy]dammar-24-en-12β-ol
gypenoside XVII = 3β-(β-D-glucopyranosyloxy)-20-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyloxy]dammar-24-en-12β-ol
gypenoside LXXV = 20-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyloxy]dammar-24-ene-3β,12β-diol
Systematic name: protopanaxadiol-type ginsenoside 3-β-D-hydrolase
Comments: Ginsenosidase type III catalyses the sequential hydrolysis of the 3-O-β-D-(1→2)-glucopyranosyl bond followed by hydrolysis of the 3-O-β-D-glucopyranosyl bond of protopanaxadiol ginsenosides. When acting for example on ginsenoside Rb1 the enzyme first generates ginsenoside XVII, and subsequently ginsenoside LXXV.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Jin, X.F., Yu, H.S., Wang, D.M., Liu, T.Q., Liu, C.Y., An, D.S., Im, W.T., Kim, S.G. and Jin, F.X. Kinetics of a cloned special ginsenosidase hydrolyzing 3-O-glucoside of multi-protopanaxadiol-type ginsenosides, named ginsenosidase type III. J. Microbiol. Biotechnol. 22 (2012) 343–351. [PMID: 22450790]
2.  An, D.S., Cui, C.H., Lee, H.G., Wang, L., Kim, S.C., Lee, S.T., Jin, F., Yu, H., Chin, Y.W., Lee, H.K., Im, W.T. and Kim, S.G. Identification and characterization of a novel Terrabacter ginsenosidimutans sp. nov. β-glucosidase that transforms ginsenoside Rb1 into the rare gypenosides XVII and LXXV. Appl. Environ. Microbiol. 76 (2010) 5827–5836. [DOI] [PMID: 20622122]
3.  Hong, H., Cui, C.H., Kim, J.K., Jin, F.X., Kim, S.C. and Im, W.T. Enzymatic Biotransformation of Ginsenoside Rb1 and Gypenoside XVII into Ginsenosides Rd and F2 by Recombinant β-glucosidase from Flavobacterium johnsoniae. J Ginseng Res 36 (2012) 418–424. [DOI] [PMID: 23717145]
[EC 3.2.1.191 created 2014]
 
 
EC 3.2.1.192
Accepted name: ginsenoside Rb1 β-glucosidase
Reaction: ginsenoside Rb1 + 2 H2O = ginsenoside Rg3 + 2 D-glucopyranose (overall reaction)
(1a) ginsenoside Rb1 + H2O = ginsenoside Rd + D-glucopyranose
(1b) ginsenoside Rd + H2O = ginsenoside Rg3 + D-glucopyranose
For diagram of protopanaxadiol ginsenosides ginsenosidases, click here
Glossary: ginsenoside Rb1 = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rd = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-(β-D-glucopyranosyloxy)dammar-24-en-12β-ol
ginsenoside F2 = 3β,20-bis(β-D-glucopyranosyloxy)dammar-24-en-12β-ol
Systematic name: ginsenoside Rb1 glucohydrolase
Comments: Ginsenosidases catalyse the hydrolysis of glycosyl moieties attached to the C-3, C-6 or C-20 position of ginsenosides. They are specific with respect to the nature of the glycosidic linkage, the position and the order in which the linkages are cleaved. Ginsenoside Rb1 β-glucosidase specifically and sequentially hydrolyses the 20-[β-D-glucopyranosyl-(1→6)-β-D glucopyranosyloxy] residues attached to position 20 by first hydrolysing the (1→6)-glucosidic bond to generate ginsenoside Rd as an intermediate, followed by hydrolysis of the remaining 20-O-β-D-glucosidic bond.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Yan, Q., Zhou, W., Li, X., Feng, M. and Zhou, P. Purification method improvement and characterization of a novel ginsenoside-hydrolyzing β-glucosidase from Paecilomyces Bainier sp. 229. Biosci. Biotechnol. Biochem. 72 (2008) 352–359. [DOI] [PMID: 18256474]
[EC 3.2.1.192 created 2014]
 
 
EC 3.2.1.193
Accepted name: ginsenosidase type I
Reaction: (1) a protopanaxadiol-type ginsenoside with two glucosyl residues at position 3 + H2O = a protopanaxadiol-type ginsenoside with one glucosyl residue at position 3 + D-glucopyranose
(2) a protopanaxadiol-type ginsenoside with one glucosyl residue at position 3 + H2O = a protopanaxadiol-type ginsenoside with no glycosidic modifications at position 3 + D-glucopyranose
(3) a protopanaxadiol-type ginsenoside with two glycosyl residues at position 20 + H2O = a protopanaxadiol-type ginsenoside with a single glucosyl residue at position 20 + a monosaccharide
For diagram of protopanaxadiol ginsenosides ginsenosidases, click here
Glossary: ginsenoside Rb1 = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rb2 = 3β-[β-D-glucopyranosyl-(1→2)-β-D glucopyranosyloxy]-20-[α-L-arabinopyranosyl-(1→6)-β-D glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rb3 = 3β-[β-D-glucopyranosyl-(1→2)-β-D glucopyranosyloxy]-20-[β-D-xylopyranosyl-(1→6)-β-D glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rc = 3β-[β-D-glucopyranosyl-(1→2)-β-D glucopyranosyloxy]-20-[α-L-arabinofuranosyl-(1→6)-β-D glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rd = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-(β-D-glucopyranosyloxy)dammar-24-en-12β-ol
ginsenoside F2 = 3β,20-bis(β-D-glucopyranosyloxy)dammar-24-en-12β-ol
ginsenoside C-K = 20β-(β-D-glucopyranosyloxy)dammar-24-ene-3β,12β-diol
ginsenoside Rh2 = 3β-(β-D-glucopyranosyloxy)dammar-24-ene-12β,20-diol
Systematic name: ginsenoside glucohydrolase
Comments: Ginsenosidase type I is slightly activated by Mg2+ or Ca2+ [1]. The enzyme hydrolyses the 3-O-β-D-(1→2)-glucosidic bond, the 3-O-β-D-glucopyranosyl bond and the 20-O-β-D-(1→6)-glycosidic bond of protopanaxadiol-type ginsenosides. It usually leaves a single glucosyl residue attached at position 20 and one or no glucosyl residues at position 3. Starting with a ginsenoside that is glycosylated at both positions (e.g. ginsenoside Rb1, Rb2, Rb3, Rc or Rd), the most common products are ginsenoside F2 and ginsenoside C-K, with low amounts of ginsenoside Rh2.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Yu, H., Zhang, C., Lu, M., Sun, F., Fu, Y. and Jin, F. Purification and characterization of new special ginsenosidase hydrolyzing multi-glycisides of protopanaxadiol ginsenosides, ginsenosidase type I. Chem Pharm Bull (Tokyo) 55 (2007) 231–235. [PMID: 17268094]
[EC 3.2.1.193 created 2014]
 
 
EC 3.2.1.194
Accepted name: ginsenosidase type IV
Reaction: a protopanaxatriol-type ginsenoside with two glycosyl residues at position 6 + 2 H2O = a protopanaxatriol-type ginsenoside with no glycosidic modification at position 6 + D-glucopyranose + a monosaccharide (overall reaction)
(1a) a protopanaxatriol-type ginsenoside with two glycosyl residues at position 6 + H2O = a protopanaxatriol-type ginsenoside with a single glucosyl at position 6 + a monosaccharide
(1b) a protopanaxatriol-type ginsenoside with a single glucosyl at position 6 + H2O = a protopanaxatriol-type ginsenoside with no glycosidic modification at position 6 + D-glucopyranose
For diagram of protopanaxatriol ginsenosides ginsenosidases, click here
Glossary: ginsenoside Re = 20-(β-D-glucopyranosyl)oxy-6α-[α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranosyloxy]dammar-24-en-3β,12β-diol
ginsenoside Rg1 = 6α,20-bis(β-D-glucopyranosyl)oxy-dammar-24-en-3β,12β-diol
ginsenoside F1 = 20-(β-D-glucopyranosyloxy)dammar-24-en-3β,6α,12β-triol
Systematic name: protopanaxatriol-type ginsenoside 6-β-D-glucohydrolase
Comments: Ginsenosidase type IV catalyses the sequential hydrolysis of the 6-O-β-D-(1→2)-glycosidic bond or the 6-O-α-D-(1→2)-glycosidic bond in protopanaxatriol-type ginsenosides with a disacchride attached to the C6 position, followed by the hydrolysis of the remaining 6-O-β-D-glycosidic bond (e.g. ginsenoside Re → ginsenoside Rg1 → ginsenoside F1).
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Wang, D.M., Yu, H.S., Song, J.G., Xu, Y.F., Liu, C.Y. and Jin, F.X. A novel ginsenosidase from an Aspergillus strain hydrolyzing 6-O-multi-glycosides of protopanaxatriol-type ginsenosides, named ginsenosidase type IV. J. Microbiol. Biotechnol. 21 (2011) 1057–1063. [PMID: 22031031]
2.  Wang, D, Yu, H., Song, J., Xu, Y., Jin, F. Enzyme kinetics of ginsenosidase type IV hydrolyzing 6-O-multi-glycosides of protopanaxatriol type ginsenosides. Process Biochem. 47 (2012) 133–138.
[EC 3.2.1.194 created 2014]
 
 
EC 3.2.1.195
Accepted name: 20-O-multi-glycoside ginsenosidase
Reaction: a protopanaxadiol-type ginsenoside with two glycosyl residues at position 20 + H2O = a protopanaxadiol-type ginsenoside with a single glucosyl residue at position 20 + a monosaccharide
For diagram of protopanaxadiol ginsenosides ginsenosidases, click here
Glossary: ginsenoside Rb1 = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rb2 = 3β-[β-D-glucopyranosyl-(1→2)-β-D glucopyranosyloxy]-20-[α-L-arabinopyranosyl-(1→6)-β-D glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rb3 = 3β-[β-D-glucopyranosyl-(1→2)-β-D glucopyranosyloxy]-20-[β-D-xylopyranosyl-(1→6)-β-D glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rc = 3β-[β-D-glucopyranosyl-(1→2)-β-D glucopyranosyloxy]-20-[α-L-arabinofuranosyl-(1→6)-β-D glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rd = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-(β-D-glucopyranosyloxy)dammar-24-en-12β-ol
ginsenoside Rg3 = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-(β-D-glucopyranosyloxy)dammar-24-ene-12β,20-diol
Other name(s): ginsenosidase type II (erroneous)
Systematic name: protopanaxadiol-type ginsenoside 20-β-D-glucohydrolase
Comments: The 20-O-multi-glycoside ginsenosidase catalyses the hydrolysis of the 20-O-α-(1→6)-glycosidic bond and the 20-O-β-(1→6)-glycosidic bond of protopanaxadiol-type ginsenosides. The enzyme usually leaves a single glucosyl residue attached at position 20, although it can cleave the remaining glucosyl residue with a lower efficiency. Starting with a ginsenoside that is glycosylated at positions 3 and 20, such as ginsenosides Rb1, Rb2, Rb3 and Rc, the most common product is ginsenoside Rd, with a low amount of ginsenoside Rg3 also formed.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Yu, H., Liu, Q., Zhang, C., Lu, M., Fu, Y., Im, W.-T., Lee, S.-T. and Jin, F. A new ginsenosidase from Aspergillus strain hydrolyzing 20-O-multi-glycoside of PPD ginsenoside. Process Biochem. 44 (2009) 772–775.
[EC 3.2.1.195 created 2014]
 
 
*EC 3.2.2.5
Accepted name: NAD+ glycohydrolase
Reaction: NAD+ + H2O = ADP-D-ribose + nicotinamide
Glossary: ADP-D-ribose = adenosine 5′-(5-deoxy-D-ribofuranos-5-yl diphosphate)
Other name(s): NAD glycohydrolase; nicotinamide adenine dinucleotide glycohydrolase; β-NAD+ glycohydrolase; DPNase (ambiguous); NAD hydrolase (ambiguous); diphosphopyridine nucleosidase (ambiguous); nicotinamide adenine dinucleotide nucleosidase (ambiguous); NAD nucleosidase (ambiguous); DPN hydrolase (ambiguous); NADase (ambiguous); nga (gene name); NAD+ nucleosidase
Systematic name: NAD+ glycohydrolase
Comments: This enzyme catalyses the hydrolysis of NAD+, without associated ADP-ribosyl cyclase activity (unlike the metazoan enzyme EC 3.2.2.6, bifunctional ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase). The enzyme from Group A streptococci has been implicated in the pathogenesis of diseases such as streptococcal toxic shock-like syndrome (STSS) and necrotizing fasciitis. The enzyme from the venom of the snake Agkistrodon acutus also catalyses EC 3.6.1.5, apyrase [3].
Links to other databases: BRENDA, EXPASY, Gene, GTD, KEGG, PDB, CAS registry number: 9025-46-1
References:
1.  Fehrenbach, F.J. Reinigung und Kristallisation der NAD-Glykohydrolase aus C-Streptokokken. Eur. J. Biochem. 18 (1971) 94–102. [DOI] [PMID: 4322210]
2.  Grushoff, P.S., Shany, S. and Bernheimer, A.W. Purification and properties of streptococcal nicotinamide adenine dinucleotide glycohydrolase. J. Bacteriol. 122 (1975) 599–605. [PMID: 236282]
3.  Zhang, L., Xu, X., Luo, Z., Shen, D. and Wu, H. Identification of an unusual AT(D)Pase-like activity in multifunctional NAD glycohydrolase from the venom of Agkistrodon acutus. Biochimie 91 (2009) 240–251. [DOI] [PMID: 18952139]
4.  Ghosh, J., Anderson, P.J., Chandrasekaran, S. and Caparon, M.G. Characterization of Streptococcus pyogenes β-NAD+ glycohydrolase: re-evaluation of enzymatic properties associated with pathogenesis. J. Biol. Chem. 285 (2010) 5683–5694. [DOI] [PMID: 20018886]
5.  Smith, C.L., Ghosh, J., Elam, J.S., Pinkner, J.S., Hultgren, S.J., Caparon, M.G. and Ellenberger, T. Structural basis of Streptococcus pyogenes immunity to its NAD+ glycohydrolase toxin. Structure 19 (2011) 192–202. [DOI] [PMID: 21300288]
[EC 3.2.2.5 created 1961, modified 2013]
 
 
*EC 3.2.2.6
Accepted name: ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase
Reaction: NAD+ + H2O = ADP-D-ribose + nicotinamide (overall reaction)
(1a) NAD+ = cyclic ADP-ribose + nicotinamide
(1b) cyclic ADP-ribose + H2O = ADP-D-ribose
For diagram of cyclic ADP-ribose biosynthesis, click here
Glossary: ADP-D-ribose = adenosine 5′-(5-deoxy-D-ribofuranos-5-yl diphosphate)
cyclic ADP-ribose = N1-(β-D-ribosyl)adenosine 5′(P1),5′′(P2)-cyclic diphosphate
Other name(s): NAD+ nucleosidase; NADase (ambiguous); DPNase (ambiguous); DPN hydrolase (ambiguous); NAD hydrolase (ambiguous); nicotinamide adenine dinucleotide nucleosidase (ambiguous); NAD glycohydrolase (misleading); NAD nucleosidase (ambiguous); nicotinamide adenine dinucleotide glycohydrolase (misleading); CD38 (gene name); BST1 (gene name)
Systematic name: NAD+ glycohydrolase (cyclic ADP-ribose-forming)
Comments: This multiunctional enzyme acts on NAD+, catalysing both the synthesis and hydrolysis of cyclic ADP-ribose, a calcium messenger that can mobilize intracellular Ca2+ stores and activate Ca2+ influx to regulate a wide range of physiological processes. In addition, the enzyme also catalyses EC 2.4.99.20, 2′-phospho-ADP-ribosyl cyclase/2′-phospho-cyclic-ADP-ribose transferase. It is also able to act on β-nicotinamide D-ribonucleotide. cf. EC 3.2.2.5, NAD+ glycohydrolase.
Links to other databases: BRENDA, EXPASY, Gene, GTD, KEGG, PDB, CAS registry number: 9032-65-9
References:
1.  Imai, T. Purification and characterization of a pyridine nucleotide glycohydrolase from rabbit spleen. J. Biochem. 106 (1989) 928–937. [PMID: 2613697]
2.  Howard, M., Grimaldi, J.C., Bazan, J.F., Lund, F.E., Santos-Argumedo, L., Parkhouse, R.M., Walseth, T.F. and Lee, H.C. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science 262 (1993) 1056–1059. [DOI] [PMID: 8235624]
3.  Takasawa, S., Tohgo, A., Noguchi, N., Koguma, T., Nata, K., Sugimoto, T., Yonekura, H. and Okamoto, H. Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38 and inhibition of the hydrolysis by ATP. J. Biol. Chem. 268 (1993) 26052–26054. [PMID: 8253715]
4.  Tohgo, A., Takasawa, S., Noguchi, N., Koguma, T., Nata, K., Sugimoto, T., Furuya, Y., Yonekura, H. and Okamoto, H. Essential cysteine residues for cyclic ADP-ribose synthesis and hydrolysis by CD38. J. Biol. Chem. 269 (1994) 28555–28557. [PMID: 7961800]
5.  Fryxell, K.B., O'Donoghue, K., Graeff, R.M., Lee, H.C. and Branton, W.D. Functional expression of soluble forms of human CD38 in Escherichia coli and Pichia pastoris. Protein Expr. Purif. 6 (1995) 329–336. [DOI] [PMID: 7663169]
6.  Yamamoto-Katayama, S., Ariyoshi, M., Ishihara, K., Hirano, T., Jingami, H. and Morikawa, K. Crystallographic studies on human BST-1/CD157 with ADP-ribosyl cyclase and NAD glycohydrolase activities. J. Mol. Biol. 316 (2002) 711–723. [DOI] [PMID: 11866528]
7.  Liu, Q., Kriksunov, I.A., Graeff, R., Munshi, C., Lee, H.C. and Hao, Q. Crystal structure of human CD38 extracellular domain. Structure 13 (2005) 1331–1339. [DOI] [PMID: 16154090]
[EC 3.2.2.6 created 1961, modified 2004, modified 2014, modified 2018]
 
 
EC 3.2.2.30
Accepted name: aminodeoxyfutalosine nucleosidase
Reaction: 6-amino-6-deoxyfutalosine + H2O = dehypoxanthine futalosine + adenine
For diagram of the futalosine pathway, click here
Glossary: 6-amino-6-deoxyfutalosine = 3-{3-[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl]propanoyl}benzoate
dehypoxanthine futalosine = 3-{3-[(2R,3S,4R)-3,4,5-trihydroxytetrahydrofuran-2-yl]propanoyl}benzoate
Other name(s): AFL nucleosidase; aminofutalosine nucleosidase; methylthioadenosine nucleosidase; MqnB (ambiguous)
Systematic name: 6-amino-6-deoxyfutalosine ribohydrolase
Comments: The enzyme, found in several bacterial species, catalyses a step in a modified futalosine pathway for menaquinone biosynthesis. While the enzyme from some organisms also has the activity of EC 3.2.2.9, adenosylhomocysteine nucleosidase, the enzyme from Chlamydia trachomatis is specific for 6-amino-6-deoxyfutalosine [7].
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Hiratsuka, T., Furihata, K., Ishikawa, J., Yamashita, H., Itoh, N., Seto, H. and Dairi, T. An alternative menaquinone biosynthetic pathway operating in microorganisms. Science 321 (2008) 1670–1673. [DOI] [PMID: 18801996]
2.  Li, X., Apel, D., Gaynor, E.C. and Tanner, M.E. 5′-methylthioadenosine nucleosidase is implicated in playing a key role in a modified futalosine pathway for menaquinone biosynthesis in Campylobacter jejuni. J. Biol. Chem. 286 (2011) 19392–19398. [DOI] [PMID: 21489995]
3.  Arakawa, C., Kuratsu, M., Furihata, K., Hiratsuka, T., Itoh, N., Seto, H. and Dairi, T. Diversity of the early step of the futalosine pathway. Antimicrob. Agents Chemother. 55 (2011) 913–916. [DOI] [PMID: 21098241]
4.  Wang, S., Haapalainen, A.M., Yan, F., Du, Q., Tyler, P.C., Evans, G.B., Rinaldo-Matthis, A., Brown, R.L., Norris, G.E., Almo, S.C. and Schramm, V.L. A picomolar transition state analogue inhibitor of MTAN as a specific antibiotic for Helicobacter pylori. Biochemistry 51 (2012) 6892–6894. [DOI] [PMID: 22891633]
5.  Mishra, V. and Ronning, D.R. Crystal structures of the Helicobacter pylori MTAN enzyme reveal specific interactions between S-adenosylhomocysteine and the 5′-alkylthio binding subsite. Biochemistry 51 (2012) 9763–9772. [DOI] [PMID: 23148563]
6.  Kim, R.Q., Offen, W.A., Davies, G.J. and Stubbs, K.A. Structural enzymology of Helicobacter pylori methylthioadenosine nucleosidase in the futalosine pathway. Acta Crystallogr. D Biol. Crystallogr. 70 (2014) 177–185. [DOI] [PMID: 24419390]
7.  Barta, M.L., Thomas, K., Yuan, H., Lovell, S., Battaile, K.P., Schramm, V.L. and Hefty, P.S. Structural and biochemical characterization of Chlamydia trachomatis hypothetical protein CT263 supports that menaquinone synthesis occurs through the futalosine pathway. J. Biol. Chem. 289 (2014) 32214–32229. [DOI] [PMID: 25253688]
[EC 3.2.2.30 created 2014]
 
 
EC 3.3.2.13
Accepted name: chorismatase
Reaction: chorismate + H2O = (4R,5R)-4,5-dihydroxycyclohexa-1(6),2-diene-1-carboxylate + pyruvate
For diagram of shikimate and chorismate biosynthesis, click here
Glossary: chorismate = (3R,4R)-3-[(1-carboxyethenyl)oxy]-4-hydroxycyclohexa-1,5-diene-1-carboxylate
Other name(s): chorismate/3,4-dihydroxycyclohexa-1,5-dienoate synthase; fkbO (gene name); rapK (gene name)
Systematic name: chorismate pyruvate-hydrolase
Comments: The enzyme found in several bacterial species is involved in the biosynthesis of macrocyclic polyketides.
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Andexer, J.N., Kendrew, S.G., Nur-e-Alam, M., Lazos, O., Foster, T.A., Zimmermann, A.S., Warneck, T.D., Suthar, D., Coates, N.J., Koehn, F.E., Skotnicki, J.S., Carter, G.T., Gregory, M.A., Martin, C.J., Moss, S.J., Leadlay, P.F. and Wilkinson, B. Biosynthesis of the immunosuppressants FK506, FK520, and rapamycin involves a previously undescribed family of enzymes acting on chorismate. Proc. Natl. Acad. Sci. USA 108 (2011) 4776–4781. [DOI] [PMID: 21383123]
2.  Juneja, P., Hubrich, F., Diederichs, K., Welte, W. and Andexer, J.N. Mechanistic implications for the chorismatase FkbO based on the crystal structure. J. Mol. Biol. 426 (2014) 105–115. [DOI] [PMID: 24036425]
[EC 3.3.2.13 created 2013]
 
 
EC 3.4.21.121
Accepted name: Lys-Lys/Arg-Xaa endopeptidase
Reaction: Cleavage of -Lys-Lys┼ and -Lys-Arg┼ bonds.
Other name(s): ASP (Aeromonas sobria)-type peptidase; Aeromonas extracellular serine protease
Comments: The enzyme is a serine peptidase, which has been shown to cleave prothrombin and prekallikrein. It hydrolyses the complement component C5 releasing complement component C5a.
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Kobayashi, H., Utsunomiya, H., Yamanaka, H., Sei, Y., Katunuma, N., Okamoto, K. and Tsuge, H. Structural basis for the kexin-like serine protease from Aeromonas sobria as sepsis-causing factor. J. Biol. Chem. 284 (2009) 27655–27663. [DOI] [PMID: 19654332]
2.  Nitta, H., Kobayashi, H., Irie, A., Baba, H., Okamoto, K. and Imamura, T. Activation of prothrombin by ASP, a serine protease released from Aeromonas sobria. FEBS Lett. 581 (2007) 5935–5939. [DOI] [PMID: 18067862]
3.  Kobayashi, H., Takahashi, E., Oguma, K., Fujii, Y., Yamanaka, H., Negishi, T., Arimoto-Kobayashi, S., Tsuji, T. and Okamoto, K. Cleavage specificity of the serine protease of Aeromonas sobria, a member of the kexin family of subtilases. FEMS Microbiol. Lett. 256 (2006) 165–170. [DOI] [PMID: 16487335]
4.  Imamura, T., Nitta, H., Wada, Y., Kobayashi, H. and Okamoto, K. Impaired plasma clottability induction through fibrinogen degradation by ASP, a serine protease released from Aeromonas sobria. FEMS Microbiol. Lett. 284 (2008) 35–42. [DOI] [PMID: 18462393]
5.  Nitta, H., Imamura, T., Wada, Y., Irie, A., Kobayashi, H., Okamoto, K. and Baba, H. Production of C5a by ASP, a serine protease released from Aeromonas sobria. J. Immunol. 181 (2008) 3602–3608. [DOI] [PMID: 18714034]
[EC 3.4.21.121 created 2013]
 
 
*EC 3.5.1.14
Accepted name: N-acyl-aliphatic-L-amino acid amidohydrolase
Reaction: (1) an N-acyl-aliphatic-L-amino acid + H2O = an aliphatic L-amino acid + a carboxylate
(2) an N-acetyl-L-cysteine-S-conjugate + H2O = an L-cysteine-S-conjugate + acetate
Glossary: N-acetyl-L-cysteine-S-conjugate = mercapturic acid
Other name(s): aminoacylase 1; aminoacylase I; dehydropeptidase II; histozyme; hippuricase; benzamidase; acylase I; hippurase; amido acid deacylase; L-aminoacylase; acylase; aminoacylase; L-amino-acid acylase; α-N-acylaminoacid hydrolase; long acyl amidoacylase; short acyl amidoacylase; ACY1 (gene name); N-acyl-L-amino-acid amidohydrolase
Systematic name: N-acyl-aliphatic-L-amino acid amidohydrolase (carboxylate-forming)
Comments: Contains Zn2+. The enzyme is found in animals and is involved in the hydrolysis of N-acylated or N-acetylated amino acids (except L-aspartate). It acts on mercapturic acids (S-conjugates of N-acetyl-L-cysteine) and neutral aliphatic N-acyl-α-amino acids. Some bacterial aminoacylases demonstrate substrate specificity of both EC 3.5.1.14 and EC 3.5.1.114. cf. EC 3.5.1.15, aspartoacylase and EC 3.5.1.114, N-acyl-aromatic-L-amino acid amidohydrolase.
Links to other databases: BRENDA, EXPASY, Gene, GTD, KEGG, PDB, CAS registry number: 9012-37-7
References:
1.  Birnbaum, S.M., Levintow, L., Kingsley, R.B. and Greenstein, J.P. Specificity of amino acid acylases. J. Biol. Chem. 194 (1952) 455–470. [PMID: 14927637]
2.  Fones, W.S. and Lee, M. Hydrolysis of N-acyl derivatives of alanine and phenylalanine by acylase I and carboxypeptidase. J. Biol. Chem. 201 (1953) 847–856. [PMID: 13061423]
3.  Henseling, J. and Rohm, K.H. Aminoacylase I from hog kidney: anion effects and the pH dependence of kinetic parameters. Biochim. Biophys. Acta 959 (1988) 370–377. [DOI] [PMID: 3355856]
4.  Heese, D., Berger, S. and Rohm, K.H. Nuclear magnetic relaxation studies of the role of the metal ion in Mn2+-substituted aminoacylase I. Eur. J. Biochem. 188 (1990) 175–180. [DOI] [PMID: 2318199]
5.  Palm, G.J. and Rohm, K.H. Aminoacylase I from porcine kidney: identification and characterization of two major protein domains. J. Protein Chem. 14 (1995) 233–240. [PMID: 7662111]
6.  Uttamsingh, V., Keller, D.A. and Anders, M.W. Acylase I-catalyzed deacetylation of N-acetyl-L-cysteine and S-alkyl-N-acetyl-L-cysteines. Chem. Res. Toxicol. 11 (1998) 800–809. [DOI] [PMID: 9671543]
7.  Lindner, H., Hopfner, S., Tafler-Naumann, M., Miko, M., Konrad, L. and Rohm, K.H. The distribution of aminoacylase I among mammalian species and localization of the enzyme in porcine kidney. Biochimie 82 (2000) 129–137. [DOI] [PMID: 10727768]
[EC 3.5.1.14 created 1965, modified 2013]
 
 
EC 3.5.1.114
Accepted name: N-acyl-aromatic-L-amino acid amidohydrolase
Reaction: (1) an N-acyl-aromatic-L-amino acid + H2O = an aromatic-L-amino acid + a carboxylate
(2) an N-acetyl-L-cysteine-S-conjugate + H2O = an L-cysteine-S-conjugate + acetate
Glossary: N-acetyl-L-cysteine-S-conjugate = mercapturic acid
Other name(s): aminoacylase 3; aminoacylase III; ACY3 (gene name)
Systematic name: N-acyl-aromatic-L-amino acid amidohydrolase (carboxylate-forming)
Comments: This enzyme is found in animals and is involved in the hydrolysis of N-acylated or N-acetylated amino acids (except L-aspartate). It preferentially deacetylates Nα-acetylated aromatic amino acids and mercapturic acids (S-conjugates of N-acetyl-L-cysteine) that are usually not deacetylated by EC 3.5.1.14, N-acyl-aliphatic-L-amino acid amidohydrolase. The enzyme is significantly activated by Co2+ and Ni2+ [3]. Some bacterial aminoacylases demonstrate substrate specificity for both EC 3.5.1.14 and EC 3.5.1.114. cf. EC 3.5.1.14, N-acyl-aliphatic-L-amino acid amidohydrolase and EC 3.5.1.15, aspartoacylase.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Pushkin, A., Carpenito, G., Abuladze, N., Newman, D., Tsuprun, V., Ryazantsev, S., Motemoturu, S., Sassani, P., Solovieva, N., Dukkipati, R. and Kurtz, I. Structural characterization, tissue distribution, and functional expression of murine aminoacylase III. Am. J. Physiol. Cell Physiol. 286 (2004) C848–C856. [DOI] [PMID: 14656720]
2.  Newman, D., Abuladze, N., Scholz, K., Dekant, W., Tsuprun, V., Ryazantsev, S., Bondar, G., Sassani, P., Kurtz, I. and Pushkin, A. Specificity of aminoacylase III-mediated deacetylation of mercapturic acids. Drug Metab. Dispos. 35 (2007) 43–50. [DOI] [PMID: 17012540]
3.  Tsirulnikov, K., Abuladze, N., Newman, D., Ryazantsev, S., Wolak, T., Magilnick, N., Koag, M.C., Kurtz, I. and Pushkin, A. Mouse aminoacylase 3: a metalloenzyme activated by cobalt and nickel. Biochim. Biophys. Acta 1794 (2009) 1049–1057. [DOI] [PMID: 19362172]
4.  Hsieh, J.M., Tsirulnikov, K., Sawaya, M.R., Magilnick, N., Abuladze, N., Kurtz, I., Abramson, J. and Pushkin, A. Structures of aminoacylase 3 in complex with acetylated substrates. Proc. Natl. Acad. Sci. USA 107 (2010) 17962–17967. [DOI] [PMID: 20921362]
5.  Tsirulnikov, K., Abuladze, N., Bragin, A., Faull, K., Cascio, D., Damoiseaux, R., Schibler, M.J. and Pushkin, A. Inhibition of aminoacylase 3 protects rat brain cortex neuronal cells from the toxicity of 4-hydroxy-2-nonenal mercapturate and 4-hydroxy-2-nonenal. Toxicol. Appl. Pharmacol. 263 (2012) 303–314. [DOI] [PMID: 22819785]
[EC 3.5.1.114 created 2013]
 
 
EC 3.5.1.115
Accepted name: mycothiol S-conjugate amidase
Reaction: a mycothiol S-conjugate + H2O = an N-acetyl L-cysteine-S-conjugate + 1-O-(2-amino-2-deoxy-α-D-glucopyranosyl)-1D-myo-inositol
Glossary: mycothiol = 1-O-[2-(N2-acetyl-L-cysteinamido)-2-deoxy-α-D-glucopyranosyl]-1D-myo-inositol
N-acetyl L-cysteine-S-conjugate = mercapturic acid
Other name(s): MCA
Systematic name: mycothiol S-conjugate 1D-myo-inositol 2-amino-2-deoxy-α-D-glucopyranosyl-hydrolase
Comments: The enzyme that is found in actinomycetes is involved in the detoxification of oxidizing agents and electrophilic antibiotics. The enzyme has low activity with 1-O-(2-acetamido-2-deoxy-α-D-glucopyranosyl)-1D-myo-inositol as substrate (cf. EC 3.5.1.103, N-acetyl-1-D-myo-inositol-2-amino-2-deoxy-α-D-glucopyranoside deacetylase) [2].
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Newton, G.L., Av-Gay, Y. and Fahey, R.C. A novel mycothiol-dependent detoxification pathway in mycobacteria involving mycothiol S-conjugate amidase. Biochemistry 39 (2000) 10739–10746. [DOI] [PMID: 10978158]
2.  Steffek, M., Newton, G.L., Av-Gay, Y. and Fahey, R.C. Characterization of Mycobacterium tuberculosis mycothiol S-conjugate amidase. Biochemistry 42 (2003) 12067–12076. [DOI] [PMID: 14556638]
[EC 3.5.1.115 created 2013]
 
 
EC 3.5.1.116
Accepted name: ureidoglycolate amidohydrolase
Reaction: (S)-ureidoglycolate + H2O = glyoxylate + 2 NH3 + CO2
For diagram of AMP catabolism, click here
Other name(s): ureidoglycolate hydrolase; UAH (gene name)
Systematic name: (S)-ureidoglycolate amidohydrolase (decarboxylating)
Comments: This plant enzyme is involved in the degradation of ureidoglycolate, an intermediate of purine degradation. Not to be confused with EC 4.3.2.3, ureidoglycolate lyase, which releases urea rather than ammonia.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB, CAS registry number: 115629-07-7
References:
1.  Winkler, R.G., Blevins, D.G. and Randall, D.D. Ureide catabolism in soybeans. III. Ureidoglycolate amidohydrolase and allantoate amidohydrolase are activities of an allantoate degrading enzyme complex. Plant Physiol. 86 (1988) 1084–1088. [PMID: 16666035]
2.  Wells, X.E. and Lees, E.M. Ureidoglycolate amidohydrolase from developing French bean fruits (Phaseolus vulgaris [L.].). Arch. Biochem. Biophys. 287 (1991) 151–159. [DOI] [PMID: 1910298]
3.  Werner, A.K., Romeis, T. and Witte, C.P. Ureide catabolism in Arabidopsis thaliana and Escherichia coli. Nat. Chem. Biol. 6 (2010) 19–21. [DOI] [PMID: 19935661]
[EC 3.5.1.116 created 1992 as EC 3.5.3.19, transferred 2014 to EC 3.5.1.116]
 
 
EC 3.5.3.19
Transferred entry: ureidoglycolate hydrolase. Now EC 3.5.1.116, ureidoglycolate amidohydrolase
[EC 3.5.3.19 created 1992, deleted 2014]
 
 
EC 3.5.3.26
Accepted name: (S)-ureidoglycine aminohydrolase
Reaction: (S)-2-ureidoglycine + H2O = (S)-ureidoglycolate + NH3
Other name(s): UGlyAH; UGHY; ylbA (gene name)
Systematic name: (S)-ureidoglycine aminohydrolase
Comments: Binds Mn2+. This enzyme, found in plants and bacteria, is part of the ureide pathway, which enables the recycling of the nitrogen in purine compounds. In plants it is localized in the endoplasmic reticulum.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Serventi, F., Ramazzina, I., Lamberto, I., Puggioni, V., Gatti, R. and Percudani, R. Chemical basis of nitrogen recovery through the ureide pathway: formation and hydrolysis of S-ureidoglycine in plants and bacteria. ACS Chem. Biol. 5 (2010) 203–214. [DOI] [PMID: 20038185]
2.  Werner, A.K., Romeis, T. and Witte, C.P. Ureide catabolism in Arabidopsis thaliana and Escherichia coli. Nat. Chem. Biol. 6 (2010) 19–21. [DOI] [PMID: 19935661]
3.  Shin, I., Percudani, R. and Rhee, S. Structural and functional insights into (S)-ureidoglycine aminohydrolase, key enzyme of purine catabolism in Arabidopsis thaliana. J. Biol. Chem. 287 (2012) 18796–18805. [DOI] [PMID: 22493446]
[EC 3.5.3.26 created 2013]
 
 
EC 3.5.4.40
Accepted name: aminodeoxyfutalosine deaminase
Reaction: 6-amino-6-deoxyfutalosine + H2O = futalosine + NH3
For diagram of the futalosine pathway, click here
Glossary: 6-amino-6-deoxyfutalosine = 3-{3-[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl]propanoyl}benzoate
futalosine = 3-{3-[(3S,4R)-3,4-dihydroxy-5-(6-oxo-1,6-dihydro-9H-purin-9-yl)tetrahydrofuran-2-yl]propanoyl}benzoate
Other name(s): AFL deaminase; aminofutalosine deaminase; mqnX (gene name)
Systematic name: 6-amino-6-deoxyfutalosine deaminase
Comments: The enzyme, found in several bacterial species, is part of the futalosine pathway for menaquinone biosynthesis.
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Arakawa, C., Kuratsu, M., Furihata, K., Hiratsuka, T., Itoh, N., Seto, H. and Dairi, T. Diversity of the early step of the futalosine pathway. Antimicrob. Agents Chemother. 55 (2011) 913–916. [DOI] [PMID: 21098241]
2.  Goble, A.M., Toro, R., Li, X., Ornelas, A., Fan, H., Eswaramoorthy, S., Patskovsky, Y., Hillerich, B., Seidel, R., Sali, A., Shoichet, B.K., Almo, S.C., Swaminathan, S., Tanner, M.E. and Raushel, F.M. Deamination of 6-aminodeoxyfutalosine in menaquinone biosynthesis by distantly related enzymes. Biochemistry 52 (2013) 6525–6536. [DOI] [PMID: 23972005]
[EC 3.5.4.40 created 2014]
 
 
EC 3.5.99.10
Accepted name: 2-iminobutanoate/2-iminopropanoate deaminase
Reaction: (1) 2-iminobutanoate + H2O = 2-oxobutanoate + NH3
(2) 2-iminopropanoate + H2O = pyruvate + NH3
Other name(s): yjgF (gene name); ridA (gene name); enamine/imine deaminase (ambiguous)
Systematic name: 2-iminobutanoate aminohydrolase
Comments: This enzyme, which has been found in all species and tissues examined, catalyses the hydrolytic deamination of imine intermediates formed by several types of pyridoxal-5′-phosphate-dependent dehydratases, such as EC 4.3.1.19, threonine ammonia-lyase and EC 4.3.1.17, L-serine ammonia-lyase. The reactions, which can occur spontaneously, are accelerated to minimize the cellular damage that could be caused by these reactive intermediates.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Lambrecht, J.A., Flynn, J.M. and Downs, D.M. Conserved YjgF protein family deaminates reactive enamine/imine intermediates of pyridoxal 5′-phosphate (PLP)-dependent enzyme reactions. J. Biol. Chem. 287 (2012) 3454–3461. [DOI] [PMID: 22094463]
[EC 3.5.99.10 created 2014]
 
 
EC 3.6.1.66
Accepted name: XTP/dITP diphosphatase
Reaction: (1) XTP + H2O = XMP + diphosphate
(2) dITP + H2O = dIMP + diphosphate
(3) ITP + H2O = IMP + diphosphate
Other name(s): hypoxanthine/xanthine dNTP pyrophosphatase; rdgB (gene name)
Systematic name: XTP/dITP diphosphohydrolase (diphosphate-forming)
Comments: The enzymes from the bacterium Escherichia coli and the archaea Methanococcus jannaschii and Archaeoglobus fulgidus are highly specific for XTP, dITP and ITP. The activity is dependent on divalent cations, Mg2+ is preferred.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Hwang, K.Y., Chung, J.H., Kim, S.H., Han, Y.S. and Cho, Y. Structure-based identification of a novel NTPase from Methanococcus jannaschii. Nat. Struct. Biol. 6 (1999) 691–696. [DOI] [PMID: 10404228]
2.  Chung, J.H., Back, J.H., Park, Y.I. and Han, Y.S. Biochemical characterization of a novel hypoxanthine/xanthine dNTP pyrophosphatase from Methanococcus jannaschii. Nucleic Acids Res. 29 (2001) 3099–3107. [DOI] [PMID: 11452035]
3.  Chung, J.H., Park, H.Y., Lee, J.H. and Jang, Y. Identification of the dITP- and XTP-hydrolyzing protein from Escherichia coli. J. Biochem. Mol. Biol. 35 (2002) 403–408. [PMID: 12297000]
4.  Savchenko, A., Proudfoot, M., Skarina, T., Singer, A., Litvinova, O., Sanishvili, R., Brown, G., Chirgadze, N. and Yakunin, A.F. Molecular basis of the antimutagenic activity of the house-cleaning inosine triphosphate pyrophosphatase RdgB from Escherichia coli. J. Mol. Biol. 374 (2007) 1091–1103. [DOI] [PMID: 17976651]
[EC 3.6.1.66 created 2013]
 
 
EC 3.7.1.21
Accepted name: 6-oxocyclohex-1-ene-1-carbonyl-CoA hydratase
Reaction: 6-oxocyclohex-1-ene-1-carbonyl-CoA + 2 H2O = 3-hydroxypimeloyl-CoA (overall reaction)
(1a) 6-oxocyclohex-1-ene-1-carbonyl-CoA + H2O = 2-hydroxy-6-oxocyclohexane-1-carbonyl-CoA
(1b) 2-hydroxy-6-oxocyclohexane-1-carbonyl-CoA + H2O = 3-hydroxypimeloyl-CoA
For diagram of Benzoyl-CoA catabolism, click here
Glossary: 3-hydroxypimeloyl-CoA = 3-hydroxy-6-carboxyhexanoyl-CoA
Other name(s): 6-oxocyclohex-1-ene-1-carbonyl-CoA hydrolase; 6-oxocyclohex-1-ene-1-carbonyl-CoA hydrolase (decyclizing)
Systematic name: 6-oxocyclohex-1-ene-1-carbonyl-CoA hydrolase (ring-opening)
Comments: The enzyme, which participates in the anaerobic benzoyl-CoA degradation pathway in certain organisms, catalyses the addition of one molecule of water to the double bound of 6-oxocyclohex-1-ene-1-carbonyl-CoA followed by the hydrolytic C-C cleavage of the alicyclic ring.
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Laempe, D., Jahn, M. and Fuchs, G. 6-Hydroxycyclohex-1-ene-1-carbonyl-CoA dehydrogenase and 6-oxocyclohex-1-ene-1-carbonyl-CoA hydrolase, enzymes of the benzoyl-CoA pathway of anaerobic aromatic metabolism in the denitrifying bacterium Thauera aromatica. Eur. J. Biochem. 263 (1999) 420–429. [DOI] [PMID: 10406950]
2.  Kuntze, K., Shinoda, Y., Moutakki, H., McInerney, M.J., Vogt, C., Richnow, H.H. and Boll, M. 6-Oxocyclohex-1-ene-1-carbonyl-coenzyme A hydrolases from obligately anaerobic bacteria: characterization and identification of its gene as a functional marker for aromatic compounds degrading anaerobes. Environ. Microbiol. 10 (2008) 1547–1556. [DOI] [PMID: 18312395]
[EC 3.7.1.21 created 2014]
 
 
EC 3.7.1.22
Accepted name: 3D-(3,5/4)-trihydroxycyclohexane-1,2-dione acylhydrolase (ring-opening)
Reaction: 3D-3,5/4-trihydroxycyclohexa-1,2-dione + H2O = 5-deoxy-D-glucuronate
For diagram of inositol catabolism, click here
Glossary: 3D-3,5/4-trihydroxycyclohexa-1,2-dione = (3R,4S,5R)-3,4,5-trihydroxycyclohexane-1,2-dione
Other name(s): IolD; THcHDO hydrolase; 3D-3,5/4-trihydroxycyclohexa-1,2-dione hydrolase (decyclizing); 3D-(3,5/4)-trihydroxycyclohexane-1,2-dione acylhydrolase (decyclizing)
Systematic name: 3D-3,5/4-trihydroxycyclohexa-1,2-dione hydrolase (ring-opening)
Comments: The enzyme, found in the bacterium Bacillus subtilis, is part of the myo-inositol degradation pathway leading to acetyl-CoA.
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Yoshida, K., Yamaguchi, M., Morinaga, T., Kinehara, M., Ikeuchi, M., Ashida, H. and Fujita, Y. myo-Inositol catabolism in Bacillus subtilis. J. Biol. Chem. 283 (2008) 10415–10424. [DOI] [PMID: 18310071]
[EC 3.7.1.22 created 2014, modified 2014]
 
 
EC 4.1.1.97
Accepted name: 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase
Reaction: 5-hydroxy-2-oxo-4-ureido-2,5-dihydro-1H-imidazole-5-carboxylate = (S)-allantoin + CO2
For diagram of AMP catabolism, click here
Glossary: 5-hydroxy-2-oxo-4-ureido-2,5-dihydro-1H-imidazole-5-carboxylate = 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline
Other name(s): OHCU decarboxylase; hpxQ (gene name); PRHOXNB (gene name)
Systematic name: 5-hydroxy-2-oxo-4-ureido-2,5-dihydro-1H-imidazole-5-carboxylate carboxy-lyase [(S)-allantoin-forming]
Comments: This enzyme is part of the pathway from urate to (S)-allantoin, which is present in bacteria, plants and animals (but not in humans).
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Ramazzina, I., Folli, C., Secchi, A., Berni, R. and Percudani, R. Completing the uric acid degradation pathway through phylogenetic comparison of whole genomes. Nat. Chem. Biol. 2 (2006) 144–148. [DOI] [PMID: 16462750]
2.  Cendron, L., Berni, R., Folli, C., Ramazzina, I., Percudani, R. and Zanotti, G. The structure of 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase provides insights into the mechanism of uric acid degradation. J. Biol. Chem. 282 (2007) 18182–18189. [DOI] [PMID: 17428786]
3.  Kim, K., Park, J. and Rhee, S. Structural and functional basis for (S)-allantoin formation in the ureide pathway. J. Biol. Chem. 282 (2007) 23457–23464. [DOI] [PMID: 17567580]
4.  French, J.B. and Ealick, S.E. Structural and mechanistic studies on Klebsiella pneumoniae 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase. J. Biol. Chem. 285 (2010) 35446–35454. [DOI] [PMID: 20826786]
[EC 4.1.1.97 created 2014]
 
 
*EC 4.1.2.14
Accepted name: 2-dehydro-3-deoxy-phosphogluconate aldolase
Reaction: 2-dehydro-3-deoxy-6-phospho-D-gluconate = pyruvate + D-glyceraldehyde 3-phosphate
For diagram of the Entner-Doudoroff pathway, click here
Other name(s): phospho-2-keto-3-deoxygluconate aldolase; KDPG aldolase; phospho-2-keto-3-deoxygluconic aldolase; 2-keto-3-deoxy-6-phosphogluconic aldolase; 2-keto-3-deoxy-6-phosphogluconate aldolase; 6-phospho-2-keto-3-deoxygluconate aldolase; ODPG aldolase; 2-oxo-3-deoxy-6-phosphogluconate aldolase; 2-keto-3-deoxygluconate-6-P-aldolase; 2-keto-3-deoxygluconate-6-phosphate aldolase; 2-dehydro-3-deoxy-D-gluconate-6-phosphate D-glyceraldehyde-3-phosphate-lyase; 2-dehydro-3-deoxy-D-gluconate-6-phosphate D-glyceraldehyde-3-phosphate-lyase (pyruvate-forming)
Systematic name: 2-dehydro-3-deoxy-6-phospho-D-gluconate D-glyceraldehyde-3-phosphate-lyase (pyruvate-forming)
Comments: The enzyme shows no activity with 2-dehydro-3-deoxy-6-phosphate-D-galactonate. cf. EC 4.1.2.55, 2-dehydro-3-deoxy-phosphogluconate/2-dehydro-3-deoxy-6-phosphogalactonate aldolase [2]. Also acts on 2-oxobutanoate [1].
Links to other databases: BRENDA, EXPASY, Gene, GTD, KEGG, PDB, CAS registry number: 9024-53-7
References:
1.  Meloche, H.P. and Wood, W.A. Crystallization and characteristics of 2-keto-3-deoxy-6-phosphogluconic aldolase. J. Biol. Chem. 239 (1964) 3515–3518. [PMID: 14245411]
2.  Barran, L.R. and Wood, W.A. The mechanism of 2-keto-3-deoxy-6-phosphogluconate aldolase. 3. Nature of the inactivation by fluorodinitrobenzene. J. Biol. Chem. 246 (1971) 4028–4035. [PMID: 5561473]
[EC 4.1.2.14 created 1965, modified 1976, modified 2014]
 
 
*EC 4.1.2.21
Accepted name: 2-dehydro-3-deoxy-6-phosphogalactonate aldolase
Reaction: 2-dehydro-3-deoxy-6-phospho-D-galactonate = pyruvate + D-glyceraldehyde 3-phosphate
For diagram of the Entner-Doudoroff pathway, click here
Other name(s): 6-phospho-2-keto-3-deoxygalactonate aldolase; phospho-2-keto-3-deoxygalactonate aldolase; 2-keto-3-deoxy-6-phosphogalactonic aldolase; phospho-2-keto-3-deoxygalactonic aldolase; 2-keto-3-deoxy-6-phosphogalactonic acid aldolase; (KDPGal)aldolase; 2-dehydro-3-deoxy-D-galactonate-6-phosphate D-glyceraldehyde-3-phosphate-lyase; 2-dehydro-3-deoxy-D-galactonate-6-phosphate D-glyceraldehyde-3-phosphate-lyase (pyruvate-forming)
Systematic name: 2-dehydro-3-deoxy-6-phospho-D-galactonate D-glyceraldehyde-3-phospho-lyase (pyruvate-forming)
Comments: The enzyme catalyses the last reaction in a D-galactose degradation pathway. cf. EC 4.1.2.55, 2-dehydro-3-deoxy-phosphogluconate/2-dehydro-3-deoxy-6-phosphogalactonate aldolase.
Links to other databases: BRENDA, EXPASY, Gene, GTD, KEGG, PDB, CAS registry number: 9030-99-3
References:
1.  Shuster, C.W. 2-Keto-3-deoxy-6-phosphogalactonic acid aldolase. Methods Enzymol. 9 (1966) 524–528.
[EC 4.1.2.21 created 1972, modified 2014]
 
 
EC 4.1.2.55
Accepted name: 2-dehydro-3-deoxy-phosphogluconate/2-dehydro-3-deoxy-6-phosphogalactonate aldolase
Reaction: (1) 2-dehydro-3-deoxy-6-phospho-D-gluconate = pyruvate + D-glyceraldehyde 3-phosphate
(2) 2-dehydro-3-deoxy-6-phospho-D-galactonate = pyruvate + D-glyceraldehyde 3-phosphate
For diagram of the Entner-Doudoroff pathway, click here
Other name(s): 2-keto-3-deoxygluconate aldolase (ambiguous); KDGA (ambiguous)
Systematic name: 2-dehydro-3-deoxy-6-phospho-D-gluconate/2-dehydro-3-deoxy-6-phospho-D-galactonate D-glyceraldehyde-3-phosphate-lyase (pyruvate-forming)
Comments: In the archaeon Sulfolobus solfataricus the enzyme is involved in glucose and galactose catabolism via the branched variant of the Entner-Doudoroff pathway. It utilizes 2-dehydro-3-deoxy-6-phosphate-D-gluconate and 2-dehydro-3-deoxy-6-phosphate-D-galactonate with similar catalytic efficiency. In vitro the enzyme can also catalyse the cleavage of the non-phosphorylated forms 2-dehydro-3-deoxy-D-gluconate and 2-dehydro-3-deoxy-D-galactonate with much lower catalytic efficiency. cf. EC 4.1.2.21, 2-dehydro-3-deoxy-6-phosphogalactonate aldolase, and EC 4.1.2.14, 2-dehydro-3-deoxy-phosphogluconate aldolase.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Buchanan, C.L., Connaris, H., Danson, M.J., Reeve, C.D. and Hough, D.W. An extremely thermostable aldolase from Sulfolobus solfataricus with specificity for non-phosphorylated substrates. Biochem. J. 343 (1999) 563–570. [PMID: 10527934]
2.  Lamble, H.J., Theodossis, A., Milburn, C.C., Taylor, G.L., Bull, S.D., Hough, D.W. and Danson, M.J. Promiscuity in the part-phosphorylative Entner-Doudoroff pathway of the archaeon Sulfolobus solfataricus. FEBS Lett. 579 (2005) 6865–6869. [DOI] [PMID: 16330030]
3.  Wolterink-van Loo, S., van Eerde, A., Siemerink, M.A., Akerboom, J., Dijkstra, B.W. and van der Oost, J. Biochemical and structural exploration of the catalytic capacity of Sulfolobus KDG aldolases. Biochem. J. 403 (2007) 421–430. [DOI] [PMID: 17176250]
[EC 4.1.2.55 created 2014]
 
 
EC 4.1.2.56
Accepted name: 2-amino-4,5-dihydroxy-6-oxo-7-(phosphooxy)heptanoate synthase
Reaction: 2-amino-4,5-dihydroxy-6-oxo-7-(phosphooxy)heptanoate = glycerone phosphate + L-aspartate 4-semialdehyde
For diagram of 3-amino-4-hydroxybenzoate biosynthesis, click here
Other name(s): griI (gene name)
Systematic name: 2-amino-4,5-dihydroxy-6-oxo-7-(phosphooxy)heptanoate L-aspartate 4-semialdehyde-lyase (glycerone phosphate-forming)
Comments: Part of the pathway for the biosynthesis of grixazone, a mixture of yellow pigments produced by the bacterium Streptomyces griseus.
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Suzuki, H., Ohnishi, Y., Furusho, Y., Sakuda, S. and Horinouchi, S. Novel benzene ring biosynthesis from C3 and C4 primary metabolites by two enzymes. J. Biol. Chem. 281 (2006) 36944–36951. [DOI] [PMID: 17003031]
[EC 4.1.2.56 created 2014]
 
 
*EC 4.1.3.24
Accepted name: malyl-CoA lyase
Reaction: (1) (S)-malyl-CoA = acetyl-CoA + glyoxylate
(2) (2R,3S)-2-methylmalyl-CoA = propanoyl-CoA + glyoxylate
For diagram of the 3-hydroxypropanoate cycle, click here
Glossary: (S)-malyl-CoA = (3S)-3-carboxy-3-hydroxypropanoyl-CoA
(2R,3S)-2-methylmalyl-CoA = L-erythro-β-methylmalyl-CoA = (2R,3S)-2-methyl-3-carboxy-3-hydroxypropanoyl-CoA
Other name(s): malyl-coenzyme A lyase; (3S)-3-carboxy-3-hydroxypropanoyl-CoA glyoxylate-lyase; mclA (gene name); mcl1 (gene name); (3S)-3-carboxy-3-hydroxypropanoyl-CoA glyoxylate-lyase (acetyl-CoA-forming); L-malyl-CoA lyase
Systematic name: (S)-malyl-CoA glyoxylate-lyase (acetyl-CoA-forming)
Comments: The enzymes from Rhodobacter species catalyse a step in the ethylmalonyl-CoA pathway for acetate assimilation [3,5]. The enzyme from halophilic bacteria participate in the methylaspartate cycle and catalyse the reaction in the direction of malyl-CoA formation [6]. The enzyme from the bacterium Chloroflexus aurantiacus, which participates in the 3-hydroxypropanoate cycle for carbon assimilation, also has the activity of EC 4.1.3.25, (3S)-citramalyl-CoA lyase [2,4].
Links to other databases: BRENDA, EXPASY, Gene, GTD, KEGG, PDB, CAS registry number: 37290-67-8
References:
1.  Tuboi, S. and Kikuchi, G. Enzymic cleavage of malyl-Coenzyme A into acetyl-Coenzyme A and glyoxylic acid. Biochim. Biophys. Acta 96 (1965) 148–153. [DOI] [PMID: 14285256]
2.  Herter, S., Busch, A. and Fuchs, G. L-Malyl-coenzyme A lyase/β-methylmalyl-coenzyme A lyase from Chloroflexus aurantiacus, a bifunctional enzyme involved in autotrophic CO2 fixation. J. Bacteriol. 184 (2002) 5999–6006. [DOI] [PMID: 12374834]
3.  Meister, M., Saum, S., Alber, B.E. and Fuchs, G. L-Malyl-coenzyme A/β-methylmalyl-coenzyme A lyase is involved in acetate assimilation of the isocitrate lyase-negative bacterium Rhodobacter capsulatus. J. Bacteriol. 187 (2005) 1415–1425. [DOI] [PMID: 15687206]
4.  Friedmann, S., Alber, B.E. and Fuchs, G. Properties of R-citramalyl-coenzyme A lyase and its role in the autotrophic 3-hydroxypropionate cycle of Chloroflexus aurantiacus. J. Bacteriol. 189 (2007) 2906–2914. [DOI] [PMID: 17259315]
5.  Erb, T.J., Frerichs-Revermann, L., Fuchs, G. and Alber, B.E. The apparent malate synthase activity of Rhodobacter sphaeroides is due to two paralogous enzymes, (3S)-malyl-coenzyme A (CoA)/β-methylmalyl-CoA lyase and (3S)-malyl-CoA thioesterase. J. Bacteriol. 192 (2010) 1249–1258. [DOI] [PMID: 20047909]
6.  Borjian, F., Han, J., Hou, J., Xiang, H., Zarzycki, J. and Berg, I.A. Malate Synthase and β-Methylmalyl Coenzyme A Lyase Reactions in the Methylaspartate Cycle in Haloarcula hispanica. J. Bacteriol. 199 (2017) . [DOI] [PMID: 27920298]
[EC 4.1.3.24 created 1972, modified 2014]
 
 
*EC 4.1.3.25
Accepted name: (S)-citramalyl-CoA lyase
Reaction: (3S)-citramalyl-CoA = acetyl-CoA + pyruvate
For diagram of the 3-hydroxypropanoate cycle, click here
Other name(s): citramalyl coenzyme A lyase (ambiguous); (+)-CMA-CoA lyase; (3S)-citramalyl-CoA pyruvate-lyase; Mcl (ambiguous); citramalyl-CoA lyase (ambiguous)
Systematic name: (3S)-citramalyl-CoA pyruvate-lyase (acetyl-CoA-forming)
Comments: Requires Mg2+ ions for activity [3]. The enzyme from the bacterium Clostridium tetanomorphum is a component of EC 4.1.3.22, citramalate lyase [2]. It also acts on (3S)-citramalyl thioacyl-carrier protein [2]. The enzyme from the bacterium Chloroflexus aurantiacus also has the activity of EC 4.1.3.24, malyl-CoA lyase [3]. It has no activity with (3R)-citramalyl-CoA (cf. EC 4.1.3.46, (R)-citramalyl-CoA lyase) [3].
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB, CAS registry number: 37290-68-9
References:
1.  Cooper, R.A. and Kornberg, H.L. The utilization of itaconate by Pseudomonas sp. Biochem. J. 91 (1964) 82–91. [PMID: 4284209]
2.  Dimroth, P., Buckel, W., Loyal, R. and Eggerer, H. Isolation and function of the subunits of citramalate lyase and formation of hybrids with the subunits of citrate lyase. Eur. J. Biochem. 80 (1977) 469–477. [DOI] [PMID: 923590]
3.  Friedmann, S., Alber, B.E. and Fuchs, G. Properties of R-citramalyl-coenzyme A lyase and its role in the autotrophic 3-hydroxypropionate cycle of Chloroflexus aurantiacus. J. Bacteriol. 189 (2007) 2906–2914. [DOI] [PMID: 17259315]
[EC 4.1.3.25 created 1972, modified 2014]
 
 
EC 4.1.3.45
Accepted name: 3-hydroxybenzoate synthase
Reaction: chorismate = 3-hydroxybenzoate + pyruvate
For diagram of shikimate and chorismate biosynthesis, click here
Glossary: chorismate = (3R,4R)-3-[(1-carboxyethenyl)oxy]-4-hydroxycyclohexa-1,5-diene-1-carboxylate
Other name(s): chorismatase/3-hydroxybenzoate synthase; hyg5 (gene name); bra8 (gene name); XanB2
Systematic name: chorismate pyruvate-lyase (3-hydroxybenzoate-forming)
Comments: The enzyme, found in several bacterial species is involved in biosynthesis of secondary products. The enzyme from the bacterium Xanthomonas campestris pv. campestris also has the activity of EC 4.1.3.40, chorismate lyase [3].
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Andexer, J.N., Kendrew, S.G., Nur-e-Alam, M., Lazos, O., Foster, T.A., Zimmermann, A.S., Warneck, T.D., Suthar, D., Coates, N.J., Koehn, F.E., Skotnicki, J.S., Carter, G.T., Gregory, M.A., Martin, C.J., Moss, S.J., Leadlay, P.F. and Wilkinson, B. Biosynthesis of the immunosuppressants FK506, FK520, and rapamycin involves a previously undescribed family of enzymes acting on chorismate. Proc. Natl. Acad. Sci. USA 108 (2011) 4776–4781. [DOI] [PMID: 21383123]
2.  Jiang, Y., Wang, H., Lu, C., Ding, Y., Li, Y. and Shen, Y. Identification and characterization of the cuevaene A biosynthetic gene cluster in Streptomyces sp. LZ35. ChemBioChem 14 (2013) 1468–1475. [DOI] [PMID: 23824670]
3.  Zhou, L., Wang, J.Y., Wang, J., Poplawsky, A., Lin, S., Zhu, B., Chang, C., Zhou, T., Zhang, L.H. and He, Y.W. The diffusible factor synthase XanB2 is a bifunctional chorismatase that links the shikimate pathway to ubiquinone and xanthomonadins biosynthetic pathways. Mol. Microbiol. 87 (2013) 80–93. [DOI] [PMID: 23113660]
[EC 4.1.3.45 created 2013]
 
 
EC 4.1.3.46
Accepted name: (R)-citramalyl-CoA lyase
Reaction: (3R)-citramalyl-CoA = acetyl-CoA + pyruvate
Other name(s): Ccl
Systematic name: (3R)-citramalyl-CoA pyruvate-lyase (acetyl-CoA-forming)
Comments: Requires Mn2+ ions for activity. The enzyme, purified from the bacterium Chloroflexus aurantiacus, has no activity with (3S)-citramalyl-CoA (cf. EC 4.1.3.25, (S)-citramalyl-CoA lyase).
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Friedmann, S., Alber, B.E. and Fuchs, G. Properties of R-citramalyl-coenzyme A lyase and its role in the autotrophic 3-hydroxypropionate cycle of Chloroflexus aurantiacus. J. Bacteriol. 189 (2007) 2906–2914. [DOI] [PMID: 17259315]
[EC 4.1.3.46 created 2014]
 
 
EC 4.2.1.89
Deleted entry: carnitine dehydratase. The activity has now been shown to be due to EC 2.8.3.21, L-carnitine CoA-transferase and EC 4.2.1.149, crotonobetainyl-CoA hydratase.
[EC 4.2.1.89 created 1989, deleted 2014]
 
 
EC 4.2.1.147
Accepted name: 5,6,7,8-tetrahydromethanopterin hydro-lyase
Reaction: 5,6,7,8-tetrahydromethanopterin + formaldehyde = 5,10-methylenetetrahydromethanopterin + H2O
Other name(s): formaldehyde-activating enzyme
Systematic name: 5,6,7,8-tetrahydromethanopterin hydro-lyase (formaldehyde-adding, tetrahydromethanopterin-forming)
Comments: Found in methylotrophic bacteria and methanogenic archaea.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Vorholt, J.A., Marx, C.J., Lidstrom, M.E. and Thauer, R.K. Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol. J. Bacteriol. 182 (2000) 6645–6650. [DOI] [PMID: 11073907]
2.  Acharya, P., Goenrich, M., Hagemeier, C.H., Demmer, U., Vorholt, J.A., Thauer, R.K. and Ermler, U. How an enzyme binds the C1 carrier tetrahydromethanopterin. Structure of the tetrahydromethanopterin-dependent formaldehyde-activating enzyme (Fae) from Methylobacterium extorquens AM1. J. Biol. Chem. 280 (2005) 13712–13719. [DOI] [PMID: 15632161]
[EC 4.2.1.147 created 2014]
 
 
EC 4.2.1.148
Accepted name: 2-methylfumaryl-CoA hydratase
Reaction: (2R,3S)-2-methylmalyl-CoA = 2-methylfumaryl-CoA + H2O
For diagram of the 3-hydroxypropanoate cycle, click here
Glossary: (2R,3S)-2-methylmalyl-CoA = L-erythro-β-methylmalyl-CoA = (2R,3S)-2-methyl-3-carboxy-3-hydroxypropanoyl-CoA
2-methylfumaryl-CoA = (E)-3-carboxy-2-methylprop-2-enoyl-CoA
Other name(s): Mcd; erythro-β-methylmalonyl-CoA hydrolyase; mesaconyl-coenzyme A hydratase (ambiguous); mesaconyl-C1-CoA hydratase
Systematic name: (2R,3S)-2-methylmalyl-CoA hydro-lyase (2-methylfumaryl-CoA-forming)
Comments: The enzyme from the bacterium Chloroflexus aurantiacus is part of the 3-hydroxypropanoate cycle for carbon assimilation.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Zarzycki, J., Schlichting, A., Strychalsky, N., Muller, M., Alber, B.E. and Fuchs, G. Mesaconyl-coenzyme A hydratase, a new enzyme of two central carbon metabolic pathways in bacteria. J. Bacteriol. 190 (2008) 1366–1374. [DOI] [PMID: 18065535]
[EC 4.2.1.148 created 2014]
 
 
EC 4.2.1.149
Accepted name: crotonobetainyl-CoA hydratase
Reaction: L-carnitinyl-CoA = (E)-4-(trimethylammonio)but-2-enoyl-CoA + H2O
Glossary: L-carnitinyl-CoA = (3R)-3-hydroxy-4-(trimethylammonio)butanoyl-CoA
(E)-4-(trimethylammonio)but-2-enoyl-CoA = crotonobetainyl-CoA
Other name(s): CaiD; L-carnityl-CoA dehydratase
Systematic name: L-carnitinyl-CoA hydro-lyase [(E)-4-(trimethylammonio)but-2-enoyl-CoA-forming]
Comments: The enzyme is also able to use crotonyl-CoA as substrate, with low efficiency [2].
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Engemann, C., Elssner, T. and Kleber, H.P. Biotransformation of crotonobetaine to L-(–)-carnitine in Proteus sp. Arch. Microbiol. 175 (2001) 353–359. [PMID: 11409545]
2.  Elssner, T., Engemann, C., Baumgart, K. and Kleber, H.P. Involvement of coenzyme A esters and two new enzymes, an enoyl-CoA hydratase and a CoA-transferase, in the hydration of crotonobetaine to L-carnitine by Escherichia coli. Biochemistry 40 (2001) 11140–11148. [DOI] [PMID: 11551212]
3.  Engemann, C., Elssner, T., Pfeifer, S., Krumbholz, C., Maier, T. and Kleber, H.P. Identification and functional characterisation of genes and corresponding enzymes involved in carnitine metabolism of Proteus sp. Arch. Microbiol. 183 (2005) 176–189. [DOI] [PMID: 15731894]
[EC 4.2.1.149 created 2014]
 
 
EC 4.2.1.150
Accepted name: short-chain-enoyl-CoA hydratase
Reaction: a short-chain (3S)-3-hydroxyacyl-CoA = a short-chain trans-2-enoyl-CoA + H2O
Other name(s): 3-hydroxybutyryl-CoA dehydratase; crotonase; crt (gene name)
Systematic name: short-chain-(3S)-3-hydroxyacyl-CoA hydro-lyase
Comments: The enzyme from the bacterium Clostridium acetobutylicum is part of the central fermentation pathway and plays a key role in the production of both acids and solvents. It is specific for short, C4-C6, chain length substrates and exhibits an extremely high turnover number for crotonyl-CoA. cf. EC 4.2.1.17, enoyl-CoA hydratase and EC 4.2.1.74, long-chain-enoyl-CoA hydratase.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Waterson, R.M., Castellino, F.J., Hass, G.M. and Hill, R.L. Purification and characterization of crotonase from Clostridium acetobutylicum. J. Biol. Chem. 247 (1972) 5266–5271. [PMID: 5057466]
2.  Waterson, R.M. and Conway, R.S. Enoyl-CoA hydratases from Clostridium acetobutylicum and Escherichia coli. Methods Enzymol. 71 Pt C (1981) 421–430. [PMID: 7024731]
3.  Boynton, Z.L., Bennet, G.N. and Rudolph, F.B. Cloning, sequencing, and expression of clustered genes encoding β-hydroxybutyryl-coenzyme A (CoA) dehydrogenase, crotonase, and butyryl-CoA dehydrogenase from Clostridium acetobutylicum ATCC 824. J. Bacteriol. 178 (1996) 3015–3024. [DOI] [PMID: 8655474]
[EC 4.2.1.150 created 2014]
 
 
EC 4.2.1.151
Accepted name: chorismate dehydratase
Reaction: chorismate = 3-[(1-carboxyvinyl)oxy]benzoate + H2O
For diagram of the futalosine pathway, click here
Other name(s): MqnA
Systematic name: chorismate hydro-lyase (3-[(1-carboxyvinyl)oxy]benzoate-forming)
Comments: The enzyme, found in several bacterial species, is part of the futalosine pathway for menaquinone biosynthesis.
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Mahanta, N., Fedoseyenko, D., Dairi, T. and Begley, T.P. Menaquinone biosynthesis: formation of aminofutalosine requires a unique radical SAM enzyme. J. Am. Chem. Soc. 135 (2013) 15318–15321. [DOI] [PMID: 24083939]
[EC 4.2.1.151 created 2014]
 
 
*EC 4.3.1.17
Accepted name: L-serine ammonia-lyase
Reaction: L-serine = pyruvate + NH3 (overall reaction)
(1a) L-serine = 2-aminoprop-2-enoate + H2O
(1b) 2-aminoprop-2-enoate = 2-iminopropanoate (spontaneous)
(1c) 2-iminopropanoate + H2O = pyruvate + NH3 (spontaneous)
Other name(s): serine deaminase; L-hydroxyaminoacid dehydratase; L-serine deaminase; L-serine dehydratase; L-serine hydro-lyase (deaminating)
Systematic name: L-serine ammonia-lyase (pyruvate-forming)
Comments: Most enzymes that catalyse this reaction are pyridoxal-phosphate-dependent, although some enzymes contain an iron-sulfur cluster instead [6]. The reaction catalysed by both types of enzymes involves the initial elimination of water to form an enamine intermediate (hence the enzyme’s original classification as EC 4.2.1.13, L-serine dehydratase), followed by tautomerization to an imine form and hydrolysis of the C-N bond. The latter reaction, which can occur spontaneously, is also be catalysed by EC 3.5.99.10, 2-iminobutanoate/2-iminopropanoate deaminase. This reaction is also carried out by EC 4.3.1.19, threonine ammonia-lyase, from a number of sources.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB, CAS registry number: 9014-27-1
References:
1.  Ramos, F. and Wiame, J.-M. Occurrence of a catabolic L-serine (L-threonine) deaminase in Saccharomyces cerevisiae. Eur. J. Biochem. 123 (1982) 571–576. [DOI] [PMID: 7042346]
2.  Simon, D., Hoshino, J. and Kröger, H. L-Serine dehydratase from rat liver. Purification and some properties. Biochim. Biophys. Acta 321 (1973) 361–368. [DOI] [PMID: 4750769]
3.  Suda, M. and Nakagawa, H. L-Serine dehydratase (rat liver). Methods Enzymol. 17B (1971) 346–351.
4.  Sagers, R.D. and Carter, J. E. L-Serine dehydratase (Clostridium acidiurica). Methods Enzymol. 17B (1971) 351–356.
5.  Robinson, W.G. and Labow, R. L-Serine dehydratase (Escherichia coli). Methods Enzymol. 17B (1971) 356–360.
6.  Grabowski, R., Hofmeister, A.E. and Buckel, W. Bacterial L-serine dehydratases: a new family of enzymes containing iron-sulfur clusters. Trends Biochem. Sci. 18 (1993) 297–300. [DOI] [PMID: 8236444]
7.  Yamada, T., Komoto, J., Takata, Y., Ogawa, H., Pitot, H.C. and Takusagawa, F. Crystal structure of serine dehydratase from rat liver. Biochemistry 42 (2003) 12854–12865. [DOI] [PMID: 14596599]
[EC 4.3.1.17 created 1961 as EC 4.2.1.13, transferred 2001 to EC 4.3.1.17, modified 2014]
 
 
*EC 4.3.1.19
Accepted name: threonine ammonia-lyase
Reaction: L-threonine = 2-oxobutanoate + NH3 (overall reaction)
(1a) L-threonine = 2-aminobut-2-enoate + H2O
(1b) 2-aminobut-2-enoate = 2-iminobutanoate (spontaneous)
(1c) 2-iminobutanoate + H2O = 2-oxobutanoate + NH3 (spontaneous)
For diagram of isoleucine and valine biosynthesis, click here
Other name(s): threonine deaminase; L-serine dehydratase; serine deaminase; L-threonine dehydratase; threonine dehydrase; L-threonine deaminase; threonine dehydratase; L-threonine hydro-lyase (deaminating); L-threonine ammonia-lyase
Systematic name: L-threonine ammonia-lyase (2-oxobutanoate-forming)
Comments: Most enzymes that catalyse this reaction are pyridoxal-phosphate-dependent, although some enzymes contain an iron-sulfur cluster instead. The reaction catalysed by both types of enzymes involves the initial elimination of water to form an enamine intermediate (hence the enzyme’s original classification as EC 4.2.1.16, threonine dehydratase), followed by tautomerization to an imine form and hydrolysis of the C-N bond [3,5]. The latter reaction, which can occur spontaneously, is also be catalysed by EC 3.5.99.10, 2-iminobutanoate/2-iminopropanoate deaminase [5]. The enzymes from a number of sources also act on L-serine, cf. EC 4.3.1.17, L-serine ammonia-lyase.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, Gene, KEGG, PDB, CAS registry number: 774231-81-1
References:
1.  Cohn, M.S. and Phillips, A.T. Purification and characterization of a B6-independent threonine dehydratase from Pseudomonas putida. Biochemistry 13 (1974) 1208–1214. [PMID: 4814721]
2.  Nishimura, J.S. and Greenberg, D.M. Purification and properties of L-threonine dehydrase of sheep liver. J. Biol. Chem. 236 (1961) 2684–2691. [PMID: 14479973]
3.  Phillips, A.T. and Wood, W.A. The mechanism of action of 5′-adenylic acid-activated threonine dehydrase. J. Biol. Chem. 240 (1965) 4703–4709. [PMID: 5321308]
4.  Shizuta, Y., Nakazawa, A., Tokushige, M. and Hayaishi, O. Studies on the interaction between regulatory enzymes and effectors. 3. Crystallization and characterization of adenosine 5′-monophosphate-dependent threonine deaminase from Escherichia coli. J. Biol. Chem. 244 (1969) 1883–1889. [PMID: 4889010]
5.  Lambrecht, J.A., Flynn, J.M. and Downs, D.M. Conserved YjgF protein family deaminates reactive enamine/imine intermediates of pyridoxal 5′-phosphate (PLP)-dependent enzyme reactions. J. Biol. Chem. 287 (2012) 3454–3461. [DOI] [PMID: 22094463]
[EC 4.3.1.19 created 1961 as EC 4.2.1.16, transferred 2001 to EC 4.3.1.19, modified 2014]
 
 
EC 4.3.1.29
Accepted name: D-glucosaminate-6-phosphate ammonia-lyase
Reaction: 2-amino-2-deoxy-D-gluconate 6-phosphate = 2-dehydro-3-deoxy-6-phospho-D-gluconate + NH3
Other name(s): DgaE; 6-phospho-D-glucosaminate ammonia-lyase (2-dehydro-3-deoxy-6-phospho-D-gluconate-forming)
Systematic name: 2-amino-2-deoxy-D-gluconate 6-phosphate ammonia-lyase (2-dehydro-3-deoxy-6-phospho-D-gluconate-forming)
Comments: The enzyme, from the bacterium Salmonella typhimurium, is involved in the degradation pathway of 2-amino-2-deoxy-D-gluconate.
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Miller, K.A., Phillips, R.S., Mrazek, J. and Hoover, T.R. Salmonella utilizes D-glucosaminate via a mannose family phosphotransferase system permease and associated enzymes. J. Bacteriol. 195 (2013) 4057–4066. [DOI] [PMID: 23836865]
[EC 4.3.1.29 created 2013]
 
 
EC 4.3.1.30
Accepted name: dTDP-4-amino-4,6-dideoxy-D-glucose ammonia-lyase
Reaction: dTDP-4-amino-4,6-dideoxy-α-D-glucopyranose + S-adenosyl-L-methionine + reduced acceptor = dTDP-3-dehydro-4,6-dideoxy-α-D-glucopyranose + NH3 + L-methionine + 5′-deoxyadenosine + acceptor
For diagram of dTDP-D-desosamine biosynthesis, click here
Other name(s): desII (gene name); eryCV (gene name); MegCV
Systematic name: dTDP-4-amino-4,6-dideoxy-α-D-glucopyranose ammonia lyase (dTDP-3-dehydro-4,6-dideoxy-α-D-glucopyranose-forming)
Comments: The enzyme, which is a member of the ’AdoMet radical’ (radical SAM) family, is involved in biosynthesis of TDP-α-D-desosamine. The reaction starts by the transfer of an electron from the reduced form of the enzyme’s [4Fe-4S] cluster to S-adenosyl-L-methionine, spliting it into methionine and the radical 5-deoxyadenosin-5′-yl, which attacks the sugar substrate.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Szu, P.H., Ruszczycky, M.W., Choi, S.H., Yan, F. and Liu, H.W. Characterization and mechanistic studies of DesII: a radical S-adenosyl-L-methionine enzyme involved in the biosynthesis of TDP-D-desosamine. J. Am. Chem. Soc. 131 (2009) 14030–14042. [DOI] [PMID: 19746907]
2.  Ruszczycky, M.W., Choi, S.H. and Liu, H.W. Stoichiometry of the redox neutral deamination and oxidative dehydrogenation reactions catalyzed by the radical SAM enzyme DesII. J. Am. Chem. Soc. 132 (2010) 2359–2369. [DOI] [PMID: 20121093]
3.  Ruszczycky, M.W., Choi, S.H., Mansoorabadi, S.O. and Liu, H.W. Mechanistic studies of the radical S-adenosyl-L-methionine enzyme DesII: EPR characterization of a radical intermediate generated during its catalyzed dehydrogenation of TDP-D-quinovose. J. Am. Chem. Soc. 133 (2011) 7292–7295. [DOI] [PMID: 21513273]
[EC 4.3.1.30 created 2011]
 
 
*EC 4.3.2.3
Accepted name: ureidoglycolate lyase
Reaction: (S)-ureidoglycolate = glyoxylate + urea
For diagram of AMP catabolism, click here
Other name(s): ureidoglycolatase (ambiguous); ureidoglycolase (ambiguous); ureidoglycolate hydrolase (misleading); (S)-ureidoglycolate urea-lyase
Systematic name: (S)-ureidoglycolate urea-lyase (glyoxylate-forming)
Comments: This microbial enzyme is involved in the degradation of ureidoglycolate, an intermediate of purine degradation. Not to be confused with EC 3.5.1.116, ureidoglycolate amidohydrolase, which releases ammonia rather than urea.
Links to other databases: BRENDA, EXPASY, Gene, GTD, KEGG, PDB, CAS registry number: 9014-57-7
References:
1.  Trijbels, F. and Vogels, G.D. Allantoate and ureidoglycolate degradation by Pseudomonas aeruginosa. Biochim. Biophys. Acta 132 (1967) 115–126. [DOI] [PMID: 6030341]
2.  Werner, A.K., Romeis, T. and Witte, C.P. Ureide catabolism in Arabidopsis thaliana and Escherichia coli. Nat. Chem. Biol. 6 (2010) 19–21. [DOI] [PMID: 19935661]
[EC 4.3.2.3 created 1972, modified 2014]
 
 
EC 4.6.1.16
Accepted name: tRNA-intron lyase
Reaction: pretRNA = a 3′-half-tRNA molecule with a 5′-OH end + a 5′-half-tRNA molecule with a 2′,3′-cyclic phosphate end + an intron with a 2′,3′-cyclic phosphate and a 5′-hydroxyl terminus
Other name(s): transfer ribonucleate intron endoribonuclease; tRNA splicing endonuclease; splicing endonuclease; tRNATRPintron endonuclease; transfer splicing endonuclease
Systematic name: pretRNA lyase (intron-removing; cyclic-2′,3′-phosphate-forming)
Comments: The enzyme catalyses the final stage in the maturation of tRNA molecules.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB, CAS registry number: 117444-13-0
References:
1.  Attardi, D.G., Margarit, I. and Tocchini-Valentini, G.P. Structural alterations in mutant precursors of the yeast tRNALeu3 gene which behave as defective substrates for a highly purified splicing endoribonuclease. EMBO J. 4 (1985) 3289–3297. [PMID: 3937725]
2.  Peebles, C.L., Gegenheimer, P. and Abelson, J. Precise excision of intervening sequences from precursor tRNAs by a membrane-associated yeast endonuclease. Cell 32 (1983) 525–536. [DOI] [PMID: 6186398]
3.  Thompson, L.D., Brandon, L.D., Nieuwlandt, D.T. and Daniels, C.J. Transfer RNA intron processing in the halophilic archaebacteria. Can. J. Microbiol. 35 (1989) 36–42. [PMID: 2470486]
4.  Thompson, L.D. and Daniels, C.J. A tRNA(Trp) intron endonuclease from Halobacterium volcanii. Unique substrate recognition properties. J. Biol. Chem. 263 (1988) 17951–17959. [PMID: 3192521]
[EC 4.6.1.16 created 1992 as EC 3.1.27.9, transferred 2014 to EC 4.6.1.16]
 
 
EC 5.1.3.27
Accepted name: dTDP-4-dehydro-6-deoxy-D-glucose 3-epimerase
Reaction: dTDP-4-dehydro-6-deoxy-α-D-glucose = dTDP-4-dehydro-6-deoxy-α-D-gulose
For diagram of dTDP-6-deoxy-α-D-allose biosynthesis, click here and for diagram of dTDP-6-deoxyhexose biosynthesis, click here
Glossary: dTDP-4-dehydro-6-deoxy-α-D-gulose = dTDP-4-dehydro-6-deoxy-α-D-allose
Other name(s): dTDP-deoxyglucose 3-epimerase; dTDP-4-keto-6-deoxy-D-glucose 3-epimerase; dTDP-4-keto-6-deoxyglucose 3-epimerase; gerF (gene name); tylJ (gene name); chmJ (gene name); mydH (gene name)
Systematic name: dTDP-4-dehydro-6-deoxy-α-D-glucose 3-epimerase
Comments: The enzyme is involved in the biosynthetic pathway of dTDP-6-deoxy-α-D-allose, which is converted to mycinose after attachment to the aglycones of several macrolide antibiotics, including tylosin, chalcomycin, dihydrochalcomycin, and mycinamicin II.
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Sohng, J.K., Kim, H.J., Nam, D.H., Lim, D.O., Han, J.M., Lee, H.J. and Yoo, J.C. Cloning, expression, and biological function of a dTDP-deoxyglucose epimerase (gerF) gene from Streptomyces sp. GERI-155. Biotechnol. Lett. 26 (2004) 185–191. [PMID: 15049360]
2.  Thuy, T.T., Liou, K., Oh, T.J., Kim, D.H., Nam, D.H., Yoo, J.C. and Sohng, J.K. Biosynthesis of dTDP-6-deoxy-β-D-allose, biochemical characterization of dTDP-4-keto-6-deoxyglucose reductase (GerKI) from Streptomyces sp. KCTC 0041BP. Glycobiology 17 (2007) 119–126. [DOI] [PMID: 17053005]
3.  Kubiak, R.L., Phillips, R.K., Zmudka, M.W., Ahn, M.R., Maka, E.M., Pyeatt, G.L., Roggensack, S.J. and Holden, H.M. Structural and functional studies on a 3′-epimerase involved in the biosynthesis of dTDP-6-deoxy-D-allose. Biochemistry 51 (2012) 9375–9383. [DOI] [PMID: 23116432]
[EC 5.1.3.27 created 2013]
 
 
EC 5.1.3.28
Accepted name: UDP-N-acetyl-L-fucosamine synthase
Reaction: UDP-2-acetamido-2,6-dideoxy-β-L-talose = UDP-N-acetyl-β-L-fucosamine
For diagram of UDP-N-acetyl-β-L-fucosamine biosynthesis, click here
Glossary: UDP-2-acetamido-2,6-dideoxy-β-L-talose = UDP-N-acetyl-β-L-pneumosamine
Other name(s): WbjD; Cap5G
Systematic name: UDP-2-acetamido-2,6-dideoxy-β-L-talose 2-epimerase
Comments: Isolated from the bacteria Pseudomonas aeruginosa and Staphylococcus aureus. Involved in bacterial polysaccharide biosynthesis.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Kneidinger, B., O'Riordan, K., Li, J., Brisson, J.R., Lee, J.C. and Lam, J.S. Three highly conserved proteins catalyze the conversion of UDP-N-acetyl-D-glucosamine to precursors for the biosynthesis of O antigen in Pseudomonas aeruginosa O11 and capsule in Staphylococcus aureus type 5. Implications for the UDP-N-acetyl-L-fucosamine biosynthetic pathway. J. Biol. Chem. 278 (2003) 3615–3627. [DOI] [PMID: 12464616]
2.  Mulrooney, E.F., Poon, K.K., McNally, D.J., Brisson, J.R. and Lam, J.S. Biosynthesis of UDP-N-acetyl-L-fucosamine, a precursor to the biosynthesis of lipopolysaccharide in Pseudomonas aeruginosa serotype O11. J. Biol. Chem. 280 (2005) 19535–19542. [DOI] [PMID: 15778500]
[EC 5.1.3.28 created 2014]
 
 
*EC 5.3.1.3
Accepted name: D-arabinose isomerase
Reaction: D-arabinose = D-ribulose
For diagram of D-arabinose catabolism, click here
Other name(s): D-arabinose(L-fucose) isomerase; L-fucose isomerase; D-arabinose ketol-isomerase; arabinose isomerase (misleading)
Systematic name: D-arabinose aldose-ketose-isomerase
Comments: Requires a divalent metal ion (the enzyme from the bacterium Escherichia coli prefers Mn2+). The enzyme binds the closed form of the sugar and catalyses ring opening to generate a form of open-chain conformation that facilitates the isomerization reaction, which proceeds via an ene-diol mechanism [3]. The enzyme catalyses the aldose-ketose isomerization of several sugars. Most enzymes also catalyse the reaction of EC 5.3.1.25, L-fucose isomerase [3]. The enzyme from the bacterium Falsibacillus pallidus also converts D-altrose to D-psicose [4]. cf. EC 5.3.1.4, L-arabinose isomerase.
Links to other databases: BRENDA, EXPASY, Gene, GTD, KEGG, PDB, CAS registry number: 9023-81-8
References:
1.  Cohen, S.S. Studies on D-ribulose and its enzymatic conversion to D-arabinose. J. Biol. Chem. 201 (1953) 71–84. [PMID: 13044776]
2.  Green, M. and Cohen, S.S. Enzymatic conversion of L-fucose to L-fuculose. J. Biol. Chem. 219 (1956) 557–568. [PMID: 13319278]
3.  Seemann, J.E. and Schulz, G.E. Structure and mechanism of L-fucose isomerase from Escherichia coli. J. Mol. Biol. 273 (1997) 256–268. [DOI] [PMID: 9367760]
4.  Takeda, K., Yoshida, H., Izumori, K. and Kamitori, S. X-ray structures of Bacillus pallidus D-arabinose isomerase and its complex with L-fucitol. Biochim. Biophys. Acta 1804 (2010) 1359–1368. [DOI] [PMID: 20123133]
[EC 5.3.1.3 created 1961, modified 2013]
 
 
EC 5.3.1.30
Accepted name: 5-deoxy-glucuronate isomerase
Reaction: 5-deoxy-D-glucuronate = 5-dehydro-2-deoxy-D-gluconate
For diagram of inositol catabolism, click here
Glossary: 5-dehydro-2-deoxy-D-gluconate = 2-deoxy-D-threo-hex-5-ulosonic acid
5-deoxy-D-glucuronate = 5-deoxy-D-xylo-hexuronic acid
Other name(s): 5DG isomerase; IolB
Systematic name: 5-deoxy-D-glucuronate aldose-ketose-isomerase
Comments: The enzyme, found in the bacterium Bacillus subtilis, is part of a myo-inositol degradation pathway leading to acetyl-CoA.
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Yoshida, K., Yamaguchi, M., Morinaga, T., Kinehara, M., Ikeuchi, M., Ashida, H. and Fujita, Y. myo-Inositol catabolism in Bacillus subtilis. J. Biol. Chem. 283 (2008) 10415–10424. [DOI] [PMID: 18310071]
[EC 5.3.1.30 created 2014]
 
 
EC 5.3.99.11
Accepted name: 2-keto-myo-inositol isomerase
Reaction: 2,4,6/3,5-pentahydroxycyclohexanone = 2D-2,3,5/4,6-pentahydroxycyclohexanone
For diagram of inositol catabolism, click here
Glossary: 2,4,6/3,5-pentahydroxycyclohexanone = (2R,3S,4s,5R,6S)-2,3,4,5,6-pentahydroxycyclohexanone = scyllo-inosose
Other name(s): IolI; inosose isomerase; 2KMI isomerase.
Systematic name: 2,4,6/3,5-pentahydroxycyclohexanone 2-isomerase
Comments: Requires a divalent metal ion for activity. Mn2+, Fe2+ and Co2+ can be used. The enzyme, found in the bacterium Bacillus subtilis, is part of the myo-inositol/D-chiro-inositol degradation pathway leading to acetyl-CoA.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Zhang, R.G., Dementieva, I., Duke, N., Collart, F., Quaite-Randall, E., Alkire, R., Dieckman, L., Maltsev, N., Korolev, O. and Joachimiak, A. Crystal structure of Bacillus subtilis ioli shows endonuclase IV fold with altered Zn binding. Proteins 48 (2002) 423–426. [DOI] [PMID: 12112707]
2.  Yoshida, K., Yamaguchi, M., Morinaga, T., Ikeuchi, M., Kinehara, M. and Ashida, H. Genetic modification of Bacillus subtilis for production of D-chiro-inositol, an investigational drug candidate for treatment of type 2 diabetes and polycystic ovary syndrome. Appl. Environ. Microbiol. 72 (2006) 1310–1315. [DOI] [PMID: 16461681]
[EC 5.3.99.11 created 2014]
 
 
EC 5.4.1.2
Transferred entry: precorrin-8X methylmutase. Now EC 5.4.99.61, precorrin-8X methylmutase
[EC 5.4.1.2 created 1999, deleted 2014]
 
 
EC 5.4.1.3
Accepted name: 2-methylfumaryl-CoA isomerase
Reaction: 2-methylfumaryl-CoA = 3-methylfumaryl-CoA
For diagram of the 3-hydroxypropanoate cycle, click here
Glossary: 2-methylfumaryl-CoA = (E)-3-carboxy-2-methylprop-2-enoyl-CoA
3-methylfumaryl-CoA = (E)-3-carboxybut-2-enoyl-CoA
Other name(s): mesaconyl-CoA C1-C4 CoA transferase; Mct
Systematic name: 2-methylfumaryl-CoA 1,4-CoA-mutase
Comments: The enzyme, purified from the bacterium Chloroflexus aurantiacus, acts as an intramolecular CoA transferase and does not transfer CoA to free mesaconate. It is part of the 3-hydroxypropanoate cycle for carbon assimilation.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Zarzycki, J., Brecht, V., Muller, M. and Fuchs, G. Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus. Proc. Natl. Acad. Sci. USA 106 (2009) 21317–21322. [DOI] [PMID: 19955419]
[EC 5.4.1.3 created 2014]
 
 
EC 5.4.99.60
Accepted name: cobalt-precorrin-8 methylmutase
Reaction: cobalt-precorrin-8 = cobyrinate
For diagram of anaerobic corrin biosynthesis (part 2), click here
Other name(s): cbiC (gene name)
Systematic name: precorrin-8 11,12-methylmutase
Comments: The enzyme, which participates in the anaerobic (early cobalt insertion) adenosylcobalamin biosynthesis pathway, catalyses the conversion of cobalt-precorrin-8 to cobyrinate by methyl rearrangement. The equivalent enzyme in the aerobic pathway is EC 5.4.99.61, precorrin-8X methylmutase.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Roessner, C.A., Warren, M.J., Santander, P.J., Atshaves, B.P., Ozaki, S., Stolowich, N.J., Iida, K., Scott, A.I. Expression of Salmonella typhimurium enzymes for cobinamide synthesis. Identification of the 11-methyl and 20-methyl transferases of corrin biosynthesis. FEBS Lett. 301 (1992) 73–78. [DOI] [PMID: 1451790]
2.  Roth, J.R., Lawrence, J.G., Rubenfield, M., Kieffer-Higgins, S., Church, G.M. Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium. J. Bacteriol. 175 (1993) 3303–3316. [DOI] [PMID: 8501034]
3.  Xue, Y., Wei, Z., Li, X. and Gong, W. The crystal structure of putative precorrin isomerase CbiC in cobalamin biosynthesis. J. Struct. Biol. 153 (2006) 307–311. [DOI] [PMID: 16427313]
4.  Moore, S.J., Lawrence, A.D., Biedendieck, R., Deery, E., Frank, S., Howard, M.J., Rigby, S.E. and Warren, M.J. Elucidation of the anaerobic pathway for the corrin component of cobalamin (vitamin B12). Proc. Natl. Acad. Sci. USA 110 (2013) 14906–14911. [DOI] [PMID: 23922391]
[EC 5.4.99.60 created 2014]
 
 
EC 5.4.99.61
Accepted name: precorrin-8X methylmutase
Reaction: precorrin-8X = hydrogenobyrinate
For diagram of corrin biosynthesis (part 4), click here
Other name(s): precorrin isomerase; hydrogenobyrinic acid-binding protein; cobH (gene name)
Systematic name: precorrin-8X 11,12-methylmutase
Comments: The enzyme, which participates in the aerobic (late cobalt insertion) adenosylcobalamin biosynthesis pathway, catalyses the conversion of precorrin-8X to hydrogenobyrinate by methyl rearrangement. The equivalent enzyme in the anaerobic pathway is EC 5.4.99.60, cobalt-precorrin-8 methylmutase.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB, CAS registry number: 138238-71-8
References:
1.  Thibaut, D., Couder, M., Famechon, A., Debussche, L., Cameron, B., Crouzet, J., Blanche, F. The final step in the biosynthesis of hydrogenobyrinic acid is catalyzed by the cobH gene product with precorrin-8X as the substrate. J. Bacteriol. 174 (1992) 1043–1049. [DOI] [PMID: 1732194]
2.  Crouzet, J., Cameron, B., Cauchois, L., Rigault, S., Rouyez, M.C., Blanche, F. , Thibaut D., Debussche, L. Genetic and sequence analysis of an 8.7-kilobase Pseudomonas denitrificans fragment carrying eight genes involved in transformation of precorrin-2 to cobyrinic acid. J. Bacteriol. 172 (1990) 5980–5990. [DOI] [PMID: 2211521]
3.  Shipman, L.W., Li, D., Roessner, C.A., Scott, A.I. and Sacchettini, J.C. Crystal structure of precorrin-8x methyl mutase. Structure 9 (2001) 587–596. [DOI] [PMID: 11470433]
[EC 5.4.99.61 created 1999 as EC 5.4.1.2, transferred 2014 to EC 5.4.99.61]
 
 
EC 5.5.1.24
Accepted name: tocopherol cyclase
Reaction: (1) δ-tocopherol = 2-methyl-6-phytylbenzene-1,4-diol
(2) γ-tocopherol = 2,3-dimethyl-6-phytylbenzene-1,4-diol
(3) δ-tocotrienol = 6-geranylgeranyl-2-methylbenzene-1,4-diol
(4) γ-tocotrienol = 6-geranylgeranyl-2,3-dimethylbenzene-1,4-diol
For diagram of tocopherol biosynthesis, click here and for diagram of tocotrienol biosynthesis, click here
Other name(s): VTE1 (gene name); SXD1 (gene name); δ/γ-tocopherol lyase (decyclizing)
Systematic name: δ/γ-tocopherol lyase (ring-opening)
Comments: The enzyme has been described from plants and cyanobacteria. It has similar activity with all four listed benzoquinol substrates. Involved in the biosynthesis of vitamin E (tocopherols and tocotrienols).
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Porfirova, S., Bergmuller, E., Tropf, S., Lemke, R. and Dormann, P. Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc. Natl. Acad. Sci. USA 99 (2002) 12495–12500. [DOI] [PMID: 12213958]
2.  Sattler, S.E., Cahoon, E.B., Coughlan, S.J. and DellaPenna, D. Characterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function. Plant Physiol. 132 (2003) 2184–2195. [DOI] [PMID: 12913173]
[EC 5.5.1.24 created 2013]
 
 
EC 6.2.1.40
Accepted name: 4-hydroxybutyrate—CoA ligase (AMP-forming)
Reaction: ATP + 4-hydroxybutanoate + CoA = AMP + diphosphate + 4-hydroxybutanoyl-CoA
For diagram of the 3-hydroxypropanoate/4-hydroxybutanoate cycle and dicarboxylate/4-hydroxybutanoate cycle in archaea, click here
Other name(s): 4-hydroxybutyrate-CoA synthetase (ambiguous); 4-hydroxybutyrate:CoA ligase (ambiguous); hbs (gene name); 4-hydroxybutyrate—CoA ligase
Systematic name: 4-hydroxybutanoate:CoA ligase (AMP-forming)
Comments: Isolated from the archaeon Metallosphaera sedula. Involved in the 3-hydroxypropanoate/4-hydroxybutanoate cycle. cf. EC 6.2.1.56, 4-hydroxybutyrate—CoA ligase (ADP-forming).
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Ramos-Vera, W.H., Weiss, M., Strittmatter, E., Kockelkorn, D. and Fuchs, G. Identification of missing genes and enzymes for autotrophic carbon fixation in crenarchaeota. J. Bacteriol. 193 (2011) 1201–1211. [DOI] [PMID: 21169482]
2.  Hawkins, A.S., Han, Y., Bennett, R.K., Adams, M.W. and Kelly, R.M. Role of 4-hydroxybutyrate-CoA synthetase in the CO2 fixation cycle in thermoacidophilic archaea. J. Biol. Chem. 288 (2013) 4012–4022. [DOI] [PMID: 23258541]
[EC 6.2.1.40 created 2014, modified 2019]
 
 
EC 6.3.1.17
Accepted name: β-citrylglutamate synthase
Reaction: ATP + citrate + L-glutamate = ADP + phosphate + β-citryl-L-glutamate
Other name(s): NAAG synthetase I; NAAGS-I; RIMKLB (gene name) (ambiguous)
Systematic name: citrate:L-glutamate ligase (ADP-forming)
Comments: The enzyme, found in animals, also has the activity of EC 6.3.2.41, N-acetylaspartylglutamate synthase.
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Collard, F., Stroobant, V., Lamosa, P., Kapanda, C.N., Lambert, D.M., Muccioli, G.G., Poupaert, J.H., Opperdoes, F. and Van Schaftingen, E. Molecular identification of N-acetylaspartylglutamate synthase and β-citrylglutamate synthase. J. Biol. Chem. 285 (2010) 29826–29833. [DOI] [PMID: 20657015]
[EC 6.3.1.17 created 2014]
 
 
EC 6.3.2.41
Accepted name: N-acetylaspartylglutamate synthase
Reaction: ATP + N-acetyl-L-aspartate + L-glutamate = ADP + phosphate + N-acetyl-L-aspartyl-L-glutamate
Other name(s): N-acetylaspartylglutamate synthetase; NAAG synthetase; NAAGS; RIMKLA (gene name) (ambiguous); RIMKLB (gene name) (ambiguous)
Systematic name: N-acetyl-L-aspartate:L-glutamate ligase (ADP, N-acetyl-L-aspartyl-L-glutamate-forming)
Comments: The enzyme, found in animals, produces the neurotransmitter N-acetyl-L-aspartyl-L-glutamate. One isoform also has the activity of EC 6.3.1.17, β-citrylglutamate synthase [2], while another isoform has the activity of EC 6.3.2.42, N-acetylaspartylglutamylglutamate synthase [3].
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Becker, I., Lodder, J., Gieselmann, V. and Eckhardt, M. Molecular characterization of N-acetylaspartylglutamate synthetase. J. Biol. Chem. 285 (2010) 29156–29164. [DOI] [PMID: 20643647]
2.  Collard, F., Stroobant, V., Lamosa, P., Kapanda, C.N., Lambert, D.M., Muccioli, G.G., Poupaert, J.H., Opperdoes, F. and Van Schaftingen, E. Molecular identification of N-acetylaspartylglutamate synthase and β-citrylglutamate synthase. J. Biol. Chem. 285 (2010) 29826–29833. [DOI] [PMID: 20657015]
3.  Lodder-Gadaczek, J., Becker, I., Gieselmann, V., Wang-Eckhardt, L. and Eckhardt, M. N-acetylaspartylglutamate synthetase II synthesizes N-acetylaspartylglutamylglutamate. J. Biol. Chem. 286 (2011) 16693–16706. [DOI] [PMID: 21454531]
[EC 6.3.2.41 created 2014]
 
 
EC 6.3.2.42
Accepted name: N-acetylaspartylglutamylglutamate synthase
Reaction: 2 ATP + N-acetyl-L-aspartate + 2 L-glutamate = 2 ADP + 2 phosphate + N-acetyl-L-aspartyl-L-glutamyl-L-glutamate
Other name(s): N-acetylaspartylglutamylglutamate synthetase; NAAG(2) synthase; NAAG synthetase II; NAAGS-II; RIMKLA (gene name) (ambiguous)
Systematic name: N-acetyl-L-aspartate:L-glutamate ligase (ADP, N-acetyl-L-aspartyl-L-glutamyl-L-glutamate-forming)
Comments: The enzyme, found in mammals, also has the activity of EC 6.3.2.41, N-acetylaspartylglutamate synthase.
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Lodder-Gadaczek, J., Becker, I., Gieselmann, V., Wang-Eckhardt, L. and Eckhardt, M. N-acetylaspartylglutamate synthetase II synthesizes N-acetylaspartylglutamylglutamate. J. Biol. Chem. 286 (2011) 16693–16706. [DOI] [PMID: 21454531]
[EC 6.3.2.42 created 2014]
 
 


Data © 2001–2025 IUBMB
Web site © 2005–2025 Andrew McDonald