The Enzyme Database

Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB)

Proposed Changes to the Enzyme List

The entries below are proposed additions and amendments to the Enzyme Nomenclature list. They were prepared for the NC-IUBMB by Kristian Axelsen, Ron Caspi, Ture Damhus, Shinya Fushinobu, Julia Hauenstein, Antje Jäde, Ingrid Keseler, Masaaki Kotera, Andrew McDonald, Gerry Moss, Ida Schomburg and Keith Tipton. Comments and suggestions on these draft entries should be sent to Dr Andrew McDonald (Department of Biochemistry, Trinity College Dublin, Dublin 2, Ireland). The date on which an enzyme will be made official is appended after the EC number. To prevent confusion please do not quote new EC numbers until they are incorporated into the main list.

An asterisk before 'EC' indicates that this is an amendment to an existing enzyme rather than a new enzyme entry.


Contents

*EC 1.1.1.348 (3R)-2′-hydroxyisoflavanone reductase
EC 1.1.1.412 2-alkyl-3-oxoalkanoate reductase
EC 1.1.1.413 A-factor type γ-butyrolactone 1′-reductase (1S-forming)
EC 1.1.5.6 transferred
EC 1.1.99.33 transferred
EC 1.1.99.41 3-hydroxy-1,2-didehydro-2,3-dihydrotabersonine reductase
EC 1.2.1.2 transferred
EC 1.2.1.43 transferred
EC 1.2.1.93 transferred
EC 1.2.2.3 transferred
EC 1.2.99.9 transferred
EC 1.5.5.3 hydroxyproline dehydrogenase
EC 1.5.98.3 coenzyme F420:methanophenazine dehydrogenase
EC 1.8.1.20 4,4′-dithiodibutanoate disulfide reductase
EC 1.8.3.7 formylglycine-generating enzyme
*EC 1.10.3.14 ubiquinol oxidase (electrogenic, non H+-transporting)
EC 1.13.11.83 4-hydroxy-3-prenylphenylpyruvate oxygenase
*EC 1.13.12.5 Renilla-type luciferase
EC 1.13.12.23 4-hydroxy-3-prenylbenzoate synthase
*EC 1.14.11.2 procollagen-proline 4-dioxygenase
EC 1.14.13.48 transferred
EC 1.14.13.49 transferred
EC 1.14.13.72 transferred
EC 1.14.13.80 transferred
EC 1.14.13.237 aliphatic glucosinolate S-oxygenase
EC 1.14.13.238 dimethylamine monooxygenase
EC 1.14.14.48 jasmonoyl-L-amino acid 12-hydroxylase
EC 1.14.14.49 12-hydroxyjasmonoyl-L-amino acid 12-hydroxylase
EC 1.14.14.50 tabersonine 3-oxygenase
EC 1.14.14.51 (S)-limonene 6-monooxygenase
EC 1.14.14.52 (S)-limonene 7-monooxygenase
EC 1.14.14.53 (R)-limonene 6-monooxygenase
EC 1.14.14.54 phenylacetate 2-hydroxylase
EC 1.14.15.23 chloroacetanilide N-alkylformylase
EC 1.14.18.9 4α-methylsterol monooxygenase
EC 1.14.19.52 camalexin synthase
EC 1.14.99.58 heme oxygenase (biliverdin-IX-β and δ-forming)
EC 1.16.3.3 manganese oxidase
EC 1.17.1.9 formate dehydrogenase
EC 1.17.1.10 formate dehydrogenase (NADP+)
EC 1.17.1.11 formate dehydrogenase (NAD+, ferredoxin)
EC 1.17.2.3 formate dehydrogenase (cytochrome-c-553)
EC 1.17.5.3 formate dehydrogenase-N
EC 1.17.98.3 formate dehydrogenase (coenzyme F420)
EC 1.17.99.7 formate dehydrogenase (acceptor)
EC 2.1.1.343 8-amino-8-demethylriboflavin N,N-dimethyltransferase
EC 2.1.1.344 ornithine lipid N-methyltransferase
EC 2.3.1.265 phosphatidylinositol dimannoside acyltransferase
EC 2.3.2.4 transferred
EC 2.3.2.30 L-ornithine Nα-acyltransferase
*EC 2.4.1.52 poly(glycerol-phosphate) α-glucosyltransferase
*EC 2.4.1.150 N-acetyllactosaminide β-1,6-N-acetylglucosaminyltransferase
EC 2.4.1.164 transferred
EC 2.4.1.347 α,α-trehalose-phosphate synthase (ADP-forming)
EC 2.5.1.141 heme o synthase
EC 2.7.1.218 fructoselysine 6-kinase
EC 2.7.1.219 D-threonate 4-kinase
EC 2.7.1.220 D-erythronate 4-kinase
EC 2.7.1.221 N-acetylmuramate 1-kinase
EC 2.7.7.98 transferred
EC 2.7.7.99 N-acetyl-α-D-muramate 1-phosphate uridylyltransferase
*EC 2.8.2.24 aromatic desulfoglucosinolate sulfotransferase
EC 2.8.2.38 aliphatic desulfoglucosinolate sulfotransferase
EC 2.8.2.39 hydroxyjasmonate sulfotransferase
EC 3.1.3.105 N-acetyl-D-muramate 6-phosphate phosphatase
EC 3.1.4.58 RNA 2′,3′-cyclic 3′-phosphodiesterase
EC 3.1.7.7 transferred
EC 3.1.7.12 (+)-kolavelool synthase
*EC 3.2.1.130 glycoprotein endo-α-1,2-mannosidase
EC 3.2.1.204 1,3-α-isomaltosidase
EC 3.2.1.205 isomaltose glucohydrolase
EC 3.4.19.16 glucosinolate γ-glutamyl hydrolase
EC 3.13.1.6 [CysO sulfur-carrier protein]-S-L-cysteine hydrolase
EC 4.2.1.172 trans-4-hydroxy-L-proline dehydratase
EC 4.2.1.173 ent-8α-hydroxylabd-13-en-15-yl diphosphate synthase
EC 4.2.1.174 peregrinol diphosphate synthase
EC 4.2.3.157 (+)-isoafricanol synthase
EC 4.2.3.158 (–)-spiroviolene synthase
EC 4.2.3.159 tsukubadiene synthase
EC 4.2.3.160 (2S,3R,6S,9S)-(–)-protoillud-7-ene synthase
EC 4.2.3.161 (3S)-(+)-asterisca-2(9),6-diene synthase
EC 4.2.3.162 (–)-α-amorphene synthase
EC 4.2.3.163 (+)-corvol ether B synthase
EC 4.2.3.164 (+)-eremophilene synthase
EC 4.2.3.165 (1R,4R,5S)-(–)-guaia-6,10(14)-diene synthase
EC 4.2.3.166 (+)-(1E,4E,6S,7R)-germacra-1(10),4-dien-6-ol synthase
EC 4.2.3.167 dolabella-3,7-dien-18-ol synthase
EC 4.2.3.168 dolathalia-3,7,11-triene synthase
EC 4.2.3.169 7-epi-α-eudesmol synthase
EC 4.2.3.170 4-epi-cubebol synthase
EC 4.2.3.171 (+)-corvol ether A synthase
EC 4.2.3.172 10-epi-juneol synthase
EC 4.2.3.173 τ-cadinol synthase
EC 4.2.3.174 (2E,6E)-hedycaryol synthase
EC 4.2.3.175 10-epi-cubebol synthase
EC 4.2.3.176 sesterfisherol synthase
EC 4.2.3.177 β-thujene synthase
EC 4.2.3.178 stellata-2,6,19-triene synthase
EC 4.2.3.179 guaia-4,6-diene synthase
EC 4.2.3.180 pseudolaratriene synthase
EC 4.2.3.181 selina-4(15),7(11)-diene synthase
EC 4.2.3.182 pristinol synthase
EC 4.2.3.183 nezukol synthase
EC 4.2.3.184 5-hydroxy-α-gurjunene synthase
EC 4.2.3.185 ent-atiserene synthase
EC 4.2.3.186 ent-13-epi-manoyl oxide synthase
EC 4.2.3.187 (2Z,6E)-hedycaryol synthase
EC 4.2.3.188 β-geranylfarnesene synthase
EC 4.2.3.189 9,13-epoxylabd-14-ene synthase
EC 4.2.3.190 manoyl oxide synthase
EC 4.2.3.191 cycloaraneosene synthase
EC 4.2.3.192 labda-7,13(16),14-triene synthase
EC 4.2.3.193 (12E)-labda-8(17),12,14-triene synthase
EC 4.2.3.194 (–)-drimenol synthase
EC 4.3.2.7 glutathione-specific γ-glutamylcyclotransferase
EC 4.3.2.8 γ-glutamylamine cyclotransferase
EC 4.3.2.9 γ-glutamylcyclotransferase
EC 4.4.1.36 hercynylcysteine S-oxide lyase
EC 5.4.4.8 linalool isomerase
EC 5.4.99.65 pre-α-onocerin synthase
EC 5.4.99.66 α-onocerin synthase
EC 5.5.1.28 (–)-kolavenyl diphosphate synthase
EC 5.5.1.29 (+)-kolavenyl diphosphate synthase
EC 5.5.1.30 labda-7,13-dienyl diphosphate synthase
EC 6.1 Forming carbon-oxygen bonds
EC 6.1.3 Cyclo-ligases
EC 6.1.3.1 olefin β-lactone synthetase
EC 6.2.1.50 4-hydroxybenzoate adenylyltransferase FadD22


*EC 1.1.1.348
Accepted name: (3R)-2′-hydroxyisoflavanone reductase
Reaction: a (4R)-4,2′-dihydroxyisoflavan + NADP+ = a (3R)-2′-hydroxyisoflavanone + NADPH + H+
For diagram of medicarpin and formononetin derivatives biosynthesis, click here
Glossary: (3R)-vestitone = (3R)-2′,7-dihydroxy-4′-methoxyisoflavanone
Other name(s): vestitone reductase; pterocarpin synthase (incorrect); pterocarpan synthase (incorrect)
Systematic name: (3R)-2′-hydroxyisoflavanone:NADP+ 4-oxidoreductase
Comments: This plant enzyme participates in the biosynthesis of the pterocarpan phytoalexins medicarpin, maackiain, and several forms of glyceollin. The enzyme has a strict stereo specificity for the 3R-isoflavanones.
Links to other databases: BRENDA, EXPASY, KEGG, PDB, CAS registry number: 118477-70-6
References:
1.  Bless, W. and Barz, W. Isolation of pterocarpan synthase, the terminal enzyme of pterocarpan phytoalexin biosynthesis in cell-suspension cultures of Cicer arietinum. FEBS Lett. 235 (1988) 47–50.
2.  Guo, L., Dixon, R.A. and Paiva, N.L. Conversion of vestitone to medicarpin in alfalfa (Medicago sativa L.) is catalyzed by two independent enzymes. Identification, purification, and characterization of vestitone reductase and 7,2′-dihydroxy-4′-methoxyisoflavanol dehydratase. J. Biol. Chem. 269 (1994) 22372–22378. [PMID: 8071365]
3.  Guo, L., Dixon, R.A. and Paiva, N.L. The ‘pterocarpan synthase’ of alfalfa: association and co-induction of vestitone reductase and 7,2′-dihydroxy-4′-methoxy-isoflavanol (DMI) dehydratase, the two final enzymes in medicarpin biosynthesis. FEBS Lett. 356 (1994) 221–225. [DOI] [PMID: 7805842]
4.  Guo, L. and Paiva, N.L. Molecular cloning and expression of alfalfa (Medicago sativa L.) vestitone reductase, the penultimate enzyme in medicarpin biosynthesis. Arch. Biochem. Biophys. 320 (1995) 353–360. [DOI] [PMID: 7625843]
5.  Shao, H., Dixon, R.A. and Wang, X. Crystal structure of vestitone reductase from alfalfa (Medicago sativa L.). J. Mol. Biol. 369 (2007) 265–276. [DOI] [PMID: 17433362]
[EC 1.1.1.348 created 1992 as EC 1.1.1.246, part transferred 2013 to EC 1.1.1.348]
 
 
EC 1.1.1.412
Accepted name: 2-alkyl-3-oxoalkanoate reductase
Reaction: a (2R,3S)-2-alkyl-3-hydroxyalkanoate + NADP+ = an (R)-2-alkyl-3-oxoalkanoate + NADPH + H+
Other name(s): oleD (gene name)
Systematic name: (2R,3S)-2-alkyl-3-hydroxyalkanoate:NADP+ oxidoreductase
Comments: The enzyme, found in certain bacterial species, is part of a pathway for the production of olefins.
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Bonnett, S.A., Papireddy, K., Higgins, S., del Cardayre, S. and Reynolds, K.A. Functional characterization of an NADPH dependent 2-alkyl-3-ketoalkanoic acid reductase involved in olefin biosynthesis in Stenotrophomonas maltophilia. Biochemistry 50 (2011) 9633–9640. [DOI] [PMID: 21958090]
[EC 1.1.1.412 created 2017]
 
 
EC 1.1.1.413
Accepted name: A-factor type γ-butyrolactone 1′-reductase (1S-forming)
Reaction: a (3R,4R)-3-[(1S)-1-hydroxyalkyl]-4-(hydroxymethyl)oxolan-2-one + NADP+ = a (3R,4R)-3-alkanoyl-4-(hydroxymethyl)oxolan-2-one + NADPH + H+
Glossary: a (3R,4R)-3-[(1S)-1-hydroxyalkyl]-4-(hydroxymethyl)oxolan-2-one = a VB type γ-butyrolactone
a (3R,4R)-3-alkanoyl-4-(hydroxymethyl)oxolan-2-one = an A-factor type γ-butyrolactone
Other name(s): barS1 (gene name)
Systematic name: (3R,4R)-3-[(1S)-1-hydroxyalkyl]-4-(hydroxymethyl)oxolan-2-one:NADP+ 1′-oxidoreductase
Comments: The enzyme, which is found in bacteria that produce virginiae-butanolide (VB) type γ-butyrolactone autoregulators, reduces its substrate stereospecifically, forming a hydroxyl group in the (S) configuration.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Shikura, N., Yamamura, J. and Nihira, T. barS1, a gene for biosynthesis of a γ-butyrolactone autoregulator, a microbial signaling molecule eliciting antibiotic production in Streptomyces species. J. Bacteriol. 184 (2002) 5151–5157. [DOI] [PMID: 12193632]
[EC 1.1.1.413 created 2017]
 
 
EC 1.1.5.6
Transferred entry: formate dehydrogenase-N. Now EC 1.17.5.3, formate dehydrogenase-N
[EC 1.1.5.6 created 2010, deleted 2017]
 
 
EC 1.1.99.33
Transferred entry: formate dehydrogenase (acceptor). Now EC 1.17.99.7, formate dehydrogenase (acceptor)
[EC 1.1.99.33 created 2010, deleted 2017]
 
 
EC 1.1.99.41
Accepted name: 3-hydroxy-1,2-didehydro-2,3-dihydrotabersonine reductase
Reaction: (1) (3R)-3-hydroxy-16-methoxy-2,3-dihydrotabersonine + acceptor = (3R)-3-hydroxy-16-methoxy-1,2-didehydro-2,3-dihydrotabersonine + reduced acceptor
(2) (3R)-3-hydroxy-2,3-dihydrotabersonine + acceptor = (3R)-3-hydroxy-1,2-didehydro-2,3-dihydrotabersonine + reduced acceptor
For diagram of vindoline biosynthesis, click here
Other name(s): T3R; tabersonine 3-reductase
Systematic name: (3R)-3-hydroxy-16-methoxy-2,3-dihydrotabersonine:acceptor oxidoreductase
Comments: This enzyme is involved in the biosynthesis of vindoline and vindorosine in the plant Catharanthus roseus (Madagascar periwinkle). In vivo, it functions in the direction of reduction. It has no activity with 3-epoxylated compounds, which can form spontaneously from its unstable substrates.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Qu, Y., Easson, M.L., Froese, J., Simionescu, R., Hudlicky, T. and De Luca, V. Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast. Proc. Natl. Acad. Sci. USA 112 (2015) 6224–6229. [DOI] [PMID: 25918424]
[EC 1.1.99.41 created 2017]
 
 
EC 1.2.1.2
Transferred entry: formate dehydrogenase. Now EC 1.17.1.9, formate dehydrogenase
[EC 1.2.1.2 created 1961, deleted 2017]
 
 
EC 1.2.1.43
Transferred entry: formate dehydrogenase (NADP+). Now EC 1.17.1.10, formate dehydrogenase (NADP+)
[EC 1.2.1.43 created 1978, deleted 2017]
 
 
EC 1.2.1.93
Transferred entry: formate dehydrogenase (NAD+, ferredoxin). Now EC 1.17.1.11, formate dehydrogenase (NAD+, ferredoxin)
[EC 1.2.1.93 created 2015, deleted 2017]
 
 
EC 1.2.2.3
Transferred entry: formate dehydrogenase (cytochrome-c-553). Now EC 1.17.2.3, formate dehydrogenase (cytochrome-c-553)
[EC 1.2.2.3 created 1981, deleted 2017]
 
 
EC 1.2.99.9
Transferred entry: formate dehydrogenase (coenzyme F420). Now EC 1.17.98.3, formate dehydrogenase (coenzyme F420)
[EC 1.2.99.9 created 2014, deleted 2017]
 
 
EC 1.5.5.3
Accepted name: hydroxyproline dehydrogenase
Reaction: trans-4-hydroxy-L-proline + a quinone = (3R,5S)-3-hydroxy-1-pyrroline-5-carboxylate + a quinol
Other name(s): HYPDH; OH-POX; hydroxyproline oxidase; PRODH2 (gene name)
Systematic name: trans-4-hydroxy-L-proline:quinone oxidoreductase
Comments: A flavoprotein (FAD). The enzyme from human also has low activity with L-proline (cf. EC 1.5.5.2, proline dehydrogenase).
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Cooper, S.K., Pandhare, J., Donald, S.P. and Phang, J.M. A novel function for hydroxyproline oxidase in apoptosis through generation of reactive oxygen species. J. Biol. Chem. 283 (2008) 10485–10492. [DOI] [PMID: 18287100]
2.  Summitt, C.B., Johnson, L.C., Jonsson, T.J., Parsonage, D., Holmes, R.P. and Lowther, W.T. Proline dehydrogenase 2 (PRODH2) is a hydroxyproline dehydrogenase (HYPDH) and molecular target for treating primary hyperoxaluria. Biochem. J. 466 (2015) 273–281. [DOI] [PMID: 25697095]
[EC 1.5.5.3 created 2017]
 
 
EC 1.5.98.3
Accepted name: coenzyme F420:methanophenazine dehydrogenase
Reaction: reduced coenzyme F420 + methanophenazine = oxidized coenzyme F420 + dihydromethanophenazine
Glossary: methanophenazine = 2-{[(6E,10E,14E)-3,7,11,15,19-pentamethylicosa-6,10,14,18-tetraen-1-yl]oxy}phenazine
dihydromethanophenazine = 2-{[(6E,10E,14E)-3,7,11,15,19-pentamethylicosa-6,10,14,18-tetraen-1-yl]oxy}-5,10-dihydrophenazine
Other name(s): F420H2 dehydrogenase; fpoBCDIF (gene names)
Systematic name: reduced coenzyme F420:methanophenazine oxidoreductase
Comments: The enzyme, found in some methanogenic archaea, is responsible for the reoxidation of coenzyme F420, which is reduced during methanogenesis, and for the reduction of methanophenazine to dihydromethanophenazine, which is required by EC 1.8.98.1, dihydromethanophenazine:CoB-CoM heterodisulfide reductase. The enzyme is membrane-bound, and is coupled to proton translocation across the cytoplasmic membrane, generating a proton motive force that is used for ATP generation.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Brodersen, J., Gottschalk, G. and Deppenmeier, U. Membrane-bound F420H2-dependent heterodisulfide reduction in Methanococcus volta. Arch. Microbiol. 171 (1999) 115–121. [PMID: 9914308]
2.  Baumer, S., Ide, T., Jacobi, C., Johann, A., Gottschalk, G. and Deppenmeier, U. The F420H2 dehydrogenase from Methanosarcina mazei is a Redox-driven proton pump closely related to NADH dehydrogenases. J. Biol. Chem. 275 (2000) 17968–17973. [DOI] [PMID: 10751389]
3.  Deppenmeier, U. The membrane-bound electron transport system of Methanosarcina species. J. Bioenerg. Biomembr. 36 (2004) 55–64. [PMID: 15168610]
4.  Abken H. J. and Deppenmeier, U. Purification and properties of an F420H2 dehydrogenase from Methanosarcina mazei Gö1. FEMS Microbiol. Lett. 154 (2006) 231–237.
[EC 1.5.98.3 created 2017]
 
 
EC 1.8.1.20
Accepted name: 4,4′-dithiodibutanoate disulfide reductase
Reaction: 2 4-sulfanylbutanoate + NAD+ = 4,4′-disulfanediyldibutanoate + NADH + H+
Systematic name: 4-sulfanylbutanoate:NAD+ oxidoreductase
Comments: The enzyme, characterized from the bacterium Rhodococcus erythropolis MI2, contains an FMN cofator.
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Khairy, H., Wubbeler, J.H. and Steinbuchel, A. Biodegradation of the organic disulfide 4,4′-dithiodibutyric acid by Rhodococcus spp. Appl. Environ. Microbiol. 81 (2015) 8294–8306. [DOI] [PMID: 26407888]
2.  Khairy, H., Wubbeler, J.H. and Steinbuchel, A. The NADH:flavin oxidoreductase Nox from Rhodococcus erythropolis MI2 is the key enzyme of 4,4′-dithiodibutyric acid degradation. Lett. Appl. Microbiol. 63 (2016) 434–441. [DOI] [PMID: 27564089]
[EC 1.8.1.20 created 2017]
 
 
EC 1.8.3.7
Accepted name: formylglycine-generating enzyme
Reaction: a [sulfatase]-L-cysteine + O2 + 2 a thiol = a [sulfatase]-3-oxo-L-alanine + hydrogen sulfide + a disulfide + H2O
Glossary: 3-oxo-L-alanine = formylglycine = Cα-formylglycine = FGly
Other name(s): sulfatase-modifying factor 1; Cα-formylglycine-generating enzyme 1; SUMF1 (gene name)
Systematic name: [sulfatase]-L-cysteine:oxygen oxidoreductase (3-oxo-L-alanine-forming)
Comments: Requires a copper cofactor and Ca2+. The enzyme, which is found in both prokaryotes and eukaryotes, catalyses a modification of a conserved L-cysteine residue in the active site of sulfatases, generating a unique 3-oxo-L-alanine residue that is essential for sulfatase activity. The exact nature of the thiol involved is still not clear - dithiothreitol and cysteamine are the most efficiently used thiols in vitro. Glutathione alo acts in vitro, but it is not known whether it is used in vivo.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Dierks, T., Schmidt, B. and von Figura, K. Conversion of cysteine to formylglycine: a protein modification in the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 94 (1997) 11963–11968. [DOI] [PMID: 9342345]
2.  Dierks, T., Miech, C., Hummerjohann, J., Schmidt, B., Kertesz, M.A. and von Figura, K. Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. J. Biol. Chem. 273 (1998) 25560–25564. [DOI] [PMID: 9748219]
3.  Preusser-Kunze, A., Mariappan, M., Schmidt, B., Gande, S.L., Mutenda, K., Wenzel, D., von Figura, K. and Dierks, T. Molecular characterization of the human Cα-formylglycine-generating enzyme. J. Biol. Chem. 280 (2005) 14900–14910. [DOI] [PMID: 15657036]
4.  Roeser, D., Preusser-Kunze, A., Schmidt, B., Gasow, K., Wittmann, J.G., Dierks, T., von Figura, K. and Rudolph, M.G. A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. Proc. Natl. Acad. Sci. USA 103 (2006) 81–86. [DOI] [PMID: 16368756]
5.  Carlson, B.L., Ballister, E.R., Skordalakes, E., King, D.S., Breidenbach, M.A., Gilmore, S.A., Berger, J.M. and Bertozzi, C.R. Function and structure of a prokaryotic formylglycine-generating enzyme. J. Biol. Chem. 283 (2008) 20117–20125. [DOI] [PMID: 18390551]
6.  Holder, P.G., Jones, L.C., Drake, P.M., Barfield, R.M., Banas, S., de Hart, G.W., Baker, J. and Rabuka, D. Reconstitution of formylglycine-generating enzyme with copper(II) for aldehyde tag conversion. J. Biol. Chem. 290 (2015) 15730–15745. [DOI] [PMID: 25931126]
7.  Knop, M., Engi, P., Lemnaru, R. and Seebeck, F.P. In vitro reconstitution of formylglycine-generating enzymes requires copper(I). ChemBioChem 16 (2015) 2147–2150. [DOI] [PMID: 26403223]
8.  Knop, M., Dang, T.Q., Jeschke, G. and Seebeck, F.P. Copper is a cofactor of the formylglycine-generating enzyme. ChemBioChem 18 (2017) 161–165. [DOI] [PMID: 27862795]
9.  Meury, M., Knop, M. and Seebeck, F.P. Structural basis for copper-oxygen mediated C-H bond activation by the formylglycine-generating enzyme. Angew. Chem. Int. Ed. Engl. (2017) . [DOI] [PMID: 28544744]
[EC 1.8.3.7 created 2014]
 
 
*EC 1.10.3.14
Transferred entry: ubiquinol oxidase (electrogenic, non H+-transporting). Now EC 7.1.1.7, ubiquinol oxidase (electrogenic, proton-motive force generating)
[EC 1.10.3.14 created 2014, modified 2017, deleted 2018]
 
 
EC 1.13.11.83
Accepted name: 4-hydroxy-3-prenylphenylpyruvate oxygenase
Reaction: 3-(4-hydroxy-3-prenylphenyl)pyruvate + O2 = 4-hydroxy-3-prenylmandelate + CO2
For diagram of 3-dimethylallyl-4-hydroxybenzoate biosynthesis, click here
Glossary: 3-(4-hydroxy-3-prenylphenyl)pyruvate = 3-(4-hydroxy-3-prenylphenyl)-2-oxopropanoate
4-hydroxy-3-prenylmandelate = 2-hydroxy-2-(4-hydroxy-3-prenylphenyl)acetate
prenyl = 3-methylbut-2-en-1-yl
Other name(s): CloR
Systematic name: 3-(4-hydroxy-3-prenylphenyl)pyruvate:oxygen 1,2-oxidoreductase (4-hydroxy-3-prenylmandelate-forming)
Comments: Requires non-heme-iron(II). Isolated from the bacterium Streptomyces roseochromogenes DS 12976. A bifunctional enzyme involved in clorobiocin biosynthesis that also catalyses the activity of EC 1.13.12.23, 4-hydroxy-3-prenylbenzoate synthase.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Pojer, F., Kahlich, R., Kammerer, B., Li, S.M. and Heide, L. CloR, a bifunctional non-heme iron oxygenase involved in clorobiocin biosynthesis. J. Biol. Chem. 278 (2003) 30661–30668. [DOI] [PMID: 12777382]
[EC 1.13.11.83 created 2017]
 
 
*EC 1.13.12.5
Accepted name: Renilla-type luciferase
Reaction: coelenterazine h + O2 = excited coelenteramide h monoanion + CO2 (over-all reaction)
(1a) coelenterazine h + O2 = coelenterazine h dioxetanone
(1b) coelenterazine h dioxetanone = excited coelenteramide h monoanion + CO2
For diagram of reaction, click here
Glossary: coelenterazine h = Renilla luciferin = 2,8-dibenzyl-6-(4-hydroxyphenyl)imidazo[1,2-a]pyrazin-3(7H)-one
coelenteramide h = Renilla oxyluciferin = N-[3-benzyl-5-(4-hydroxyphenyl)pyrazin-2-yl]-2-phenylacetamide
Other name(s): Renilla-luciferin 2-monooxygenase; luciferase (Renilla luciferin); Renilla-luciferin:oxygen 2-oxidoreductase (decarboxylating)
Systematic name: coelenterazine h:oxygen 2-oxidoreductase (decarboxylating)
Comments: This enzyme has been studied from the soft coral Renilla reniformis. Before the reaction occurs the substrate is sequestered by a coelenterazine-binding protein. Elevation in the concentration of calcium ions releases the substrate, which then interacts with the luciferase. Upon binding the substrate, the enzyme catalyses an oxygenation, producing a very short-lived hydroperoxide that cyclizes into a dioxetanone structure, which collapses, releasing a CO2 molecule. The spontaneous breakdown of the dioxetanone releases the energy (about 50 kcal/mole) that is necessary to generate the excited state of the coelenteramide product, which is the singlet form of the monoanion. In vivo the product undergoes the process of nonradiative energy transfer to an accessory protein, a green fluorescent protein (GFP), which results in green bioluminescence. In vitro, in the absence of GFP, the product emits blue light.
Links to other databases: BRENDA, EXPASY, KEGG, PDB, CAS registry number: 61869-41-8
References:
1.  Cormier, M.J., Hori, K. and Anderson, J.M. Bioluminescence in coelenterates. Biochim. Biophys. Acta 346 (1974) 137–164. [PMID: 4154104]
2.  Hori, K., Anderson, J.M., Ward, W.W. and Cormier, M.J. Renilla luciferin as the substrate for calcium induced photoprotein bioluminescence. Assignment of luciferin tautomers in aequorin and mnemiopsin. Biochemistry 14 (1975) 2371–2376. [PMID: 237531]
3.  Anderson, J.M., Charbonneau, H. and Cormier, M.J. Mechanism of calcium induction of Renilla bioluminescence. Involvement of a calcium-triggered luciferin binding protein. Biochemistry 13 (1974) 1195–1200. [PMID: 4149963]
4.  Shimomura, O. and Johnson, F.H. Chemical nature of bioluminescence systems in coelenterates. Proc. Natl. Acad. Sci. USA 72 (1975) 1546–1549. [DOI] [PMID: 236561]
5.  Charbonneau, H. and Cormier, M.J. Ca2+-induced bioluminescence in Renilla reniformis. Purification and characterization of a calcium-triggered luciferin-binding protein. J. Biol. Chem. 254 (1979) 769–780. [PMID: 33174]
6.  Lorenz, W.W., McCann, R.O., Longiaru, M. and Cormier, M.J. Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc. Natl. Acad. Sci. USA 88 (1991) 4438–4442. [DOI] [PMID: 1674607]
7.  Loening, A.M., Fenn, T.D. and Gambhir, S.S. Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis. J. Mol. Biol. 374 (2007) 1017–1028. [DOI] [PMID: 17980388]
[EC 1.13.12.5 created 1976, modified 1981, modified 1982, modified 2004, modified 2017]
 
 
EC 1.13.12.23
Accepted name: 4-hydroxy-3-prenylbenzoate synthase
Reaction: 4-hydroxy-3-prenylmandelate + O2 = 4-hydroxy-3-prenylbenzoate + CO2 + H2O
For diagram of 3-dimethylallyl-4-hydroxybenzoate biosynthesis, click here
Glossary: 4-hydroxy-3-prenylmandelate = 2-hydroxy-2-(4-hydroxy-3-prenylphenyl)acetate
prenyl = 3-methylbut-2-en-1-yl
Other name(s): CloR; novR (gene name)
Systematic name: 4-hydroxy-3-prenylmandelate:oxygen oxidoreductase (4-hydroxy-3-prenylbenzoate forming)
Comments: Isolated from the bacterium Streptomyces roseochromogenes DS 12976. A bifunctional enzyme involved in clorobiocin biosynthesis that also catalyses the activity of EC 1.13.11.83, 4-hydroxy-3-prenylphenylpyruvate oxygenase.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Pojer, F., Kahlich, R., Kammerer, B., Li, S.M. and Heide, L. CloR, a bifunctional non-heme iron oxygenase involved in clorobiocin biosynthesis. J. Biol. Chem. 278 (2003) 30661–30668. [DOI] [PMID: 12777382]
[EC 1.13.12.23 created 2017]
 
 
*EC 1.14.11.2
Accepted name: procollagen-proline 4-dioxygenase
Reaction: procollagen L-proline + 2-oxoglutarate + O2 = procollagen trans-4-hydroxy-L-proline + succinate + CO2
For diagram of reaction, click here
Other name(s): P4HA (gene name); P4HB (gene name); protocollagen hydroxylase; proline hydroxylase; proline,2-oxoglutarate 4-dioxygenase; collagen proline hydroxylase; hydroxylase, collagen proline; peptidyl proline hydroxylase; proline protocollagen hydroxylase; proline, 2-oxoglutarate dioxygenase; prolyl hydroxylase; prolylprotocollagen dioxygenase; prolylprotocollagen hydroxylase; protocollagen proline 4-hydroxylase; protocollagen proline dioxygenase; protocollagen proline hydroxylase; protocollagen prolyl hydroxylase; prolyl 4-hydroxylase; prolyl-glycyl-peptide, 2-oxoglutarate:oxygen oxidoreductase, 4-hydroxylating; procollagen-proline 4-dioxygenase (ambiguous)
Systematic name: procollagen-L-proline,2-oxoglutarate:oxygen oxidoreductase (4-hydroxylating)
Comments: Requires Fe2+ and ascorbate.The enzyme, which is located within the lumen of the endoplasmic reticulum, catalyses the 4-hydroxylation of prolines in -X-Pro-Gly- sequences. The 4-hydroxyproline residues are essential for the formation of the collagen triple helix. The enzyme forms a complex with protein disulfide isomerase and acts not only on procollagen but also on more than 15 other proteins that have collagen-like domains.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB, CAS registry number: 9028-06-2
References:
1.  Hutton, J.J., Jr., Tappel, A.L. and Udenfriend, S. Cofactor and substrate requirements of collagen proline hydroxylase. Arch. Biochem. Biophys. 118 (1967) 231–240.
2.  Kivirikko, K.I. and Prockop, D.J. Purification and partial characterization of the enzyme for the hydroxylation of proline in protocollogen. Arch. Biochem. Biophys. 118 (1967) 611–618.
3.  Kivirikko, K.I., Kishida, Y., Sakakibara, S. and Prockop, J. Hydroxylation of (X-Pro-Gly)n by protocollagen proline hydroxylase. Effect of chain length, helical conformation and amino acid sequence in the substrate. Biochim. Biophys. Acta 271 (1972) 347–356. [DOI] [PMID: 5046811]
4.  Berg, R.A. and Prockop, D.J. Affinity column purification of protocollagen proline hydroxylase from chick embryos and further characterization of the enzyme. J. Biol. Chem. 248 (1973) 1175–1182. [PMID: 4346946]
5.  John, D.C. and Bulleid, N.J. Prolyl 4-hydroxylase: defective assembly of α-subunit mutants indicates that assembled α-subunits are intramolecularly disulfide bonded. Biochemistry 33 (1994) 14018–14025. [PMID: 7947811]
6.  Lamberg, A., Pihlajaniemi, T. and Kivirikko, K.I. Site-directed mutagenesis of the α subunit of human prolyl 4-hydroxylase. Identification of three histidine residues critical for catalytic activity. J. Biol. Chem. 270 (1995) 9926–9931. [DOI] [PMID: 7730375]
7.  Myllyharju, J. and Kivirikko, K.I. Characterization of the iron- and 2-oxoglutarate-binding sites of human prolyl 4-hydroxylase. EMBO J. 16 (1997) 1173–1180. [DOI] [PMID: 9135134]
8.  Kivirikko, K.I. and Myllyharju, J. Prolyl 4-hydroxylases and their protein disulfide isomerase subunit. Matrix Biol 16 (1998) 357–368. [DOI] [PMID: 9524356]
[EC 1.14.11.2 created 1972, modified 1981, modified 1983, modified 2017]
 
 
EC 1.14.13.48
Transferred entry: (S)-limonene 6-monooxygenase. Now classified as EC 1.14.14.51, (S)-limonene 6-monooxygenase
[EC 1.14.13.48 created 1992, modified 2003, deleted 2017]
 
 
EC 1.14.13.49
Transferred entry: (S)-limonene 7-monooxygenase. Now classified as EC 1.14.14.52, (S)-limonene 7-monooxygenase
[EC 1.14.13.49 created 1992, modified 2003, deleted 2017]
 
 
EC 1.14.13.72
Transferred entry: methylsterol monooxygenase. Now classified as EC 1.14.18.9, methylsterol monooxygenase
[EC 1.14.13.72 created 1972 as EC 1.14.99.16, transferred 2002 to EC 1.14.13.72, deleted 2017]
 
 
EC 1.14.13.80
Transferred entry: (R)-limonene 6-monooxygenase. Now classified as EC 1.14.14.53, (R)-limonene 6-monooxygenase
[EC 1.14.13.80 created 2003, deleted 2017]
 
 
EC 1.14.13.237
Accepted name: aliphatic glucosinolate S-oxygenase
Reaction: an ω-(methylsulfanyl)alkyl-glucosinolate + NADPH + H+ + O2 = an ω-(methylsulfinyl)alkyl-glucosinolate + NADP+ + H2O
Glossary: ω-(methylsulfanyl)alkyl-glucosinolate = an ω-(methylsulfanyl)-N-sulfo-alkylhydroximate S-glucoside
Other name(s): ω-(methylthio)alkylglucosinolate S-oxygenase; GS-OX1 (gene name); ω-(methylthio)alkyl-glucosinolate,NADPH:oxygen S-oxidoreductase
Systematic name: ω-(methylsulfanyl)alkyl-glucosinolate,NADPH:oxygen S-oxidoreductase
Comments: The enzyme is a member of the flavin-dependent monooxygenase (FMO) family (cf. EC 1.14.13.8). The plant Arabidopsis thaliana contains five isoforms. GS-OX1 through GS-OX4 are able to catalyse the S-oxygenation independent of chain length, while GS-OX5 is specific for 8-(methylsulfanyl)octyl glucosinolate.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Hansen, B.G., Kliebenstein, D.J. and Halkier, B.A. Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis. Plant J. 50 (2007) 902–910. [DOI] [PMID: 17461789]
2.  Li, J., Hansen, B.G., Ober, J.A., Kliebenstein, D.J. and Halkier, B.A. Subclade of flavin-monooxygenases involved in aliphatic glucosinolate biosynthesis. Plant Physiol. 148 (2008) 1721–1733. [DOI] [PMID: 18799661]
[EC 1.14.13.237 created 2017]
 
 
EC 1.14.13.238
Accepted name: dimethylamine monooxygenase
Reaction: dimethylamine + NADPH + H+ + O2 = methylamine + formaldehyde + NADP+ + H2O
Other name(s): dmmABC (gene names)
Systematic name: dimethylamine,NADPH:oxygen oxidoreductase (formaldehyde-forming)
Comments: The enzyme, characterized from several bacterial species, is involved in a pathway for the degradation of methylated amines. It is composed of three subunits, one of which is a ferredoxin, and contains heme iron and an FMN cofactor.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Eady, R.R. and Large, P.J. Bacterial oxidation of dimethylamine, a new mono-oxygenase reaction. Biochem. J. 111 (1969) 37P–38P. [PMID: 4389011]
2.  Eady, R.R., Jarman, T.R. and Large, P.J. Microbial oxidation of amines. Partial purification of a mixed-function secondary-amine oxidase system from Pseudomonas aminovorans that contains an enzymically active cytochrome-P-420-type haemoprotein. Biochem. J. 125 (1971) 449–459. [PMID: 4401380]
3.  Alberta, J.A. and Dawson, J.H. Purification to homogeneity and initial physical characterization of secondary amine monooxygenase. J. Biol. Chem. 262 (1987) 11857–11863. [PMID: 3624236]
4.  Lidbury, I., Mausz, M.A., Scanlan, D.J. and Chen, Y. Identification of dimethylamine monooxygenase in marine bacteria reveals a metabolic bottleneck in the methylated amine degradation pathway. ISME J. 11 (2017) 1592–1601. [DOI] [PMID: 28304370]
[EC 1.14.13.238 created 2017]
 
 
EC 1.14.14.48
Accepted name: jasmonoyl-L-amino acid 12-hydroxylase
Reaction: a jasmonoyl-L-amino acid + [reduced NADPH—hemoprotein reductase] + O2 = a 12-hydroxyjasmonoyl-L-amino acid + [oxidized NADPH—hemoprotein reductase] + H2O
Glossary: jasmonic acid = {(1R,2R)-3-oxo-2-[(2Z)pent-2-en-1-yl]cyclopentyl}acetic acid
(+)-7-epi-jasmonic acid = {(1R,2S)-3-oxo-2-[(2Z)pent-2-en-1-yl]cyclopentyl}acetic acid
Other name(s): CYP94B1 (gene name); CYP94B3 (gene name)
Systematic name: jasmonoyl-L-amino acid,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (12-hydroxylating)
Comments: A cytochrome P450 (heme thiolate) enzyme found in plants. The enzyme acts on jasmonoyl-L-amino acid conjugates, catalysing the hydroxylation of the C-12 position of jasmonic acid. While the best studied substrate is (+)-7-epi-jasmonoyl-L-isoleucine, the enzyme was shown to be active with jasmonoyl-L-valine and jasmonoyl-L-phenylalanine, and is likely to be active with other jasmonoyl-amino acid conjugates.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Koo, A.J., Cooke, T.F. and Howe, G.A. Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-L-isoleucine. Proc. Natl. Acad. Sci. USA 108 (2011) 9298–9303. [DOI] [PMID: 21576464]
2.  Kitaoka, N., Matsubara, T., Sato, M., Takahashi, K., Wakuta, S., Kawaide, H., Matsui, H., Nabeta, K. and Matsuura, H. Arabidopsis CYP94B3 encodes jasmonyl-L-isoleucine 12-hydroxylase, a key enzyme in the oxidative catabolism of jasmonate. Plant Cell Physiol. 52 (2011) 1757–1765. [DOI] [PMID: 21849397]
3.  Heitz, T., Widemann, E., Lugan, R., Miesch, L., Ullmann, P., Desaubry, L., Holder, E., Grausem, B., Kandel, S., Miesch, M., Werck-Reichhart, D. and Pinot, F. Cytochromes P450 CYP94C1 and CYP94B3 catalyze two successive oxidation steps of plant hormone jasmonoyl-isoleucine for catabolic turnover. J. Biol. Chem. 287 (2012) 6296–6306. [DOI] [PMID: 22215670]
4.  Kitaoka, N., Kawaide, H., Amano, N., Matsubara, T., Nabeta, K., Takahashi, K. and Matsuura, H. CYP94B3 activity against jasmonic acid amino acid conjugates and the elucidation of 12-O-β-glucopyranosyl-jasmonoyl-L-isoleucine as an additional metabolite. Phytochemistry 99 (2014) 6–13. [DOI] [PMID: 24467969]
5.  Koo, A.J., Thireault, C., Zemelis, S., Poudel, A.N., Zhang, T., Kitaoka, N., Brandizzi, F., Matsuura, H. and Howe, G.A. Endoplasmic reticulum-associated inactivation of the hormone jasmonoyl-L-isoleucine by multiple members of the cytochrome P450 94 family in Arabidopsis. J. Biol. Chem. 289 (2014) 29728–29738. [DOI] [PMID: 25210037]
6.  Widemann, E., Grausem, B., Renault, H., Pineau, E., Heinrich, C., Lugan, R., Ullmann, P., Miesch, L., Aubert, Y., Miesch, M., Heitz, T. and Pinot, F. Sequential oxidation of jasmonoyl-phenylalanine and jasmonoyl-isoleucine by multiple cytochrome P450 of the CYP94 family through newly identified aldehyde intermediates. Phytochemistry 117 (2015) 388–399. [DOI] [PMID: 26164240]
[EC 1.14.14.48 created 2017]
 
 
EC 1.14.14.49
Accepted name: 12-hydroxyjasmonoyl-L-amino acid 12-hydroxylase
Reaction: a 12-hydroxyjasmonoyl-L-amino acid + 2 [reduced NADPH—hemoprotein reductase] + 2 O2 = a 12-hydroxy-12-oxojasmonoyl-L-amino acid + 2 [oxidized NADPH—hemoprotein reductase] + 3 H2O (overall reaction)
(1a) a 12-hydroxyjasmonoyl-L-amino acid + [reduced NADPH—hemoprotein reductase] + O2 = a 12-oxojasmonoyl-L-amino acid + [oxidized NADPH—hemoprotein reductase] + 2 H2O
(1b) a 12-oxojasmonoyl-L-amino acid + [reduced NADPH—hemoprotein reductase] + O2 = a 12-hydroxy-12-oxojasmonoyl-L-amino acid + [oxidized NADPH—hemoprotein reductase] + H2O
Glossary: 12-hydroxy-12-oxojasmonate = (3Z)-5-[(1R,2R)-2-(carboxymethyl)-5-oxocyclopentyl]pent-3-enoate
Other name(s): CYP94C1 (gene name)
Systematic name: 12-hydroxyjasmonoyl-L-amino acid,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (12-hydroxylating)
Comments: A cytochrome P450 (heme thiolate) enzyme found in plants. The enzyme acts on jasmonoyl-L-amino acid conjugates that have been hydroxylated at the C-12 position of jasmonic acid by EC 1.14.14.48, jasmonoyl-L-amino acid 12-hydroxylase, further oxidizing that position to a carboxylate via an aldehyde intermediate. While the best studied substrate is (+)-7-epi-jasmonoyl-L-isoleucine, the enzyme was shown to be active with jasmonoyl-L-phenylalanine, and is likely to be active with other jasmonoyl-amino acid conjugates.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Heitz, T., Widemann, E., Lugan, R., Miesch, L., Ullmann, P., Desaubry, L., Holder, E., Grausem, B., Kandel, S., Miesch, M., Werck-Reichhart, D. and Pinot, F. Cytochromes P450 CYP94C1 and CYP94B3 catalyze two successive oxidation steps of plant hormone jasmonoyl-isoleucine for catabolic turnover. J. Biol. Chem. 287 (2012) 6296–6306. [DOI] [PMID: 22215670]
2.  Widemann, E., Grausem, B., Renault, H., Pineau, E., Heinrich, C., Lugan, R., Ullmann, P., Miesch, L., Aubert, Y., Miesch, M., Heitz, T. and Pinot, F. Sequential oxidation of jasmonoyl-phenylalanine and jasmonoyl-isoleucine by multiple cytochrome P450 of the CYP94 family through newly identified aldehyde intermediates. Phytochemistry 117 (2015) 388–399. [DOI] [PMID: 26164240]
3.  Bruckhoff, V., Haroth, S., Feussner, K., Konig, S., Brodhun, F. and Feussner, I. Functional characterization of CYP94-genes and identification of a novel jasmonate catabolite in flowers. PLoS One 11 (2016) e0159875. [DOI] [PMID: 27459369]
[EC 1.14.14.49 created 2017]
 
 
EC 1.14.14.50
Accepted name: tabersonine 3-oxygenase
Reaction: (1) 16-methoxytabersonine + [reduced NADPH—hemoprotein reductase] + O2 = (3R)-3-hydroxy-16-methoxy-1,2-didehydro-2,3-dihydrotabersonine + [oxidized NADPH—hemoprotein reductase] + H2O
(2) tabersonine + [reduced NADPH—hemoprotein reductase] + O2 = (3R)-3-hydroxy-1,2-didehydro-2,3-dihydrotabersonine + [oxidized NADPH—hemoprotein reductase] + H2O
For diagram of vindoline biosynthesis, click here
Other name(s): T3O; CYP71D1V2
Systematic name: 16-methoxytabersonine,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (3-hydroxylating)
Comments: This cytochrome P-450 (heme thiolate) enzyme acts on 16-methoxytabersonine, leading to biosynthesis of vindoline in the plant Catharanthus roseus (Madagascar periwinkle). It can also act on tabersonine, resulting in the production of small amounts of vindorosine. The products are unstable and, in the absence of EC 1.1.99.41, 3-hydroxy-1,2-didehydro-2,3-dihydrotabersonine reductase, will convert into 3-epoxylated compounds.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Qu, Y., Easson, M.L., Froese, J., Simionescu, R., Hudlicky, T. and De Luca, V. Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast. Proc. Natl. Acad. Sci. USA 112 (2015) 6224–6229. [DOI] [PMID: 25918424]
[EC 1.14.14.50 created 2017]
 
 
EC 1.14.14.51
Accepted name: (S)-limonene 6-monooxygenase
Reaction: (S)-limonene + [reduced NADPH—hemoprotein reductase] + O2 = (–)-trans-carveol + [oxidized NADPH—hemoprotein reductase] + H2O
For diagram of perillyl alcohol, isopiperitol and carveol biosynthesis, click here
Glossary: limonene = a monoterpenoid
(S)-limonene = (–)-limonene
Other name(s): (–)-limonene 6-hydroxylase; (–)-limonene 6-monooxygenase; (–)-limonene,NADPH:oxygen oxidoreductase (6-hydroxylating)
Systematic name: (S)-limonene,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (6-hydroxylating)
Comments: A cytochrome P-450 (heme thiolate) enzyme. The enzyme participates in the biosynthesis of (–)-carvone, which is responsible for the aroma of spearmint.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, Gene, KEGG, PDB, CAS registry number: 138066-93-0
References:
1.  Karp, F., Mihaliak, C.A., Harris, J.L. and Croteau, R. Monoterpene biosynthesis: specificity of the hydroxylations of (-)-limonene by enzyme preparations from peppermint (Mentha piperita), spearmint (Mentha spicata), and perilla (Perilla frutescens) leaves. Arch. Biochem. Biophys. 276 (1990) 219–226. [DOI] [PMID: 2297225]
[EC 1.14.14.51 created 1992 as EC 1.14.13.48, modified 2003, transferred 2017 to EC 1.14.14.51]
 
 
EC 1.14.14.52
Accepted name: (S)-limonene 7-monooxygenase
Reaction: (S)-limonene + [reduced NADPH—hemoprotein reductase] + O2 = (–)-perillyl alcohol + [oxidized NADPH—hemoprotein reductase] + H2O
For diagram of perillyl alcohol, isopiperitol and carveol biosynthesis, click here
Glossary: limonene = a monoterpenoid
(S)-limonene = (–)-limonene
Other name(s): (–)-limonene 7-monooxygenase; (–)-limonene hydroxylase; (–)-limonene monooxygenase; (–)-limonene,NADPH:oxygen oxidoreductase (7-hydroxylating)
Systematic name: (S)-limonene,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (7-hydroxylating)
Comments: A cytochrome P-450 (heme thiolate) enzyme. The enzyme, characterized from the plant Perilla frutescens, participates in the biosynthesis of perillyl aldehyde, the major constituent of the essential oil that accumulates in the glandular trichomes of this plant. Some forms of the enzyme also catalyse the oxidation of (–)-perillyl alcohol to (–)-perillyl aldehyde.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, Gene, KEGG, PDB, CAS registry number: 122653-75-2
References:
1.  Karp, F., Mihaliak, C.A., Harris, J.L. and Croteau, R. Monoterpene biosynthesis: specificity of the hydroxylations of (-)-limonene by enzyme preparations from peppermint (Mentha piperita), spearmint (Mentha spicata), and perilla (Perilla frutescens) leaves. Arch. Biochem. Biophys. 276 (1990) 219–226. [DOI] [PMID: 2297225]
2.  Mau, C.J., Karp, F., Ito, M., Honda, G. and Croteau, R.B. A candidate cDNA clone for (–)-limonene-7-hydroxylase from Perilla frutescens. Phytochemistry 71 (2010) 373–379. [DOI] [PMID: 20079506]
3.  Fujiwara, Y. and Ito, M. Molecular cloning and characterization of a Perilla frutescens cytochrome P450 enzyme that catalyzes the later steps of perillaldehyde biosynthesis. Phytochemistry 134 (2017) 26–37. [DOI] [PMID: 27890582]
[EC 1.14.14.52 created 1992 as EC 1.14.13.49, modified 2003, transferred 2017 to EC 1.14.14.52]
 
 
EC 1.14.14.53
Accepted name: (R)-limonene 6-monooxygenase
Reaction: (R)-limonene + [reduced NADPH—hemoprotein reductase] + O2 = (+)-trans-carveol + [oxidized NADPH—hemoprotein reductase] + H2O
For diagram of carvone biosynthesis, click here
Glossary: limonene = a monoterpenoid
(R)-limonene = (+)-limonene
Other name(s): (+)-limonene-6-hydroxylase; (+)-limonene 6-monooxygenase
Systematic name: (R)-limonene,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (6-hydroxylating)
Comments: The reaction is stereospecific with over 95% yield of (+)-trans-carveol from (R)-limonene. (S)-Limonene, the substrate for EC 1.14.14.51, (S)-limonene 6-monooxygenase, is not a substrate. Forms part of the carvone biosynthesis pathway in Carum carvi (caraway) seeds.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB, CAS registry number: 221461-49-0
References:
1.  Bouwmeester, H.J., Gershenzon, J., Konings, M.C.J.M. and Croteau, R. Biosynthesis of the monoterpenes limonene and carvone in the fruit of caraway. I. Demonstration of enzyme activities and their changes with development. Plant Physiol. 117 (1998) 901–912. [PMID: 9662532]
2.  Bouwmeester, H.J., Konings, M.C.J.M., Gershenzon, J., Karp, F. and Croteau, R. Cytochrome P-450 dependent (+)-limonene-6-hydroxylation in fruits of caraway (Carum carvi). Phytochemistry 50 (1999) 243–248.
[EC 1.14.14.53 created 2003 as EC 1.14.13.80, transferred 2017 to EC 1.14.14.53]
 
 
EC 1.14.14.54
Accepted name: phenylacetate 2-hydroxylase
Reaction: phenylacetate + [reduced NADPH—hemoprotein reductase] + O2 = (2-hydroxyphenyl)acetate + [oxidized NADPH—hemoprotein reductase] + H2O
Other name(s): CYP504; phaA (gene name)
Systematic name: phenylacetate,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (2-hydroxylating)
Comments: This cytochrome P-450 (heme-thiolate) enzyme, found in Aspergillus nidulans, is involved in the degradation of phenylacetate.
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Mingot, J.M., Penalva, M.A. and Fernandez-Canon, J.M. Disruption of phacA, an Aspergillus nidulans gene encoding a novel cytochrome P450 monooxygenase catalyzing phenylacetate 2-hydroxylation, results in penicillin overproduction. J. Biol. Chem. 274 (1999) 14545–14550. [DOI] [PMID: 10329644]
2.  Rodriguez-Saiz, M., Barredo, J.L., Moreno, M.A., Fernandez-Canon, J.M., Penalva, M.A. and Diez, B. Reduced function of a phenylacetate-oxidizing cytochrome P450 caused strong genetic improvement in early phylogeny of penicillin-producing strains. J. Bacteriol. 183 (2001) 5465–5471. [DOI] [PMID: 11544206]
[EC 1.14.14.54 created 2017]
 
 
EC 1.14.15.23
Accepted name: chloroacetanilide N-alkylformylase
Reaction: butachlor + 2 reduced ferredoxin [iron-sulfur] cluster + O2 = 2-chloro-N-(2,6-diethylphenyl)acetamide + butyl formate + 2 oxidized ferredoxin [iron-sulfur] cluster + H2O
Glossary: butachlor = N-(butoxymethyl)-2-chloro-N-(2,6-diethylphenyl)acetamide
acetochlor = N-(ethoxymethyl)-2-chloro-N-(2-ethyl,6-methylphenyl)acetamide
alachlor = N-(methoxymethyl)-2-chloro-N-(2,6-diethylphenyl)acetamide
Other name(s): cndA (gene name)
Systematic name: butachlor,ferredoxin:oxygen oxidoreductase (butyl formate-releasing)
Comments: The enzyme, characterized from the bacterium Sphingomonas sp. DC-6, initiates the degradation of several chloroacetanilide herbicides, including alachlor, acetochlor, and butachlor. The enzyme is a Rieske non-heme iron oxygenase, and requires a ferredoxin and EC 1.18.1.3, ferredoxin—NAD+ reductase, for activity.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Chen, Q., Wang, C.H., Deng, S.K., Wu, Y.D., Li, Y., Yao, L., Jiang, J.D., Yan, X., He, J. and Li, S.P. Novel three-component Rieske non-heme iron oxygenase system catalyzing the N-dealkylation of chloroacetanilide herbicides in sphingomonads DC-6 and DC-2. Appl. Environ. Microbiol. 80 (2014) 5078–5085. [DOI] [PMID: 24928877]
[EC 1.14.15.23 created 2017]
 
 
EC 1.14.18.9
Accepted name: 4α-methylsterol monooxygenase
Reaction: 4,4-dimethyl-5α-cholest-7-en-3β-ol + 6 ferrocytochrome b5 + 3 O2 + 6 H+ = 3β-hydroxy-4β-methyl-5α-cholest-7-ene-4α-carboxylate + 6 ferricytochrome b5 + 4 H2O (overall reaction)
(1a) 4,4-dimethyl-5α-cholest-7-en-3β-ol + 2 ferrocytochrome b5 + O2 + 2 H+ = 4α-hydroxymethyl-4β-methyl-5α-cholest-7-en-3β-ol + 2 ferricytochrome b5 + H2O
(1b) 4α-hydroxymethyl-4β-methyl-5α-cholest-7-en-3β-ol + 2 ferrocytochrome b5 + O2 + 2 H+ = 3β-hydroxy-4β-methyl-5α-cholest-7-ene-4α-carbaldehyde + 2 ferricytochrome b5 + 2 H2O
(1c) 3β-hydroxy-4β-methyl-5α-cholest-7-ene-4α-carbaldehyde + 2 ferrocytochrome b5 + O2 + 2 H+ = 3β-hydroxy-4β-methyl-5α-cholest-7-ene-4α-carboxylate + 2 ferricytochrome b5 + H2O
For diagram of sterol ring A modification, click here
Other name(s): methylsterol hydroxylase (ambiguous); 4-methylsterol oxidase (ambiguous); 4,4-dimethyl-5α-cholest-7-en-3β-ol,hydrogen-donor:oxygen oxidoreductase (hydroxylating) (ambiguous); methylsterol monooxygenase (ambiguous); ERG25 (gene name); MSMO1 (gene name); 4,4-dimethyl-5α-cholest-7-en-3β-ol,ferrocytochrome-b5:oxygen oxidoreductase (hydroxylating) (ambiguous)
Systematic name: 4,4-dimethyl-5α-cholest-7-en-3β-ol,ferrocytochrome-b5:oxygen oxidoreductase (C4α-methyl-hydroxylating)
Comments: This enzyme is found in fungi and animals and catalyses a step in the biosynthesis of important sterol molecules such as ergosterol and cholesterol, respectively. The enzyme acts on the 4α-methyl group. Subsequent decarboxylation by EC 1.1.1.170, 3β-hydroxysteroid-4α-carboxylate 3-dehydrogenase (decarboxylating), occurs concomitantly with epimerization of the remaining 4β-methyl into the 4α position, thus making it a suitable substrate for a second round of catalysis. cf. EC 1.14.13.246, 4β-methylsterol monooxygenase; EC 1.14.18.10, plant 4,4-dimethylsterol C-4α-methyl-monooxygenase; and EC 1.14.18.11, plant 4α-monomethylsterol monooxygenase.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, CAS registry number: 37256-80-7
References:
1.  Miller, W.L., Kalafer, M.E., Gaylor, J.L. and Delwicke, C.V. Investigation of the component reactions of oxidative sterol demethylation. Study of the aerobic and anaerobic processes. Biochemistry 6 (1967) 2673–2678. [PMID: 4383278]
2.  Gaylor, J.L. and Mason, H.S. Investigation of the component reactions of oxidative sterol demethylation. Evidence against participation of cytochrome P-450. J. Biol. Chem. 243 (1968) 4966–4972. [PMID: 4234469]
3.  Sharpless, K.B., Snyder, T.E., Spencer, T.A., Maheshwari, K.K. and Nelson, J.A. Biological demethylation of 4,4-dimethyl sterols, Evidence for enzymic epimerization of the 4β-methyl group prior to its oxidative removal. J. Am. Chem. Soc. 91 (1969) 3394–3396. [PMID: 5791927]
4.  Brady, D.R., Crowder, R.D. and Hayes, W.J. Mixed function oxidases in sterol metabolism. Source of reducing equivalents. J. Biol. Chem. 255 (1980) 10624–10629. [PMID: 7430141]
5.  Fukushima, H., Grinstead, G.F. and Gaylor, J.L. Total enzymic synthesis of cholesterol from lanosterol. Cytochrome b5-dependence of 4-methyl sterol oxidase. J. Biol. Chem. 256 (1981) 4822–4826. [PMID: 7228857]
6.  Kawata, S., Trzaskos, J.M. and Gaylor, J.L. Affinity chromatography of microsomal enzymes on immobilized detergent-solubilized cytochrome b5. J. Biol. Chem. 261 (1986) 3790–3799. [PMID: 3949790]
[EC 1.14.18.9 created 1972 as EC 1.14.99.16, transferred 2002 to EC 1.14.13.72, transferred 2017 to EC 1.14.18.9, modified 2019]
 
 
EC 1.14.19.52
Accepted name: camalexin synthase
Reaction: 2-(L-cystein-S-yl)-2-(1H-indol-3-yl)acetonitrile + 2 [reduced NADPH—hemoprotein reductase] + 2 O2 = camalexin + hydrogen cyanide + CO2 + 2 [oxidized NADPH—hemoprotein reductase] + 4 H2O (overall reaction)
(1a) 2-(L-cystein-S-yl)-2-(1H-indol-3-yl)acetonitrile + [reduced NADPH—hemoprotein reductase] + O2 = (R)-dihydrocamalexate + hydrogen cyanide + [oxidized NADPH—hemoprotein reductase] + 2 H2O
(1b) (R)-dihydrocamalexate + [reduced NADPH—hemoprotein reductase] + O2 = camalexin + CO2 + [oxidized NADPH—hemoprotein reductase] + 2 H2O
Glossary: camalexin = 3-(thiazol-2-yl)indole
(R)-dihydrocamalexate = (4R)-2-(1H-indol-3-yl)-4,5-dihydrothiazole-4-carboxylate
Other name(s): CYP71B15 (gene name); bifunctional dihydrocamalexate synthase/camalexin synthase
Systematic name: 2-(cystein-S-yl)-2-(1H-indol-3-yl)-acetonitrile, [reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (camalexin-forming)
Comments: This cytochrome P-450 (heme thiolate) enzyme, which has been characterized from the plant Arabidopsis thaliana, catalyses the last two steps in the biosynthesis of camalexin, the main phytoalexin in that plant. The enzyme catalyses two successive oxidation events. During the first oxidation the enzyme introduces a C-N double bond, liberating hydrogen cyanide, and during the second oxidation it catalyses a decarboxylation.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Schuhegger, R., Nafisi, M., Mansourova, M., Petersen, B.L., Olsen, C.E., Svatos, A., Halkier, B.A. and Glawischnig, E. CYP71B15 (PAD3) catalyzes the final step in camalexin biosynthesis. Plant Physiol. 141 (2006) 1248–1254. [DOI] [PMID: 16766671]
2.  Böttcher, C., Westphal, L., Schmotz, C., Prade, E., Scheel, D. and Glawischnig, E. The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana. Plant Cell 21 (2009) 1830–1845. [DOI] [PMID: 19567706]
[EC 1.14.19.52 created 2017]
 
 
EC 1.14.99.58
Accepted name: heme oxygenase (biliverdin-IX-β and δ-forming)
Reaction: (1) protoheme + 3 reduced acceptor + 3 O2 = biliverdin-IX-δ + CO + Fe2+ + 3 acceptor + 3 H2O
(2) protoheme + 3 reduced acceptor + 3 O2 = biliverdin-IX-β + CO + Fe2+ + 3 acceptor + 3 H2O
For diagram of biliverdin biosynthesis, click here
Glossary: biliverdin-IX-β = 3,7-bis(2-carboxyethyl)-2,8,12,17-tetramethyl-13,18-divinylbilin-1,19(21H,24H)-dione
biliverdin-IX-δ = 3,7-bis(2-carboxyethyl)-2,8,13,18-tetramethyl-12,17-divinylbilin-1,19(21H,24H)-dione
Other name(s): pigA (gene name)
Systematic name: protoheme,donor:oxygen oxidoreductase (biliverdin-IX-β and δ-forming)
Comments: The enzyme, characterized from the bacterium Pseudomonas aeruginosa, differs from EC 1.14.15.20, heme oxygenase (biliverdin-producing, ferredoxin), in that the heme substrate is rotated by approximately 110 degrees within the active site, resulting in cleavage at a different part of the ring. It forms a mixture of about 70% biliverdin-IX-δ and 30% biliverdin-IX-β.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Ratliff, M., Zhu, W., Deshmukh, R., Wilks, A. and Stojiljkovic, I. Homologues of neisserial heme oxygenase in gram-negative bacteria: degradation of heme by the product of the pigA gene of Pseudomonas aeruginosa. J. Bacteriol. 183 (2001) 6394–6403. [DOI] [PMID: 11591684]
2.  Caignan, G.A., Deshmukh, R., Wilks, A., Zeng, Y., Huang, H.W., Moenne-Loccoz, P., Bunce, R.A., Eastman, M.A. and Rivera, M. Oxidation of heme to β- and δ-biliverdin by Pseudomonas aeruginosa heme oxygenase as a consequence of an unusual seating of the heme. J. Am. Chem. Soc. 124 (2002) 14879–14892. [DOI] [PMID: 12475329]
3.  Friedman, J., Lad, L., Li, H., Wilks, A. and Poulos, T.L. Structural basis for novel δ-regioselective heme oxygenation in the opportunistic pathogen Pseudomonas aeruginosa. Biochemistry 43 (2004) 5239–5245. [DOI] [PMID: 15122889]
[EC 1.14.99.58 created 2017]
 
 
EC 1.16.3.3
Accepted name: manganese oxidase
Reaction: 4 Mn2+ + 2 O2 + 4 H2O = 4 MnIVO2 + 8 H+ (overall reaction)
(1a) 4 Mn2+ + O2 + 4 H+ = 4 Mn3+ + 2 H2O
(1b) 4 Mn3+ + O2 + 6 H2O = 4 MnIVO2 + 12 H+
Other name(s): mnxG (gene name); mofA (gene name); moxA (gene name); cotA (gene name)
Systematic name: manganese(II):oxygen oxidoreductase
Comments: The enzyme, which belongs to the multicopper oxidase family, is found in many bacterial strains. It oxidizes soluble manganese(II) to insoluble manganese(IV) oxides. Since the enzyme is localized to the outer surface of the cell, its activity usually results in encrustation of the cells by the oxides. The physiological function of bacterial manganese(II) oxidation remains unclear.
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Corstjens, P.L.A.M., de Vrind, J.P.M., Goosen, T. and de Vrind-de Jong, E.W. Identification and molecular analysis of the Leptothrix discophora SS-1 mofA gene, a gene putatively encoding a manganese-oxidizing protein with copper domains. Geomicrobiol. J. 14 (1997) 91–108.
2.  Francis, C.A., Casciotti, K.L. and Tebo, B.M. Localization of Mn(II)-oxidizing activity and the putative multicopper oxidase, MnxG, to the exosporium of the marine Bacillus sp. strain SG-1. Arch. Microbiol. 178 (2002) 450–456. [DOI] [PMID: 12420165]
3.  Ridge, J.P., Lin, M., Larsen, E.I., Fegan, M., McEwan, A.G. and Sly, L.I. A multicopper oxidase is essential for manganese oxidation and laccase-like activity in Pedomicrobium sp. ACM 3067. Environ. Microbiol. 9 (2007) 944–953. [DOI] [PMID: 17359266]
4.  Geszvain, K., McCarthy, J.K. and Tebo, B.M. Elimination of manganese(II,III) oxidation in Pseudomonas putida GB-1 by a double knockout of two putative multicopper oxidase genes. Appl. Environ. Microbiol. 79 (2013) 357–366. [DOI] [PMID: 23124227]
5.  Su, J., Bao, P., Bai, T., Deng, L., Wu, H., Liu, F. and He, J. CotA, a multicopper oxidase from Bacillus pumilus WH4, exhibits manganese-oxidase activity. PLoS One 8:e60573 (2013). [DOI] [PMID: 23577125]
[EC 1.16.3.3 created 2017]
 
 
EC 1.17.1.9
Accepted name: formate dehydrogenase
Reaction: formate + NAD+ = CO2 + NADH
Other name(s): formate-NAD+ oxidoreductase; FDH I; FDH II; N-FDH; formic hydrogen-lyase; formate hydrogenlyase; hydrogenlyase; NAD+-linked formate dehydrogenase; NAD+-dependent formate dehydrogenase; formate dehydrogenase (NAD+); NAD+-formate dehydrogenase; formate benzyl-viologen oxidoreductase; formic acid dehydrogenase
Systematic name: formate:NAD+ oxidoreductase
Comments: The enzyme from most aerobic organisms is devoid of redox-active centres but that from the proteobacterium Methylosinus trichosporium contains iron-sulfur centres, flavin and a molybdenum centre [3]. Together with EC 1.12.1.2 hydrogen dehydrogenase, forms a system previously known as formate hydrogenlyase.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, Gene, KEGG, PDB, CAS registry number: 9028-85-7
References:
1.  Davison, D.C. Studies on plant formic dehydrogenase. Biochem. J. 49 (1951) 520–526. [PMID: 14886318]
2.  Quayle, J.R. Formate dehydrogenase. Methods Enzymol. 9 (1966) 360–364.
3.  Jollie, D.R. and Lipscomb, J.D. Formate dehydrogenase from Methylosinus trichosporium OB3b. Purification and spectroscopic characterization of the cofactors. J. Biol. Chem. 266 (1991) 21853–21863. [PMID: 1657982]
[EC 1.17.1.9 created 1961 as EC 1.2.1.2, transferred 2017 to EC 1.17.1.9]
 
 
EC 1.17.1.10
Accepted name: formate dehydrogenase (NADP+)
Reaction: formate + NADP+ = CO2 + NADPH
Other name(s): NADP+-dependent formate dehydrogenase
Systematic name: formate:NADP+ oxidoreductase
Comments: A tungsten-selenium-iron protein characterized from the bacterium Moorella thermoacetica. It is extremely sensitive to oxygen.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, PDB, CAS registry number: 51377-43-6
References:
1.  Andreesen, J.R. and Ljungdahl, L.G. Nicotinamide adenine dinucleotide phosphate-dependent formate dehydrogenase from Clostridium thermoaceticum: purification and properties. J. Bacteriol. 120 (1974) 6–14. [PMID: 4154039]
2.  Yamamoto, I., Saiki, T., Liu, S.-M. and Ljungdahl, L.G. Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein. J. Biol. Chem. 258 (1983) 1826–1832. [PMID: 6822536]
[EC 1.17.1.10 created 1978 as EC 1.2.1.43, transferred 2017 to EC 1.17.1.10]
 
 
EC 1.17.1.11
Accepted name: formate dehydrogenase (NAD+, ferredoxin)
Reaction: 2 formate + NAD+ + 2 oxidized ferredoxin [iron-sulfur] cluster = 2 CO2 + NADH + H+ + 2 reduced ferredoxin [iron-sulfur] cluster
Other name(s): electron-bifurcating formate dehydrogenase
Systematic name: formate:NAD+, ferredoxin oxidoreductase
Comments: The enzyme complex, isolated from the bacterium Gottschalkia acidurici, couples the reduction of NAD+ and the reduction of ferredoxin with formate via flavin-based electron bifurcation.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Wang, S., Huang, H., Kahnt, J. and Thauer, R.K. Clostridium acidurici electron-bifurcating formate dehydrogenase. Appl. Environ. Microbiol. 79 (2013) 6176–6179. [DOI] [PMID: 23872566]
[EC 1.17.1.11 created 2015 as EC 1.2.1.93, transferred 2017 to EC 1.17.1.11]
 
 
EC 1.17.2.3
Accepted name: formate dehydrogenase (cytochrome-c-553)
Reaction: formate + 2 ferricytochrome c-553 = CO2 + 2 ferrocytochrome c-553 + H+
Systematic name: formate:ferricytochrome-c-553 oxidoreductase
Comments: The enzyme has been characterized from the bacterium Desulfovibrio vulgaris. In vitro, yeast cytochrome c, ferricyanide and phenazine methosulfate can act as acceptors.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Yagi, T. Formate: cytochrome oxidoreductase of Desulfovibrio vulgaris. J. Biochem. (Tokyo) 66 (1969) 473–478. [PMID: 4982127]
2.  Yagi, T. Purification and properties of cytochrome c-553, an electron acceptor for formate dehydrogenase of Desulfovibrio vulgaris, Miyazaki. Biochim. Biophys. Acta 548 (1979) 96–105. [DOI] [PMID: 226135]
[EC 1.17.2.3 created 1981 as EC 1.2.2.3, transferred 2017 to EC 1.17.2.3]
 
 
EC 1.17.5.3
Accepted name: formate dehydrogenase-N
Reaction: formate + a quinone = CO2 + a quinol
Other name(s): Fdh-N; FdnGHI; nitrate-inducible formate dehydrogenase; formate dehydrogenase N; FDH-N; nitrate inducible Fdn; nitrate inducible formate dehydrogenase
Systematic name: formate:quinone oxidoreductase
Comments: The enzyme contains molybdopterin-guanine dinucleotides, five [4Fe-4S] clusters and two heme b groups. Formate dehydrogenase-N oxidizes formate in the periplasm, transferring electrons via the menaquinone pool in the cytoplasmic membrane to a dissimilatory nitrate reductase (EC 1.7.5.1), which transfers electrons to nitrate in the cytoplasm. The system generates proton motive force under anaerobic conditions [3].
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Enoch, H.G. and Lester, R.L. The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli. J. Biol. Chem. 250 (1975) 6693–6705. [PMID: 1099093]
2.  Jormakka, M., Tornroth, S., Byrne, B. and Iwata, S. Molecular basis of proton motive force generation: structure of formate dehydrogenase-N. Science 295 (2002) 1863–1868. [DOI] [PMID: 11884747]
3.  Jormakka, M., Tornroth, S., Abramson, J., Byrne, B. and Iwata, S. Purification and crystallization of the respiratory complex formate dehydrogenase-N from Escherichia coli. Acta Crystallogr. D Biol. Crystallogr. 58 (2002) 160–162. [PMID: 11752799]
[EC 1.17.5.3 created 2010 as EC 1.1.5.6, transferred 2017 to EC 1.17.5.3]
 
 
EC 1.17.98.3
Accepted name: formate dehydrogenase (coenzyme F420)
Reaction: formate + oxidized coenzyme F420 = CO2 + reduced coenzyme F420
Other name(s): coenzyme F420 reducing formate dehydrogenase; coenzyme F420-dependent formate dehydrogenase
Systematic name: formate:coenzyme-F420 oxidoreductase
Comments: The enzyme, characterized from methanogenic archaea, is involved in formate-dependent H2 production. It contains noncovalently bound FAD [1].
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Schauer, N.L. and Ferry, J.G. FAD requirement for the reduction of coenzyme F420 by formate dehydrogenase from Methanobacterium formicicum. J. Bacteriol. 155 (1983) 467–472. [PMID: 6874636]
2.  Schauer, N.L. and Ferry, J.G. Composition of the coenzyme F420-dependent formate dehydrogenase from Methanobacterium formicicum. J. Bacteriol. 165 (1986) 405–411. [DOI] [PMID: 3944055]
3.  Lupa, B., Hendrickson, E.L., Leigh, J.A. and Whitman, W.B. Formate-dependent H2 production by the mesophilic methanogen Methanococcus maripaludis. Appl. Environ. Microbiol. 74 (2008) 6584–6590. [DOI] [PMID: 18791018]
[EC 1.17.98.3 created 2014 as EC 1.2.99.9, transferred 2017 to EC 1.17.98.3]
 
 
EC 1.17.99.7
Transferred entry: formate dehydrogenase (acceptor). Now classified as EC 1.17.98.4, formate dehydrogenase (hydrogenase).
[EC 1.17.99.7 created 2010 as EC 1.1.99.33, transferred 2017 to EC 1.17.99.7, deleted 2020]
 
 
EC 2.1.1.343
Accepted name: 8-amino-8-demethylriboflavin N,N-dimethyltransferase
Reaction: 2 S-adenosyl-L-methionine + 8-amino-8-demethylriboflavin = 2 S-adenosyl-L-homocysteine + roseoflavin (overall reaction)
(1a) S-adenosyl-L-methionine + 8-amino-8-demethylriboflavin = S-adenosyl-L-homocysteine + 8-demethyl-8-(methylamino)riboflavin
(1b) S-adenosyl-L-methionine + 8-demethyl-8-(methylamino)riboflavin = S-adenosyl-L-homocysteine + roseoflavin
For diagram of roseoflavin biosynthesis, click here
Glossary: roseoflavin = 8-demethyl-8-(dimethylamino)riboflavin
Other name(s): rosA (gene name)
Systematic name: S-adenosyl-L-methionine:8-amino-8-demethylriboflavin N,N-dimethyltransferase
Comments: The enzyme, characterized from the soil bacterium Streptomyces davawensis, catalyses the last two steps in the biosynthesis of the antibiotic roseoflavin.
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Jankowitsch, F., Kuhm, C., Kellner, R., Kalinowski, J., Pelzer, S., Macheroux, P. and Mack, M. A novel N,N-8-amino-8-demethyl-D-riboflavin dimethyltransferase (RosA) catalyzing the two terminal steps of roseoflavin biosynthesis in Streptomyces davawensis. J. Biol. Chem. 286 (2011) 38275–38285. [DOI] [PMID: 21911488]
2.  Tongsook, C., Uhl, M.K., Jankowitsch, F., Mack, M., Gruber, K. and Macheroux, P. Structural and kinetic studies on RosA, the enzyme catalysing the methylation of 8-demethyl-8-amino-D-riboflavin to the antibiotic roseoflavin. FEBS J. 283 (2016) 1531–1549. [DOI] [PMID: 26913589]
[EC 2.1.1.343 created 2017]
 
 
EC 2.1.1.344
Accepted name: ornithine lipid N-methyltransferase
Reaction: 3 S-adenosyl-L-methionine + an ornithine lipid = 3 S-adenosyl-L-homocysteine + an N,N,N-trimethylornithine lipid (overall reaction)
(1a) S-adenosyl-L-methionine + an ornithine lipid = S-adenosyl-L-homocysteine + an N-methylornithine lipid
(1b) S-adenosyl-L-methionine + an N-methylornithine lipid = S-adenosyl-L-homocysteine + an N,N-dimethylornithine lipid
(1c) S-adenosyl-L-methionine + an N,N-dimethylornithine lipid = S-adenosyl-L-homocysteine + an N,N,N-trimethylornithine lipid
Glossary: an ornithine lipid = an Nα-[(3R)-3-(acyloxy)acyl]-L-ornithine
Other name(s): olsG (gene name)
Systematic name: S-adenosyl-L-methionine:ornithine lipid N-methyltransferase
Comments: The enzyme, characterized from the bacterium Singulisphaera acidiphila, catalyses three successive methylations of the terminal δ-nitrogen in ornithine lipids.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Escobedo-Hinojosa, W.I., Vences-Guzman, M.A., Schubotz, F., Sandoval-Calderon, M., Summons, R.E., Lopez-Lara, I.M., Geiger, O. and Sohlenkamp, C. OlsG (Sinac_1600) is an ornithine lipid N-methyltransferase from the planctomycete Singulisphaera acidiphila. J. Biol. Chem. 290 (2015) 15102–15111. [DOI] [PMID: 25925947]
[EC 2.1.1.344 created 2017]
 
 
EC 2.3.1.265
Accepted name: phosphatidylinositol dimannoside acyltransferase
Reaction: (1) an acyl-CoA + 2,6-di-O-α-D-mannosyl-1-phosphatidyl-1D-myo-inositol = CoA + 2-O-(6-O-acyl-α-D-mannosyl)-6-O-α-D-mannosyl-1-phosphatidyl-1D-myo-inositol
(2) an acyl-CoA + 2-O-α-D-mannosyl-1-phosphatidyl-1D-myo-inositol = CoA + 2-O-(6-O-acyl-α-D-mannosyl)-1-phosphatidyl-1D-myo-inositol
Other name(s): PIM2 acyltransferase; ptfP1 (gene name)
Systematic name: acyl-CoA:2,6-di-O-α-D-mannosyl-1-phosphatidyl-1D-myo-inositol acyltransferase
Comments: The enzyme, found in Corynebacteriales, is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIMs).
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Svetlikova, Z., Barath, P., Jackson, M., Kordulakova, J. and Mikusova, K. Purification and characterization of the acyltransferase involved in biosynthesis of the major mycobacterial cell envelope glycolipid—monoacylated phosphatidylinositol dimannoside. Protein Expr. Purif. 100 (2014) 33–39. [DOI] [PMID: 24810911]
[EC 2.3.1.265 created 2017]
 
 
EC 2.3.2.4
Transferred entry: γ-glutamylcyclotransferase. Now classified as EC 4.3.2.9, γ-glutamylcyclotransferase
[EC 2.3.2.4 created 1972, deleted 2017]
 
 
EC 2.3.2.30
Accepted name: L-ornithine Nα-acyltransferase
Reaction: L-ornithine + a (3R)-3-hydroxyacyl-[acyl-carrier protein] = a lyso-ornithine lipid + a holo-[acyl-carrier protein]
Glossary: a lyso-ornithine lipid = an Nα-[(3R)-hydroxy-acyl]-L-ornithine
Other name(s): olsB (gene name)
Systematic name: L-ornithine Nα-(3R)-3-hydroxy-acyltransferase
Comments: The enzyme, found in bacteria, catalyses the first step in the biosynthesis of ornithine lipids.
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Gao, J.L., Weissenmayer, B., Taylor, A.M., Thomas-Oates, J., Lopez-Lara, I.M. and Geiger, O. Identification of a gene required for the formation of lyso-ornithine lipid, an intermediate in the biosynthesis of ornithine-containing lipids. Mol. Microbiol. 53 (2004) 1757–1770. [DOI] [PMID: 15341653]
2.  Vences-Guzman, M.A., Guan, Z., Bermudez-Barrientos, J.R., Geiger, O. and Sohlenkamp, C. Agrobacteria lacking ornithine lipids induce more rapid tumour formation. Environ. Microbiol. 15 (2013) 895–906. [DOI] [PMID: 22958119]
[EC 2.3.2.30 created 2017]
 
 
*EC 2.4.1.52
Accepted name: poly(glycerol-phosphate) α-glucosyltransferase
Reaction: n UDP-α-D-glucose + 4-O-{poly[(2R)-glycerophospho]-(2R)-glycerophospho}-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = n UDP + 4-O-{poly[(2R)-2-α-D-glucosyl-1-glycerophospho]-(2R)-glycerophospho}-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): UDP glucose-poly(glycerol-phosphate) α-glucosyltransferase; uridine diphosphoglucose-poly(glycerol-phosphate) α-glucosyltransferase; tagE (gene name); UDP-glucose:poly(glycerol-phosphate) α-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:4-O-{poly[(2R)-glycerophospho]-(2R)-glycerophospho}-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol α-D-glucosyltransferase (configuration-retaining)
Comments: Involved in the biosynthesis of poly glycerol phosphate teichoic acids in bacterial cell walls. This enzyme, isolated from Bacillus subtilis 168, adds an α-D-glucose to the free OH groups of the glycerol units. The enzyme has a strong preference for UDP-α-glucose as the sugar donor. It has no activity with poly(ribitol phosphate).
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB, CAS registry number: 37277-60-4
References:
1.  Glaser, L. and Burger, M.M. The synthesis of teichoic acids. 3. Glucosylation of polyglycerophosphate. J. Biol. Chem. 239 (1964) 3187–3191. [PMID: 14245359]
2.  Allison, S.E., D'Elia, M.A., Arar, S., Monteiro, M.A. and Brown, E.D. Studies of the genetics, function, and kinetic mechanism of TagE, the wall teichoic acid glycosyltransferase in Bacillus subtilis 168. J. Biol. Chem. 286 (2011) 23708–23716. [DOI] [PMID: 21558268]
[EC 2.4.1.52 created 1972, modified 2017]
 
 
*EC 2.4.1.150
Accepted name: N-acetyllactosaminide β-1,6-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + β-D-Gal-(1→4)-β-D-GlcNAc-(1→3)-β-D-Gal-(1→4)-β-D-GlcNAc-R = UDP + β-D-Gal-(1→4)-β-D-GlcNAc-(1→3)-[β-D-GlcNAc-(1→6)]-β-D-Gal-(1→4)-β-D-GlcNAc-R
Glossary: β-D-galactosyl-(1→4)-N-acetyl-D-glucosaminyl-R = type 2 precursor disaccharide
Other name(s): GCNT2 (gene name); GCNT3 (gene name); IGnT; I-branching β1,6-N-acetylglucosaminyltransferase; N-acetylglucosaminyltransferase; uridine diphosphoacetylglucosamine-acetyllactosaminide β1→6-acetylglucosaminyltransferase; Galβ1→4GlcNAc-R β1→6 N-acetylglucosaminyltransferase; UDP-N-acetyl-D-glucosamine:β-D-galactosyl-1,4-N-acetyl-D-glucosaminide β-1,6-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:β-D-galactosyl-(1→4)-N-acetyl-β-D-glucosaminyl-(1→3)-β-D-galactosyl-(1→4)-N-acetyl-β-D-glucosaminide 6-β-N-acetylglucosaminyltransferase (configuration-inverting)
Comments: The enzyme acts on poly-N-acetyllactosamine [glycan chains of β-D-galactosyl-(1→4)-N-acetyl-D-glucosamine units connected by β(1,3) linkages] attached to proteins or lipids. It transfers a GlcNAc residue by β(1,6)-linkage to galactosyl residues close to non-reducing terminals, introducing a branching pattern known as I branching.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, CAS registry number: 85638-40-0
References:
1.  Van den Eijnden, D.H., Winterwerp, H., Smeeman, P. and Schiphorst, W.E.C.M. Novikoff ascites tumor cells contain N-acetyllactosaminide β1→3 and β1→6 N-acetylglucosaminyltransferase activity. J. Biol. Chem. 258 (1983) 3435–3437. [PMID: 6219989]
2.  Basu, M. and Basu, S. Biosynthesis in vitro of Ii core glycosphingolipids from neolactotetraosylceramide by β 1-3- and β 1-6-N-acetylglucosaminyltransferases from mouse T-lymphoma. J. Biol. Chem. 259 (1984) 12557–12562. [PMID: 6238026]
3.  Piller, F., Cartron, J.P., Maranduba, A., Veyrieres, A., Leroy, Y. and Fournet, B. Biosynthesis of blood group I antigens. Identification of a UDP-GlcNAc:GlcNAc β1-3Gal(-R) β1-6(GlcNAc to Gal) N-acetylglucosaminyltransferase in hog gastric mucosa. J. Biol. Chem. 259 (1984) 13385–13390. [PMID: 6490658]
4.  Bierhuizen, M.F., Maemura, K., Kudo, S. and Fukuda, M. Genomic organization of core 2 and I branching β-1,6-N-acetylglucosaminyltransferases. Implication for evolution of the β-1,6-N-acetylglucosaminyltransferase gene family. Glycobiology 5 (1995) 417–425. [DOI] [PMID: 7579796]
5.  Ujita, M., McAuliffe, J., Suzuki, M., Hindsgaul, O., Clausen, H., Fukuda, M.N. and Fukuda, M. Regulation of I-branched poly-N-acetyllactosamine synthesis. Concerted actions by I-extension enzyme, I-branching enzyme, and β1,4-galactosyltransferase I. J. Biol. Chem. 274 (1999) 9296–9304. [DOI] [PMID: 10092606]
6.  Yeh, J.C., Ong, E. and Fukuda, M. Molecular cloning and expression of a novel β-1,6-N-acetylglucosaminyltransferase that forms core 2, core 4, and I branches. J. Biol. Chem. 274 (1999) 3215–3221. [DOI] [PMID: 9915862]
[EC 2.4.1.150 created 1984 (EC 2.4.1.164 created 1989, incorporated 2016), modified 2017]
 
 
EC 2.4.1.164
Transferred entry: galactosyl-N-acetylglucosaminylgalactosylglucosyl-ceramide β-1,6-N-acetylglucosaminyltransferase, now included with EC 2.4.1.150, N-acetyllactosaminide β-1,6-N-acetylglucosaminyltransferase
[EC 2.4.1.164 created 1989, deleted 2016]
 
 
EC 2.4.1.347
Accepted name: α,α-trehalose-phosphate synthase (ADP-forming)
Reaction: ADP-α-D-glucose + D-glucose 6-phosphate = ADP + α,α-trehalose 6-phosphate
Other name(s): otsA (gene name); ADP-glucose—glucose-phosphate glucosyltransferase
Systematic name: ADP-α-D-glucose:D-glucose-6-phosphate 1-α-D-glucosyltransferase (configuration-retaining)
Comments: The enzyme has been reported from the yeast Saccharomyces cerevisiae and from mycobacteria. The enzyme from Mycobacterium tuberculosis can also use UDP-α-D-glucose, but the activity with ADP-α-D-glucose, which is considered the main substrate in vivo, is higher.
Links to other databases: BRENDA, EXPASY, Gene, GTD, KEGG, PDB, CAS registry number: 9030-07-3
References:
1.  Ferreira, J.C., Thevelein, J.M., Hohmann, S., Paschoalin, V.M., Trugo, L.C. and Panek, A.D. Trehalose accumulation in mutants of Saccharomyces cerevisiae deleted in the UDPG-dependent trehalose synthase-phosphatase complex. Biochim. Biophys. Acta 1335 (1997) 40–50. [DOI] [PMID: 9133641]
2.  Pan, Y.T., Carroll, J.D. and Elbein, A.D. Trehalose-phosphate synthase of Mycobacterium tuberculosis. Cloning, expression and properties of the recombinant enzyme. Eur. J. Biochem. 269 (2002) 6091–6100. [DOI] [PMID: 12473104]
3.  Asencion Diez, M.D., Demonte, A.M., Syson, K., Arias, D.G., Gorelik, A., Guerrero, S.A., Bornemann, S. and Iglesias, A.A. Allosteric regulation of the partitioning of glucose-1-phosphate between glycogen and trehalose biosynthesis in Mycobacterium tuberculosis. Biochim. Biophys. Acta 1850 (2015) 13–21. [DOI] [PMID: 25277548]
[EC 2.4.1.347 created 2017]
 
 
EC 2.5.1.141
Accepted name: heme o synthase
Reaction: (2E,6E)-farnesyl diphosphate + protoheme IX + H2O = diphosphate + ferroheme o
For diagram of heme o biosynthesis, click here
Other name(s): ctaB (gene name); COX10 (gene name)
Systematic name: (2E,6E)-farnesyl-diphosphate:protoheme IX farnesyltranstransferase
Comments: The enzyme, found in many archaea, bacteria, and eukaryotes, produces heme o, which in many cases is further modified into heme a. In organisms that produce heme a, the enzyme forms a complex with heme a synthase. In some archaeal species the enzyme transfers a geranylgeranyl group instead of a farnesyl group.
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Saiki, K., Mogi, T. and Anraku, Y. Heme O biosynthesis in Escherichia coli: the cyoE gene in the cytochrome bo operon encodes a protoheme IX farnesyltransferase. Biochem. Biophys. Res. Commun. 189 (1992) 1491–1497. [DOI] [PMID: 1336371]
2.  Svensson, B., Lubben, M. and Hederstedt, L. Bacillus subtilis CtaA and CtaB function in haem A biosynthesis. Mol. Microbiol. 10 (1993) 193–201. [DOI] [PMID: 7968515]
3.  Glerum, D.M. and Tzagoloff, A. Isolation of a human cDNA for heme A:farnesyltransferase by functional complementation of a yeast cox10 mutant. Proc. Natl. Acad. Sci. USA 91 (1994) 8452–8456. [DOI] [PMID: 8078902]
4.  Lubben, M. and Morand, K. Novel prenylated hemes as cofactors of cytochrome oxidases. Archaea have modified hemes A and O. J. Biol. Chem. 269 (1994) 21473–21479. [PMID: 8063781]
5.  Brown, B.M., Wang, Z., Brown, K.R., Cricco, J.A. and Hegg, E.L. Heme O synthase and heme A synthase from Bacillus subtilis and Rhodobacter sphaeroides interact in Escherichia coli. Biochemistry 43 (2004) 13541–13548. [DOI] [PMID: 15491161]
6.  Mogi, T. Over-expression and characterization of Bacillus subtilis heme O synthase. J. Biochem. 145 (2009) 669–675. [DOI] [PMID: 19204012]
[EC 2.5.1.141 created 2017]
 
 
EC 2.7.1.218
Accepted name: fructoselysine 6-kinase
Reaction: ATP + N6-(D-fructosyl)-L-lysine = ADP + N6-(6-phospho-D-fructosyl)-L-lysine
Other name(s): frlD (gene name)
Systematic name: ATP:D-fructosyl-L-lysine 6-phosphotransferase
Comments: The enzyme, characterized from the bacterium Escherichia coli, has very little activity with fructose.
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Wiame, E., Delpierre, G., Collard, F. and Van Schaftingen, E. Identification of a pathway for the utilization of the Amadori product fructoselysine in Escherichia coli. J. Biol. Chem. 277 (2002) 42523–42529. [DOI] [PMID: 12147680]
2.  Wiame, E. and Van Schaftingen, E. Fructoselysine 3-epimerase, an enzyme involved in the metabolism of the unusual Amadori compound psicoselysine in Escherichia coli. Biochem. J. 378 (2004) 1047–1052. [DOI] [PMID: 14641112]
[EC 2.7.1.218 created 2017]
 
 
EC 2.7.1.219
Accepted name: D-threonate 4-kinase
Reaction: ATP + D-threonate = ADP + 4-phospho-D-threonate
For diagram of erythronate and threonate catabolism, click here
Glossary: D-threonate = (2S,3R)-2,3,4-trihydroxybutanoate
Other name(s): dtnK (gene name)
Systematic name: ATP:D-threonate 4-phosphotransferase
Comments: The enzyme, characterized from bacteria, is involved in a pathway for D-threonate catabolism.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Zhang, X., Carter, M.S., Vetting, M.W., San Francisco, B., Zhao, S., Al-Obaidi, N.F., Solbiati, J.O., Thiaville, J.J., de Crecy-Lagard, V., Jacobson, M.P., Almo, S.C. and Gerlt, J.A. Assignment of function to a domain of unknown function: DUF1537 is a new kinase family in catabolic pathways for acid sugars. Proc. Natl. Acad. Sci. USA 113 (2016) E4161–E4169. [DOI] [PMID: 27402745]
[EC 2.7.1.219 created 2017]
 
 
EC 2.7.1.220
Accepted name: D-erythronate 4-kinase
Reaction: ATP + D-erythronate = ADP + 4-phospho-D-erythronate
Glossary: D-erythronate = (2R,3R)-2,3,4-trihydroxybutanoate
Other name(s): denK (gene name)
Systematic name: ATP:D-erythronate 4-phosphotransferase
Comments: The enzyme, characterized from bacteria, is involved in a pathway for D-erythronate catabolism.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Zhang, X., Carter, M.S., Vetting, M.W., San Francisco, B., Zhao, S., Al-Obaidi, N.F., Solbiati, J.O., Thiaville, J.J., de Crecy-Lagard, V., Jacobson, M.P., Almo, S.C. and Gerlt, J.A. Assignment of function to a domain of unknown function: DUF1537 is a new kinase family in catabolic pathways for acid sugars. Proc. Natl. Acad. Sci. USA 113 (2016) E4161–E4169. [DOI] [PMID: 27402745]
[EC 2.7.1.220 created 2017]
 
 
EC 2.7.1.221
Accepted name: N-acetylmuramate 1-kinase
Reaction: ATP + N-acetyl-D-muramate = ADP + N-acetyl-α-D-muramate 1-phosphate
Glossary: N-acetyl-D-muramate = 3-O-[(1R)-1-carboxyethyl]-2-acetoxy-2-deoxy-D-glucopyranose
Other name(s): amgK (gene name)
Systematic name: ATP:N-acetyl-D-muramate 1-phosphotransferase
Comments: The enzyme, characterized from Pseudomonas species, participates in a peptidoglycan salvage pathway.
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Gisin, J., Schneider, A., Nagele, B., Borisova, M. and Mayer, C. A cell wall recycling shortcut that bypasses peptidoglycan de novo biosynthesis. Nat. Chem. Biol. 9 (2013) 491–493. [DOI] [PMID: 23831760]
[EC 2.7.1.221 created 2017]
 
 
EC 2.7.7.98
Transferred entry: 4-hydroxybenzoate adenylyltransferase. Now EC 6.2.1.50, 4-hydroxybenzoate adenylyltransferase FadD22
[EC 2.7.7.98 created 2017, deleted 2017]
 
 
EC 2.7.7.99
Accepted name: N-acetyl-α-D-muramate 1-phosphate uridylyltransferase
Reaction: UDP + N-acetyl-α-D-muramate 1-phosphate = UDP-N-acetyl-α-D-muramate + phosphate
Glossary: N-acetyl-α-D-muramate = 3-O-[(1R)-1-carboxyethyl]-2-acetoxy-2-deoxy-D-glucopyranose
Other name(s): murU (gene name)
Systematic name: UDP:N-acetyl-α-D-muramate 1-phosphate uridylyltransferase
Comments: The enzyme, characterized from Pseudomonas species, participates in a peptidoglycan salvage pathway.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Gisin, J., Schneider, A., Nagele, B., Borisova, M. and Mayer, C. A cell wall recycling shortcut that bypasses peptidoglycan de novo biosynthesis. Nat. Chem. Biol. 9 (2013) 491–493. [DOI] [PMID: 23831760]
2.  Renner-Schneck, M., Hinderberger, I., Gisin, J., Exner, T., Mayer, C. and Stehle, T. Crystal structure of the N-acetylmuramic acid α-1-phosphate (MurNAc-α1-P) uridylyltransferase MurU, a minimal sugar nucleotidyltransferase and potential drug target enzyme in Gram-negative pathogens. J. Biol. Chem. 290 (2015) 10804–10813. [DOI] [PMID: 25767118]
[EC 2.7.7.99 created 2017]
 
 
*EC 2.8.2.24
Accepted name: aromatic desulfoglucosinolate sulfotransferase
Reaction: (1) 3′-phosphoadenylyl sulfate + desulfoglucotropeolin = adenosine 3′,5′-bisphosphate + glucotropeolin
(2) 3′-phosphoadenylyl sulfate + indolylmethyl-desulfoglucosinolate = adenosine 3′,5′-bisphosphate + glucobrassicin
For diagram of glucotropeolin biosynthesis, click here
Glossary: 3′-phosphoadenylyl sulfate = PAPS
Other name(s): desulfoglucosinolate sulfotransferase (ambiguous); PAPS-desulfoglucosinolate sulfotransferase (ambiguous); 3′-phosphoadenosine-5′-phosphosulfate:desulfoglucosinolate sulfotransferase (ambiguous); 3′-phosphoadenylyl-sulfate:aromatic desulfoglucosinolate sulfotransferase
Systematic name: 3′-phosphoadenylyl-sulfate:aromatic desulfoglucosinolate sulfonotransferase
Comments: This enzyme, characterized from cruciferous plants, catalyses the last step in the biosynthesis of tryptophan- and phenylalanine-derived glucosinolates. cf. EC 2.8.2.38, aliphatic desulfoglucosinolate sulfotransferase.
Links to other databases: BRENDA, EXPASY, KEGG, PDB, CAS registry number: 121479-85-4
References:
1.  Jain, J.C., Reed, D.W., Groot Wassink, J.W.D. and Underhill, E.W. A radioassay of enzymes catalyzing the glucosylation and sulfation steps of glucosinolate biosynthesis in Brassica species. Anal. Biochem. 178 (1989) 137–140. [DOI] [PMID: 2524977]
2.  Klein, M., Reichelt, M., Gershenzon, J. and Papenbrock, J. The three desulfoglucosinolate sulfotransferase proteins in Arabidopsis have different substrate specificities and are differentially expressed. FEBS J. 273 (2006) 122–136. [DOI] [PMID: 16367753]
3.  Klein, M. and Papenbrock, J. Kinetics and substrate specificities of desulfo-glucosinolate sulfotransferases in Arabidopsis thaliana. Physiol. Plant. 135 (2009) 140–149. [DOI] [PMID: 19077143]
[EC 2.8.2.24 created 1992, modified 2017]
 
 
EC 2.8.2.38
Accepted name: aliphatic desulfoglucosinolate sulfotransferase
Reaction: 3′-phosphoadenylyl sulfate + an aliphatic desulfoglucosinolate = adenosine 3′,5′-bisphosphate + an aliphatic glucosinolate
Other name(s): SOT17 (gene name); SOT18 (gene name); 3′-phosphoadenylyl-sulfate:aliphatic desulfoglucosinolate sulfotransferase
Systematic name: 3′-phosphoadenylyl-sulfate:aliphatic desulfoglucosinolate sulfonotransferase
Comments: The enzyme catalyses the last step in the biosynthesis of aliphatic glucosinolate core structures. cf. EC 2.8.2.24, aromatic desulfoglucosinolate sulfotransferase.
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Piotrowski, M., Schemenewitz, A., Lopukhina, A., Muller, A., Janowitz, T., Weiler, E.W. and Oecking, C. Desulfoglucosinolate sulfotransferases from Arabidopsis thaliana catalyze the final step in the biosynthesis of the glucosinolate core structure. J. Biol. Chem. 279 (2004) 50717–50725. [DOI] [PMID: 15358770]
2.  Klein, M., Reichelt, M., Gershenzon, J. and Papenbrock, J. The three desulfoglucosinolate sulfotransferase proteins in Arabidopsis have different substrate specificities and are differentially expressed. FEBS J. 273 (2006) 122–136. [DOI] [PMID: 16367753]
3.  Klein, M. and Papenbrock, J. Kinetics and substrate specificities of desulfo-glucosinolate sulfotransferases in Arabidopsis thaliana. Physiol. Plant. 135 (2009) 140–149. [DOI] [PMID: 19077143]
[EC 2.8.2.38 created 2017]
 
 
EC 2.8.2.39
Accepted name: hydroxyjasmonate sulfotransferase
Reaction: 3′-phosphoadenylyl-sulfate + 12-hydroxyjasmonate = adenosine 3′,5′-bisphosphate + 12-sulfooxyjasmonate
Glossary: 12-hydroxyjasmonate = {(1R,2R)-2-[(2E)-5-hydroxypent-2-enyl]-3-oxocyclopentyl}acetate
Other name(s): ST2A (gene name); 3′-phosphoadenylyl-sulfate:12-hydroxyjasmonate sulfotransferase
Systematic name: 3′-phosphoadenylyl-sulfate:12-hydroxyjasmonate sulfonotransferase
Comments: The enzyme, charaterized from the plant Arabidopsis thaliana, also acts on 11-hydroxyjasmonate.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Gidda, S.K., Miersch, O., Levitin, A., Schmidt, J., Wasternack, C. and Varin, L. Biochemical and molecular characterization of a hydroxyjasmonate sulfotransferase from Arabidopsis thaliana. J. Biol. Chem. 278 (2003) 17895–17900. [DOI] [PMID: 12637544]
[EC 2.8.2.39 created 2017]
 
 
EC 3.1.3.105
Accepted name: N-acetyl-D-muramate 6-phosphate phosphatase
Reaction: N-acetyl-D-muramate 6-phosphate + H2O = N-acetyl-D-muramate + phosphate
Other name(s): mupP (gene name)
Systematic name: N-acetyl-D-muramate 6-phosphate phosphohydrolase
Comments: The enzyme, characterized from Pseudomonas species, participates in a peptidoglycan salvage pathway.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Borisova, M., Gisin, J. and Mayer, C. The N-acetylmuramic acid 6-phosphate phosphatase MupP completes the Pseudomonas peptidoglycan recycling pathway leading to intrinsic fosfomycin resistance. mBio 8 (2017) e00092-17. [DOI] [PMID: 28351914]
[EC 3.1.3.105 created 2017]
 
 
EC 3.1.4.58
Accepted name: RNA 2′,3′-cyclic 3′-phosphodiesterase
Reaction: (ribonucleotide)n-2′,3′-cyclic phosphate + H2O = (ribonucleotide)n-2′-phosphate
Other name(s): thpR (gene name); ligT (gene name)
Systematic name: (ribonucleotide)n-2′,3′-cyclic phosphate 3′-nucleotidohydrolase
Comments: The enzyme hydrolyses RNA 2′,3′-cyclic phosphodiester to an RNA 2′-phosphomonoester. In vitro the enzyme can also ligate tRNA molecules with 2′,3′-cyclic phosphate to tRNA with 5′-hydroxyl termini, forming a 2′-5′ phosphodiester linkage. However, the ligase activity is unlikely to be relevant in vivo.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Kanai, A., Sato, A., Fukuda, Y., Okada, K., Matsuda, T., Sakamoto, T., Muto, Y., Yokoyama, S., Kawai, G. and Tomita, M. Characterization of a heat-stable enzyme possessing GTP-dependent RNA ligase activity from a hyperthermophilic archaeon, Pyrococcus furiosus. RNA 15 (2009) 420–431. [DOI] [PMID: 19155324]
2.  Remus, B.S., Jacewicz, A. and Shuman, S. Structure and mechanism of E. coli RNA 2′,3′-cyclic phosphodiesterase. RNA 20 (2014) 1697–1705. [DOI] [PMID: 25239919]
[EC 3.1.4.58 created 2017]
 
 
EC 3.1.7.7
Transferred entry: (–)-drimenol synthase. Now EC 4.2.3.194, (–)-drimenol synthase
[EC 3.1.7.7 created 2011, deleted 2017]
 
 
EC 3.1.7.12
Accepted name: (+)-kolavelool synthase
Reaction: (+)-kolavenyl diphosphate + H2O = (+)-kolavelool + diphosphate
For diagram of (+)-kolavenyl diphosphate derived diterpenoids, click here and for diagram of terpentedienyl diphosphate derived diterpenoids, click here
Glossary: (+)-kolavelool = (2ξ)-3-methyl-5-[(1R,2S,4aS,8aS)-1,2,4a,5-tetramethyl-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-yl]pent-1-en-3-ol
Other name(s): Haur_2146
Systematic name: kolavenyl-diphosphate diphosphohydrolase
Comments: Isolated from the bacterium Herpetosiphon aurantiacus.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Nakano, C., Oshima, M., Kurashima, N. and Hoshino, T. Identification of a new diterpene biosynthetic gene cluster that produces O-methylkolavelool in Herpetosiphon aurantiacus. ChemBioChem 16 (2015) 772–781. [DOI] [PMID: 25694050]
[EC 3.1.7.12 created 2017]
 
 
*EC 3.2.1.130
Accepted name: glycoprotein endo-α-1,2-mannosidase
Reaction: GlcMan9GlcNAc2-[protein] + H2O = Man8GlcNAc2-[protein] (isomer 8A1,2,3B1,2) + α-D-glucosyl-(1→3)-α-D-mannopyranose
Glossary: GlcMan9GlcNAc2-[protein] = {α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc}-N-Asn-[protein]
Man8GlcNAc2-[protein] (isomer 8A1,2,3B1,2) = {α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc}-N-Asn-[protein]
Other name(s): glucosylmannosidase; endo-α-D-mannosidase; endo-α-mannosidase; endomannosidase; glucosyl mannosidase; MANEA (gene name); glycoprotein glucosylmannohydrolase
Systematic name: glycoprotein glucosylmannohydrolase (configuration-retaining)
Comments: The enzyme catalyses the hydrolysis of the terminal α-D-glucosyl-(1→3)-D-mannosyl unit from the GlcMan9(GlcNAc)2 oligosaccharide component of N-glucosylated proteins during their processing in the Golgi apparatus. The name for the isomer is based on a nomenclature proposed by Prien et al [7].
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB, CAS registry number: 108022-16-8
References:
1.  Lubas, W.A. and Spiro, R.G. Golgi endo-α-D-mannosidase from rat liver, a novel N-linked carbohydrate unit processing enzyme. J. Biol. Chem. 262 (1987) 3775–3781. [PMID: 3818665]
2.  Tulsiani, D.R.P., Coleman, V.P. and Touster, O. Asparagine-linked glycoprotein biosynthesis in rat brain: identification of glucosidase I, glucosidase II, and endomannosidase (glucosyl mannosidase). Arch. Biochem. Biophys. 277 (1990) 114–121. [DOI] [PMID: 2407194]
3.  Hiraizumi, S., Spohr, U. and Spiro, R.G. Ligand affinity chromatographic purification of rat liver Golgi endomannosidase. J. Biol. Chem. 269 (1994) 4697–4700. [PMID: 8106437]
4.  Spiro, M.J., Bhoyroo, V.D. and Spiro, R.G. Molecular cloning and expression of rat liver endo-α-mannosidase, an N-linked oligosaccharide processing enzyme. J. Biol. Chem. 272 (1997) 29356–29363. [DOI] [PMID: 9361017]
5.  Hamilton, S.R., Li, H., Wischnewski, H., Prasad, A., Kerley-Hamilton, J.S., Mitchell, T., Walling, A.J., Davidson, R.C., Wildt, S. and Gerngross, T.U. Intact α-1,2-endomannosidase is a typical type II membrane protein. Glycobiology 15 (2005) 615–624. [DOI] [PMID: 15677381]
6.  Hardt, B., Volker, C., Mundt, S., Salska-Navarro, M., Hauptmann, M. and Bause, E. Human endo-α1,2-mannosidase is a Golgi-resident type II membrane protein. Biochimie 87 (2005) 169–179. [DOI] [PMID: 15760709]
7.  Prien, J.M., Ashline, D.J., Lapadula, A.J., Zhang, H. and Reinhold, V.N. The high mannose glycans from bovine ribonuclease B isomer characterization by ion trap MS. J. Am. Soc. Mass Spectrom. 20 (2009) 539–556. [DOI] [PMID: 19181540]
[EC 3.2.1.130 created 1990, modified 2017]
 
 
EC 3.2.1.204
Accepted name: 1,3-α-isomaltosidase
Reaction: cyclobis-(1→6)-α-nigerosyl + 2 H2O = 2 isomaltose (overall reaction)
(1a) cyclobis-(1→6)-α-nigerosyl + H2O = α-isomaltosyl-(1→3)-isomaltose
(1b) α-isomaltosyl-(1→3)-isomaltose + H2O = 2 isomaltose
Systematic name: 1,3-α-isomaltohydrolase (configuration-retaining)
Comments: The enzyme, characterized from the bacteria Bacillus sp. NRRL B-21195 and Kribbella flavida, participates in the degradation of starch. The cyclic tetrasaccharide cyclobis-(1→6)-α-nigerosyl is formed from starch extracellularly and imported into the cell, where it is degraded to glucose.
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Kim, Y.K., Kitaoka, M., Hayashi, K., Kim, C.H. and Cote, G.L. Purification and characterization of an intracellular cycloalternan-degrading enzyme from Bacillus sp. NRRL B-21195. Carbohydr. Res. 339 (2004) 1179–1184. [DOI] [PMID: 15063208]
2.  Tagami, T., Miyano, E., Sadahiro, J., Okuyama, M., Iwasaki, T. and Kimura, A. Two novel glycoside hydrolases responsible for the catabolism of cyclobis-(1→6)-α-nigerosyl. J. Biol. Chem. 291 (2016) 16438–16447. [DOI] [PMID: 27302067]
[EC 3.2.1.204 created 2017]
 
 
EC 3.2.1.205
Accepted name: isomaltose glucohydrolase
Reaction: isomaltose + H2O = β-D-glucose + D-glucose
Systematic name: isomaltose 6-α-glucohydrolase (configuration-inverting)
Comments: The enzyme catalyses the hydrolysis of α-1,6-glucosidic linkages from the non-reducing end of its substrate. Unlike EC 3.2.1.10, oligo-1,6-glucosidase, the enzyme inverts the anomeric configuration of the released residue. The enzyme can also act on panose and maltotriose at a lower rate.
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Tagami, T., Miyano, E., Sadahiro, J., Okuyama, M., Iwasaki, T. and Kimura, A. Two novel glycoside hydrolases responsible for the catabolism of cyclobis-(1→6)-α-nigerosyl. J. Biol. Chem. 291 (2016) 16438–16447. [DOI] [PMID: 27302067]
[EC 3.2.1.205 created 2017]
 
 
EC 3.4.19.16
Accepted name: glucosinolate γ-glutamyl hydrolase
Reaction: (1) an (E)-1-(glutathion-S-yl)-N-hydroxy-ω-(methylsulfanyl)alkan-1-imine + H2O = an (E)-1-(L-cysteinylglycin-S-yl)-N-hydroxy-ω-(methylsulfanyl)alkan-1-imine + L-glutamate
(2) (E)-1-(glutathion-S-yl)-N-hydroxy-2-(1H-indol-3-yl)ethan-1-imine + H2O = (E)-1-(L-cysteinylglycin-S-yl)-N-hydroxy-2-(1H-indol-3-yl)ethan-1-imine + L-glutamate
(3) (glutathion-S-yl)(1H-indol-3-yl)acetonitrile + H2O = (L-cysteinylglycin-S-yl)(1H-indol-3-yl)acetonitrile + L-glutamate
(4) (Z)-1-(glutathion-S-yl)-N-hydroxy-2-phenylethan-1-imine + H2O = (Z)-1-(L-cysteinyglycin-S-yl)-N-hydroxy-2-phenylethan-1-imine + L-glutamate
Other name(s): GGP1 (gene name); GGP3 (gene name)
Comments: This enzyme, characterized from the plant Arabidopsis thaliana, participates in the biosynthesis of the plant defense compounds glucosinolates and camalexin. It is the only known plant enzyme capable of hydrolysing the γ-glutamyl residue of glutathione in the cytosol.
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Geu-Flores, F., Møldrup, M.E., Böttcher, C., Olsen, C.E., Scheel, D. and Halkier, B.A. Cytosolic γ-glutamyl peptidases process glutathione conjugates in the biosynthesis of glucosinolates and camalexin in Arabidopsis. Plant Cell 23 (2011) 2456–2469. [DOI] [PMID: 21712415]
[EC 3.4.19.16 created 2017]
 
 
EC 3.13.1.6
Accepted name: [CysO sulfur-carrier protein]-S-L-cysteine hydrolase
Reaction: [CysO sulfur-carrier protein]-Gly-NH-CH2-C(O)-S-L-cysteine + H2O = [CysO sulfur-carrier protein]-Gly-NH-CH2-COOH + L-cysteine
Other name(s): mec (gene name)
Systematic name: [CysO sulfur-carrier protein]-S-L-cysteine sulfohydrolase
Comments: Requires Zn2+. The enzyme, characterized from the bacterium Mycobacterium tuberculosis, participates in an L-cysteine biosynthesis pathway. It acts on the product of EC 2.5.1.113, [CysO sulfur-carrier protein]-thiocarboxylate-dependent cysteine synthase.
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Burns, K.E., Baumgart, S., Dorrestein, P.C., Zhai, H., McLafferty, F.W. and Begley, T.P. Reconstitution of a new cysteine biosynthetic pathway in Mycobacterium tuberculosis. J. Am. Chem. Soc. 127 (2005) 11602–11603. [DOI] [PMID: 16104727]
[EC 3.13.1.6 created 2017]
 
 
EC 4.2.1.172
Accepted name: trans-4-hydroxy-L-proline dehydratase
Reaction: trans-4-hydroxy-L-proline = (S)-1-pyrroline-5-carboxylate + H2O
Glossary: 1-pyrroline = 3,4-dihydro-2H-pyrrole
Systematic name: trans-4-hydroxy-L-proline hydro-lyase
Comments: The enzyme has been characterized from the bacterium Peptoclostridium difficile. The active form contains a glycyl radical that is generated by a dedicated activating enzyme via chemistry involving S-adenosyl-L-methionine (SAM) and a [4Fe-4S] cluster.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Levin, B.J., Huang, Y.Y., Peck, S.C., Wei, Y., Martinez-Del Campo, A., Marks, J.A., Franzosa, E.A., Huttenhower, C. and Balskus, E.P. A prominent glycyl radical enzyme in human gut microbiomes metabolizes trans-4-hydroxy-L-proline. Science 355 (2017) . [DOI] [PMID: 28183913]
[EC 4.2.1.172 created 2017]
 
 
EC 4.2.1.173
Accepted name: ent-8α-hydroxylabd-13-en-15-yl diphosphate synthase
Reaction: ent-8α-hydroxylabd-13-en-15-yl diphosphate = geranylgeranyl diphosphate + H2O
For diagram of (#150)-kolavenyl diphosphate derived diterpenoids, click here
Other name(s): SmCPS4
Systematic name: geranylgeranyl-diphosphate hydro-lyase (ent-8α-hydroxylabd-13-en-15-yl diphosphate-forming)
Comments: Isolated from the plant Salvia miltiorrhiza (red sage).
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Cui, G., Duan, L., Jin, B., Qian, J., Xue, Z., Shen, G., Snyder, J.H., Song, J., Chen, S., Huang, L., Peters, R.J. and Qi, X. Functional divergence of diterpene syntheses in the medicinal plant Salvia miltiorrhiza. Plant Physiol. 169 (2015) 1607–1618. [DOI] [PMID: 26077765]
[EC 4.2.1.173 created 2017]
 
 
EC 4.2.1.174
Accepted name: peregrinol diphosphate synthase
Reaction: peregrinol diphosphate = geranylgeranyl diphosphate + H2O
For diagram of hydroxylabdenyl diphosphate derived diterpenoids, click here
Glossary: peregrinol diphosphate = (13E)-9-hydroxy-8α-labda-13-en-15-yl diphosphate
Other name(s): MvCPS1
Systematic name: geranylgeranyl-diphosphate hydro-lyase (peregrinol-diphosphate-forming)
Comments: Isolated from the plant Marrubium vulgare (white horehound). Involved in marrubiin biosynthesis.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Zerbe, P., Chiang, A., Dullat, H., O'Neil-Johnson, M., Starks, C., Hamberger, B. and Bohlmann, J. Diterpene synthases of the biosynthetic system of medicinally active diterpenoids in Marrubium vulgare. Plant J. 79 (2014) 914–927. [DOI] [PMID: 24990389]
[EC 4.2.1.174 created 2017]
 
 
EC 4.2.3.157
Accepted name: (+)-isoafricanol synthase
Reaction: (2E,6E)-farnesyl diphosphate + H2O = (+)-isoafricanol + diphosphate
Glossary: (+)-isoafricanol = (1aS,4aR,5R,7aS,7bR)-3,3,5,7b-tetramethyldecahydro-4aH-cyclopropa[e]azulen-4a-ol
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [cyclizing, (+)-isoafricanol-forming]
Comments: (+)-Isoafricanol is a sesquiterpene alcohol. Its synthesis has been shown to occur in the bacteria Streptomyces violaceusniger and Streptomyces malaysiensis.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Riclea, R., Citron, C.A., Rinkel, J. and Dickschat, J.S. Identification of isoafricanol and its terpene cyclase in Streptomyces violaceusniger using CLSA-NMR. Chem. Commun. (Camb.) 50 (2014) 4228–4230. [DOI] [PMID: 24626486]
2.  Rabe, P., Samborskyy, M., Leadlay, P.F. and Dickschat, J.S. Isoafricanol synthase from Streptomyces malaysiensis. Org. Biomol. Chem. 15 (2017) 2353–2358. [DOI] [PMID: 28247907]
[EC 4.2.3.157 created 2017]
 
 
EC 4.2.3.158
Accepted name: (–)-spiroviolene synthase
Reaction: geranylgeranyl diphosphate = (–)-spiroviolene + diphosphate
For diagram of biosynthesis of fusicoccane diterpenoids, click here
Glossary: (–)-spiroviolene = (2R,3a′S,3b′R,5S,6a′R)-2,4′,4′,5,6a′-pentamethyl-2′,3′,3a′,3b′,4′,5′,6′,6a′-octahydrospiro[cyclopentane-1,1′-cyclopenta[a]pentalene]
Systematic name: geranylgeranyl-diphosphate diphosphate-lyase [cyclizing, (–)-spiroviolene-forming]
Comments: The enzyme, which forms the diterpene (–)-spiroviolene, has been characterized from the bacterium Streptomyces violens.
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Rabe, P., Rinkel, J., Dolja, E., Schmitz, T., Nubbemeyer, B., Luu, T.H. and Dickschat, J.S. Mechanistic investigations of two bacterial diterpene cyclases: spiroviolene synthase and tsukubadiene synthase. Angew. Chem. Int. Ed. Engl. 56 (2017) 2776–2779. [DOI] [PMID: 28146322]
2.  Xu, H. and Dickschat, J.S. Revision of the cyclisation mechanism for the diterpene spiroviolene and investigations of Its mass spectrometric fragmentation. Chembiochem 22 (2021) 850–854. [DOI] [PMID: 33084237]
[EC 4.2.3.158 created 2017]
 
 
EC 4.2.3.159
Accepted name: tsukubadiene synthase
Reaction: geranylgeranyl diphosphate = tsukubadiene + diphosphate
For diagram of biosynthesis of fusicoccane diterpenoids, click here
Glossary: tsukubadiene = (1S,3aS,5Z,7aS,10aR,11Z)-1,5,8,8,10a-pentamethyl-2,3,3a,4,7,7a,8,9,10,10a-decahydro-1H-dicyclopenta[a,d][9]annulene
Systematic name: geranylgeranyl-diphosphate diphosphate-lyase (cyclizing, tsukubadiene-forming)
Comments: The synthesis of the diterpene tsukubadiene has been shown to occur in the Actinobacterium Streptomyces tsukubaensis.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Yamada, Y., Arima, S., Nagamitsu, T., Johmoto, K., Uekusa, H., Eguchi, T., Shin-ya, K., Cane, D.E. and Ikeda, H. Novel terpenes generated by heterologous expression of bacterial terpene synthase genes in an engineered Streptomyces host. J. Antibiot. (Tokyo) 68 (2015) 385–394. [DOI] [PMID: 25605043]
2.  Rabe, P., Rinkel, J., Dolja, E., Schmitz, T., Nubbemeyer, B., Luu, T.H. and Dickschat, J.S. Mechanistic investigations of two bacterial diterpene cyclases: spiroviolene synthase and tsukubadiene synthase. Angew. Chem. Int. Ed. Engl. 56 (2017) 2776–2779. [DOI] [PMID: 28146322]
[EC 4.2.3.159 created 2017]
 
 
EC 4.2.3.160
Accepted name: (2S,3R,6S,9S)-(–)-protoillud-7-ene synthase
Reaction: (2E,6E)-farnesyl diphosphate = (2S,3R,6S,9S)-(–)-protoillud-7-ene + diphosphate
For diagram of bicyclic and tricyclic sesquiterpenoids derived from humuladienyl cation, click here and for diagram of protoilludene and related sesquiterpenoids, click here
Glossary: (2S,3R,6S,9S)-(–)-protoillud-7-ene = (2aS,4aS,7aS,7bR)-3,6,6,7b-tetramethyl-2,2a,4a,5,6,7,7a,7b-octahydro-1H-cyclobuta[e]indene
pentalenene = (3aS,5aS,8aR)-1,4,7,7-tetramethyl-1,2,3,3a,5a,6,7,8-octahydrocyclopenta[c]pentalene
Other name(s): TPS6 (gene name)
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [cyclizing, (2S,3R,6S,9S)-(–)-protoillud-7-ene-forming]
Comments: The enzyme has been described from the slime-mould Dictyostelium discoideum. It is specific for (2E,6E)-farnesyl diphosphate. While the major product is the sequiterpene (2S,3R,6S,9S)-(–)-protoillud-7-ene, traces of pentalenene are also formed.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Chen, X., Kollner, T.G., Jia, Q., Norris, A., Santhanam, B., Rabe, P., Dickschat, J.S., Shaulsky, G., Gershenzon, J. and Chen, F. Terpene synthase genes in eukaryotes beyond plants and fungi: occurrence in social amoebae. Proc. Natl. Acad. Sci. USA 113 (2016) 12132–12137. [DOI] [PMID: 27790999]
2.  Rabe, P., Rinkel, J., Nubbemeyer, B., Kollner, T.G., Chen, F. and Dickschat, J.S. Terpene cyclases from social Amoebae. Angew. Chem. Int. Ed. Engl. 55 (2016) 15420–15423. [DOI] [PMID: 27862766]
[EC 4.2.3.160 created 2017]
 
 
EC 4.2.3.161
Accepted name: (3S)-(+)-asterisca-2(9),6-diene synthase
Reaction: (2E,6E)-farnesyl diphosphate = (3S)-(+)-asterisca-2(9),6-diene + diphosphate
For diagram of bicyclic and tricyclic sesquiterpenoids derived from humuladienyl cation, click here
Glossary: (3S)-(+)-asterisca-2(9),6-diene = (4S,7Z)-2,2,4,7-tetramethyl-2,3,4,5,6,9-hexahydro-1H-cyclopenta[8]annulene
Other name(s): TPS2 (gene name)
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [cyclizing, (3S)-(+)-asterisca-2(9),6-diene-forming]
Comments: The sequiterpene (3S)-(+)-asterisca-2(9),6-diene has been shown to be synthezised in the slime-mould Dictyostelium discoideum. The enzyme is specific for (2E,6E)-farnesyl diphosphate.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Chen, X., Kollner, T.G., Jia, Q., Norris, A., Santhanam, B., Rabe, P., Dickschat, J.S., Shaulsky, G., Gershenzon, J. and Chen, F. Terpene synthase genes in eukaryotes beyond plants and fungi: occurrence in social amoebae. Proc. Natl. Acad. Sci. USA 113 (2016) 12132–12137. [DOI] [PMID: 27790999]
2.  Rabe, P., Rinkel, J., Nubbemeyer, B., Kollner, T.G., Chen, F. and Dickschat, J.S. Terpene cyclases from social Amoebae. Angew. Chem. Int. Ed. Engl. 55 (2016) 15420–15423. [DOI] [PMID: 27862766]
[EC 4.2.3.161 created 2017]
 
 
EC 4.2.3.162
Accepted name: (–)-α-amorphene synthase
Reaction: (2E,6E)-farnesyl diphosphate = (–)-α-amorphene + diphosphate
For diagram of cadinane sesquiterpenoid biosynthesis, click here
Glossary: (–)-α-amorphene = (1S,4aR,8aS)-4,7-dimethyl-1-(propan-2-yl)-1,2,4a,5,6,8a-hexahydronaphthalene
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [cyclizing, (–)-α-amorphene-forming]
Comments: The enzyme, found in the bacterium Streptomyces viridochromogenes, is specific for (2E,6E)-farnesyl diphosphate and produces only (–)-α-amorphene.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Rabe, P. and Dickschat, J.S. Rapid chemical characterization of bacterial terpene synthases. Angew. Chem. Int. Ed. Engl. 52 (2013) 1810–1812. [DOI] [PMID: 23307484]
2.  Rinkel, J., Rabe, P., Garbeva, P. and Dickschat, J.S. Lessons from 1,3-hydride shifts in sesquiterpene cyclizations. Angew. Chem. Int. Ed. Engl. 55 (2016) 13593–13596. [DOI] [PMID: 27666571]
3.  Rabe, P., Schmitz, T. and Dickschat, J.S. Mechanistic investigations on six bacterial terpene cyclases. Beilstein J. Org. Chem. 12 (2016) 1839–1850. [DOI] [PMID: 27829890]
[EC 4.2.3.162 created 2017]
 
 
EC 4.2.3.163
Accepted name: (+)-corvol ether B synthase
Reaction: (2E,6E)-farnesyl diphosphate + H2O = (+)-corvol ether B + diphosphate
For diagram of corvol ether A and corvol ether B biosynthesis, click here
Glossary: (+)-corvol ether B = (1S,3R,5aR,6S,8aR)-3,6-dimethyl-1-(propan-2-yl)hexahydro-1H,3H-3,8a-methanocyclopenta[c]oxepine
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [cyclizing, (+)-corvol ether B-forming]
Comments: The enzyme, which forms the sesquiterpene (+)-corvol ether B, has been reported from the bacterium Kitasatospora setae.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Rabe, P., Pahirulzaman, K.A. and Dickschat, J.S. Structures and biosynthesis of corvol ethers—sesquiterpenes from the actinomycete Kitasatospora setae. Angew. Chem. Int. Ed. Engl. 54 (2015) 6041–6045. [DOI] [PMID: 25809275]
2.  Rabe, P., Janusko, A., Goldfuss, B. and Dickschat, J.S. Experimental and theoretical studies on corvol ether biosynthesis. ChemBioChem 17 (2016) 146–149. [DOI] [PMID: 26635093]
3.  Rinkel, J., Rabe, P., Garbeva, P. and Dickschat, J.S. Lessons from 1,3-hydride shifts in sesquiterpene cyclizations. Angew. Chem. Int. Ed. Engl. 55 (2016) 13593–13596. [DOI] [PMID: 27666571]
[EC 4.2.3.163 created 2017]
 
 
EC 4.2.3.164
Accepted name: (+)-eremophilene synthase
Reaction: (2E,6E)-farnesyl diphosphate = (+)-eremophilene + diphosphate
For diagram of eremophilane and spirovetivane sesquiterpenoid biosynthesis, click here
Glossary: (+)-eremophilene = (3S,4aS,5R)-4a,5-dimethyl-3-(prop-1-en-2-yl)-1,2,3,4,4a,5,6,7-octahydronaphthalene
Other name(s): STC3 (gene name); geoA (gene name)
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [cyclizing, (+)-eremophilene-forming]
Comments: The enzyme has been identified in the myxobacterium Sorangium cellulosum and in the fungus Fusarium fujikuroi.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Schifrin, A., Ly, T.T., Gunnewich, N., Zapp, J., Thiel, V., Schulz, S., Hannemann, F., Khatri, Y. and Bernhardt, R. Characterization of the gene cluster CYP264B1-geoA from Sorangium cellulosum So ce56: biosynthesis of (+)-eremophilene and its hydroxylation. ChemBioChem 16 (2015) 337–344. [DOI] [PMID: 25504914]
2.  Burkhardt, I., Siemon, T., Henrot, M., Studt, L., Rosler, S., Tudzynski, B., Christmann, M. and Dickschat, J.S. Mechanistic characterisation of two sesquiterpene cyclases from the plant pathogenic fungus Fusarium fujikuroi. Angew. Chem. Int. Ed. Engl. 55 (2016) 8748–8751. [DOI] [PMID: 27294564]
[EC 4.2.3.164 created 2017]
 
 
EC 4.2.3.165
Accepted name: (1R,4R,5S)-(–)-guaia-6,10(14)-diene synthase
Reaction: (2E,6E)-farnesyl diphosphate = (1R,4R,5S)-(–)-guaia-6,10(14)-diene + diphosphate
Glossary: (1R,4R,5S)-(–)-guaia-6,10(14)-diene = (1R)-1-methyl-4-methylidene-7-(propan-2-yl)-1,2,3,3a,4,5,6,8a-octahydroazulene = (1R)-7-isopropyl-1-methyl-4-methylene-1,2,3,3a,4,5,6,8a-octahydroazulene
Other name(s): STC5 (gene name)
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [cyclizing, (1R,4R,5S)-(–)-guaia-6,10(14)-diene-forming]
Comments: The original enzyme (STC5) from the fungus Fusarium fujikuroi is inactive because of a critically naturally occuring mutation that leads to an asparagine to lysine exchange in the NSE (Asn-Ser-Glu) triad, a highly conserved motif of type I terpene cyclases. Sequence correction by site-directed mutagenesis (K288N) restores activity.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Burkhardt, I., Siemon, T., Henrot, M., Studt, L., Rosler, S., Tudzynski, B., Christmann, M. and Dickschat, J.S. Mechanistic characterisation of two sesquiterpene cyclases from the plant pathogenic fungus Fusarium fujikuroi. Angew. Chem. Int. Ed. Engl. 55 (2016) 8748–8751. [DOI] [PMID: 27294564]
[EC 4.2.3.165 created 2017]
 
 
EC 4.2.3.166
Accepted name: (+)-(1E,4E,6S,7R)-germacra-1(10),4-dien-6-ol synthase
Reaction: (2E,6E)-farnesyl diphosphate + H2O = (+)-(1E,4E,6S,7R)-germacra-1(10),4-dien-6-ol + diphosphate
For diagram of biosynthesis of ent-germacrene sesquiterpenoids, click here
Glossary: (+)-(1E,4E,6S,7R)-germacra-1(10),4-dien-6-ol = (1S,2E,6E,10R)-3,7-dimethyl-10-(propan-2-yl)cyclodeca-2,6-dien-1-ol
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [cyclizing, (+)-(1E,4E,6S,7R)-germacra-1(10),4-dien-6-ol-forming]
Comments: The enzyme has been identified in the bacterium Streptomyces pratensis. It is specific for (2E,6E)-farnesyl diphosphate.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Rabe, P., Barra, L., Rinkel, J., Riclea, R., Citron, C.A., Klapschinski, T.A., Janusko, A. and Dickschat, J.S. Conformational analysis, thermal rearrangement, and EI-MS fragmentation mechanism of ((1(10)E,4E,6S,7R)-germacradien-6-ol by 13C-labeling experiments. Angew. Chem. Int. Ed. Engl. 54 (2015) 13448–13451. [DOI] [PMID: 26361082]
[EC 4.2.3.166 created 2017]
 
 
EC 4.2.3.167
Accepted name: dolabella-3,7-dien-18-ol synthase
Reaction: geranylgeranyl diphosphate + H2O = (3E,7E)-dolabella-3,7-dien-18-ol + diphosphate
For diagram of biosynthesis of fusicoccane diterpenoids, click here
Glossary: (3E,7E)-dolabella-3,7-dien-18-ol = 2-[(1R,3aR,5E,9E,12aR)-3a,6,10-trimethyl-1,2,3,3a,4,7,8,11,12,12a-decahydrocyclopenta[11]annulen-1-yl]propan-2-ol
Other name(s): TPS20 (gene name)
Systematic name: geranylgeranyl-diphosphate diphosphate-lyase [cyclizing, (3E,7E)-dolabella-3,7-dien-18-ol-forming]
Comments: Isolated from an ecotype of the plant Arabidopsis thaliana from Cape Verde Islands. The enzyme also gives (3E,7E)-dolathalia-3,7,11-triene and traces of other terpenoids. cf. EC 4.2.3.168 dolathalia-3,7,11-triene synthase.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Wang, Q., Jia, M., Huh, J.H., Muchlinski, A., Peters, R.J. and Tholl, D. Identification of a dolabellane type diterpene synthase and other root-expressed diterpene synthases in Arabidopsis. Front. Plant Sci. 7:1761 (2016). [DOI] [PMID: 27933080]
[EC 4.2.3.167 created 2017]
 
 
EC 4.2.3.168
Accepted name: dolathalia-3,7,11-triene synthase
Reaction: geranylgeranyl diphosphate = (3E,7E)-dolathalia-3,7,11-triene + diphosphate
For diagram of biosynthesis of fusicoccane diterpenoids, click here
Glossary: (3E,7E)-dolathalia-3,7,11-triene = (7E,11E)-3,3,7,11,13a-pentamethy1-2,3,5,6,9,10,13,13a-octahydro-1H-benzo[11]annulene
Other name(s): TPS20 (gene name)
Systematic name: geranylgeranyl-diphosphate diphosphate-lyase [cyclizing, (3E,7E)-dolathalia-3,7,11-triene-forming]
Comments: Isolated from an ecotype of the plant Arabidopsis thaliana from Cape Verde Islands. The enzyme also gives (3E,7E)-dolabella-3,7-dien-18-ol and traces of other terpenoids. cf. EC 4.2.3.167 dolabella-3,7-dien-18-ol synthase.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Wang, Q., Jia, M., Huh, J.H., Muchlinski, A., Peters, R.J. and Tholl, D. Identification of a dolabellane type diterpene synthase and other root-expressed diterpene synthases in Arabidopsis. Front. Plant Sci. 7:1761 (2016). [DOI] [PMID: 27933080]
[EC 4.2.3.168 created 2017]
 
 
EC 4.2.3.169
Accepted name: 7-epi-α-eudesmol synthase
Reaction: (2E,6E)-farnesyl diphosphate + H2O = 7-epi-α-eudesmol + diphosphate
For diagram of eudesmol and selinene biosynthesis, click here
Glossary: 7-epi-α-eudesmol = 2-[(2S,4aR,8aR)-4a,8-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-2-yl]propan-2-ol
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, 7-epi-α-eudesmol-forming)
Comments: The enzyme, found in the bacterium Streptomyces viridochromogenes, is specific for (2E,6E)-farnesyl diphosphate.
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Rabe, P., Schmitz, T. and Dickschat, J.S. Mechanistic investigations on six bacterial terpene cyclases. Beilstein J. Org. Chem. 12 (2016) 1839–1850. [DOI] [PMID: 27829890]
[EC 4.2.3.169 created 2017]
 
 
EC 4.2.3.170
Accepted name: 4-epi-cubebol synthase
Reaction: (2E,6E)-farnesyl diphosphate + H2O = 4-epi-cubebol + diphosphate
For diagram of ent-cadinane sesquiterpenoid biosynthesis, click here
Glossary: 4-epi-cubebol = (3S,3aS,3bR,4S,7S,7aS)-4-(2-hydroxypropan-2-yl)-7-methyloctahydro-1H-cyclopenta[1,3]cyclopropa[1,2]benzen-3-ol
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, 4-epi-cubebol-forming)
Comments: The enzyme, found in the bacterium Streptosporangium roseum, is specific for (2E,6E)-farnesyl diphosphate.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Rabe, P., Schmitz, T. and Dickschat, J.S. Mechanistic investigations on six bacterial terpene cyclases. Beilstein J. Org. Chem. 12 (2016) 1839–1850. [DOI] [PMID: 27829890]
[EC 4.2.3.170 created 2017]
 
 
EC 4.2.3.171
Accepted name: (+)-corvol ether A synthase
Reaction: (2E,6E)-farnesyl diphosphate + H2O = (+)-corvol ether A + diphosphate
For diagram of corvol ether A and corvol ether B biosynthesis, click here
Glossary: (+)-corvol ether A = (1R,4S,4aR,7R,8aR)-4,7-dimethyl-1-(propan-2-yl)decahydro-1,7-epoxynaphthalene
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [cyclizing, (+)-corvol ether A-forming]
Comments: The enzyme, which forms the sesquiterpene (+)-corvol ether A, has been reported from the bacterium Kitasatospora setae.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Rabe, P., Pahirulzaman, K.A. and Dickschat, J.S. Structures and biosynthesis of corvol ethers—sesquiterpenes from the actinomycete Kitasatospora setae. Angew. Chem. Int. Ed. Engl. 54 (2015) 6041–6045. [DOI] [PMID: 25809275]
2.  Rabe, P., Janusko, A., Goldfuss, B. and Dickschat, J.S. Experimental and theoretical studies on corvol ether biosynthesis. ChemBioChem 17 (2016) 146–149. [DOI] [PMID: 26635093]
3.  Rinkel, J., Rabe, P., Garbeva, P. and Dickschat, J.S. Lessons from 1,3-hydride shifts in sesquiterpene cyclizations. Angew. Chem. Int. Ed. Engl. 55 (2016) 13593–13596. [DOI] [PMID: 27666571]
[EC 4.2.3.171 created 2017]
 
 
EC 4.2.3.172
Accepted name: 10-epi-juneol synthase
Reaction: (2E,6E)-farnesyl diphosphate + H2O = 10-epi-juneol + diphosphate
For diagram of 10-epi-juneol biosynthesis, click here
Glossary: 10-epi-juneol = 10α-eudesm-4(14)-en-6α-ol
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, 10-epi-juneol-forming)
Comments: Isolated from the plant Inula hupehensis. The enzyme also gives gives τ-cadinol and traces of other terpenoids, see EC 4.2.3.173, τ-cadinol synthase.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Gou, J.B., Li, Z.Q., Li, C.F., Chen, F.F., Lv, S.Y. and Zhang, Y.S. Molecular cloning and functional analysis of a 10-epi-junenol synthase from Inula hupehensis. Plant Physiol. Biochem. 106 (2016) 288–294. [DOI] [PMID: 27231873]
[EC 4.2.3.172 created 2017]
 
 
EC 4.2.3.173
Accepted name: τ-cadinol synthase
Reaction: (2E,6E)-farnesyl diphosphate + H2O = τ-cadinol + diphosphate
For diagram of cadinane sesquiterpenoid biosynthesis, click here
Glossary: τ-cadinol = 10β-cadin-4-en-10-ol
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, τ-cadinol-forming)
Comments: Isolated from the plant Inula hupehensis. The enzyme also gives 10-epi-juneol and traces of other terpenoids, see EC 4.2.3.172, 10-epi-juneol synthase. It has also been isolated from the plants maize (Zea mays) and lavender (Lavandula angustifolia).
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Gou, J.B., Li, Z.Q., Li, C.F., Chen, F.F., Lv, S.Y. and Zhang, Y.S. Molecular cloning and functional analysis of a 10-epi-junenol synthase from Inula hupehensis. Plant Physiol. Biochem. 106 (2016) 288–294. [DOI] [PMID: 27231873]
2.  Jullien, F., Moja, S., Bony, A., Legrand, S., Petit, C., Benabdelkader, T., Poirot, K., Fiorucci, S., Guitton, Y., Nicole, F., Baudino, S. and Magnard, J.L. Isolation and functional characterization of a τ-cadinol synthase, a new sesquiterpene synthase from Lavandula angustifolia. Plant Mol. Biol. 84 (2014) 227–241. [DOI] [PMID: 24078339]
3.  Ren, F., Mao, H., Liang, J., Liu, J., Shu, K. and Wang, Q. Functional characterization of ZmTPS7 reveals a maize τ-cadinol synthase involved in stress response. Planta 244 (2016) 1065–1074. [DOI] [PMID: 27421723]
[EC 4.2.3.173 created 2017]
 
 
EC 4.2.3.174
Accepted name: (2E,6E)-hedycaryol synthase
Reaction: (2E,6E)-farnesyl diphosphate + H2O = (2E,6E)-hedycaryol + diphosphate
For diagram of biosynthesis of ent-germacrene sesquiterpenoids, click here
Glossary: (2E,6E)-hedycaryol = (1E,4E,7S)-germacra-1(10),4-dien-11-ol
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [cyclizing, (2E,6E)-hedycaryol-forming]
Comments: Isolated from the plant Camellia brevistyla. See also EC 4.2.3.187, (2Z,6E)-hedycaryol synthase.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Hattan, J., Shindo, K., Ito, T., Shibuya, Y., Watanabe, A., Tagaki, C., Ohno, F., Sasaki, T., Ishii, J., Kondo, A. and Misawa, N. Identification of a novel hedycaryol synthase gene isolated from Camellia brevistyla flowers and floral scent of Camellia cultivars. Planta 243 (2016) 959–972. [DOI] [PMID: 26744017]
[EC 4.2.3.174 created 2017]
 
 
EC 4.2.3.175
Accepted name: 10-epi-cubebol synthase
Reaction: (2E,6E)-farnesyl diphosphate + H2O = 10-epi-cubebol + diphosphate
For diagram of cadinane sesquiterpenoid biosynthesis, click here
Other name(s): sce6369
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, 10-epi-cubebol-forming)
Comments: Isolated from the bacterium Sorangium cellulosum So ce56. The enzyme is also responsible for the formation of trace amounts of many other sesquiterpenes, mainly cadinanes and cubebanes.
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Schifrin, A., Khatri, Y., Kirsch, P., Thiel, V., Schulz, S. and Bernhardt, R. A single terpene synthase is responsible for a wide variety of sesquiterpenes in Sorangium cellulosum Soce56. Org. Biomol. Chem. 14 (2016) 3385–3393. [DOI] [PMID: 26947062]
[EC 4.2.3.175 created 2017]
 
 
EC 4.2.3.176
Accepted name: sesterfisherol synthase
Reaction: (2E,6E,10E,14E)-geranylfarnesyl diphosphate + H2O = sesterfisherol + diphosphate
For diagram of sesterterpenoids biosynthesis, click here
Glossary: sesterfisherol = (3R,3aS,6S,6aR,7aR,10R,10aS,11aR)-3,6,7a,12-tetramethyl-10-(propan-2-yl)-2,3,3a,4,5,6,6a,7,7a,8,9,10,10a,11-tetradecahydrocyclopenta[4,5]cycloocta[f]inden-11a(1H)-ol
Other name(s): NfSS
Systematic name: (2E,6E,10E,14E)-geranylfarnesyl-diphosphate diphosphate-lyase (cyclizing, sesterfisherol-forming)
Comments: Isolated from the fungus Neosartorya fischeri.
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Ye, Y., Minami, A., Mandi, A., Liu, C., Taniguchi, T., Kuzuyama, T., Monde, K., Gomi, K. and Oikawa, H. Genome mining for sesterterpenes using bifunctional terpene synthases reveals a unified intermediate of di/sesterterpenes. J. Am. Chem. Soc. 137 (2015) 11846–11853. [DOI] [PMID: 26332841]
[EC 4.2.3.176 created 2017]
 
 
EC 4.2.3.177
Accepted name: β-thujene synthase
Reaction: geranyl diphosphate = β-thujene + diphosphate
For diagram of thujane monoterpenoid biosynthesis, click here
Other name(s): CoTPS1
Systematic name: geranyl-diphosphate diphosphate-lyase (cyclizing, β-thujene-forming)
Comments: Isolated from the plant Cananga odorata var. fruticosa (ylang ylang). The enzyme forms roughly equal proportions of β-thujene, sabinene, β-pinene and α-terpinene see EC 4.2.3.109/EC 4.2.3.110 sabinene synthase, EC 4.2.3.120/EC 4.2.3.122 β-pinene synthase, EC 4.2.3.115 α-terpinene synthase.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Jin, J., Kim, M.J., Dhandapani, S., Tjhang, J.G., Yin, J.L., Wong, L., Sarojam, R., Chua, N.H. and Jang, I.C. The floral transcriptome of ylang ylang (Cananga odorata var. fruticosa) uncovers biosynthetic pathways for volatile organic compounds and a multifunctional and novel sesquiterpene synthase. J. Exp. Bot. 66 (2015) 3959–3975. [DOI] [PMID: 25956881]
[EC 4.2.3.177 created 2017]
 
 
EC 4.2.3.178
Accepted name: stellata-2,6,19-triene synthase
Reaction: (2E,6E,10E,14E)-geranylfarnesyl diphosphate = stellata-2,6,19-triene + diphosphate
For diagram of sesterterpenoids biosynthesis, click here
Glossary: stellata-2,6,19-triene = (3S,3aR,5aR,7E,11E,14aR,14bR)-5a,8,12,14b-tetramethyl-3-(prop-1-en-2-yl)-1,2,3,3a,4,5,5a,6,9,10,13,14,14a,14b-tetradecahydrocycloundeca[e]indene
Systematic name: (2E,6E,10E,14E)-geranylfarnesyl-diphosphate diphosphate-lyase (cylizing, stellata-2,6,19-triene-forming)
Comments: Isolated from the fungus Aspergillus stellatus.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Matsuda, Y., Mitsuhashi, T., Quan, Z. and Abe, I. Molecular basis for stellatic acid biosynthesis: a genome mining approach for discovery of sesterterpene synthases. Org. Lett. 17 (2015) 4644–4647. [DOI] [PMID: 26351860]
[EC 4.2.3.178 created 2017]
 
 
EC 4.2.3.179
Accepted name: guaia-4,6-diene synthase
Reaction: (2E,6E)-farnesyl diphosphate = guaia-4,6-diene + diphosphate
Other name(s): XsTPS2
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, guaia-4,6-diene-forming)
Comments: Isolated from the plant Xanthium strumarium (rough cocklebur).
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Li, Y., Chen, F., Li, Z., Li, C. and Zhang, Y. Identification and functional characterization of sesquiterpene synthases from Xanthium strumarium. Plant Cell Physiol. 57 (2016) 630–641. [DOI] [PMID: 26858282]
[EC 4.2.3.179 created 2017]
 
 
EC 4.2.3.180
Accepted name: pseudolaratriene synthase
Reaction: geranylgeranyl diphosphate = pseudolaratriene + diphosphate
For diagram of miscellaneous diterpenoid biosynthesis, click here
Glossary: pseudolaradiene = (1RS,3aSR,8aRS)-3a,6-dimethyl-1-(6-methylhepta-2,5-dien-2-yl)-1,2,3,3a,4,7,8,8a-octahydrohydroazulene
Other name(s): PxaTPS8
Systematic name: geranylgeranyl-diphosphate diphosphate-lyase (cyclizing, pseudolaradiene-forming)
Comments: Isolated from the plant Pseudolarix amabilis (golden larch). The product is oxidized to pseudolaric acid B, a microtubule-destabilizing agent.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Mafu, S., Karunanithi, P.S., Palazzo, T.A., Harrod, B.L., Rodriguez, S.M., Mollhoff, I.N., O'Brien, T.E., Tong, S., Fiehn, O., Tantillo, D.J., Bohlmann, J. and Zerbe, P. Biosynthesis of the microtubule-destabilizing diterpene pseudolaric acid B from golden larch involves an unusual diterpene synthase. Proc. Natl. Acad. Sci. USA 114 (2017) 974–979. [DOI] [PMID: 28096378]
[EC 4.2.3.180 created 2017]
 
 
EC 4.2.3.181
Accepted name: selina-4(15),7(11)-diene synthase
Reaction: (2E,6E)-farnesyl diphosphate = selina-4(15),7(11)-diene + diphosphate
For diagram of eudesmol and selinene biosynthesis, click here
Other name(s): SdS
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, selina-4(15),7(11)-diene-forming)
Comments: Isolated from the bacteria Streptomyces pristinaespiralis and S. somaliensis.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Rabe, P. and Dickschat, J.S. Rapid chemical characterization of bacterial terpene synthases. Angew. Chem. Int. Ed. Engl. 52 (2013) 1810–1812. [DOI] [PMID: 23307484]
2.  Baer, P., Rabe, P., Fischer, K., Citron, C.A., Klapschinski, T.A., Groll, M. and Dickschat, J.S. Induced-fit mechanism in class I terpene cyclases. Angew. Chem. Int. Ed. Engl. 53 (2014) 7652–7656. [DOI] [PMID: 24890698]
[EC 4.2.3.181 created 2017]
 
 
EC 4.2.3.182
Accepted name: pristinol synthase
Reaction: (2E,6E)-farnesyl diphosphate + H2O = (+)-(2S,3R,9R)-pristinol + diphosphate
For diagram of bicyclic and tricyclic sesquiterpenoids derived from humuladienyl cation, click here and for diagram of pristinol biosynthase, click here
Glossary: (+)-(2S,3R,9R)-pristinol = (1R,6R,9aS)-1,4,8,8-tetramethyl-2,3,5,6,7,8,9,9a-octahydro-1H-cyclopenta[8]annulen-6-ol
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [cyclizing, (+)-(2S,3R,9R)-pristinol-forming]
Comments: Isolated from the bacterium Streptomyces pristinaespiralis.
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Klapschinski, T.A., Rabe, P. and Dickschat, J.S. Pristinol, a sesquiterpene alcohol with an unusual skeleton from Streptomyces pristinaespiralis. Angew. Chem. Int. Ed. Engl. 55 (2016) 10141–10144. [DOI] [PMID: 27403888]
[EC 4.2.3.182 created 2017]
 
 
EC 4.2.3.183
Accepted name: nezukol synthase
Reaction: (+)-copalyl diphosphate + H2O = nezukol + diphosphate
For diagram of pimarane diterpenoids biosynthesis, click here
Glossary: (+)-copalyl diphosphate = (2E)-3-methyl-5-[(1S,4aS,8aS)-5,5,8a-trimethyl-2-methylidenedecahydronaphthalen-1-yl]pent-2-en-1-yl trihydrogen diphosphate
nezukol = pimar-15-en-8-ol
Other name(s): TPS2
Systematic name: (+)-copalyl-diphosphate diphosphate-lyase (cyclizing, nezukol-forming)
Comments: Isolated from the plant Isodon rubescens.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Pelot, K.A., Hagelthorn, D.M., Addison, J.B. and Zerbe, P. Biosynthesis of the oxygenated diterpene nezukol in the medicinal plant Isodon rubescens is catalyzed by a pair of diterpene synthases. PLoS One 12:e0176507 (2017). [DOI] [PMID: 28445526]
[EC 4.2.3.183 created 2017]
 
 
EC 4.2.3.184
Accepted name: 5-hydroxy-α-gurjunene synthase
Reaction: (2E,6E)-farnesyl diphosphate + H2O = 5-hydroxy-α-gurjunene + diphosphate
For diagram of guaiene, α-gurjunene, patchoulol and viridiflorene biosynthesis, click here
Other name(s): MpMTPSL4
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, 5-hydroxy-α-gurjunene-forming)
Comments: Isolated from the liverwort Marchantia polymorpha.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Kumar, S., Kempinski, C., Zhuang, X., Norris, A., Mafu, S., Zi, J., Bell, S.A., Nybo, S.E., Kinison, S.E., Jiang, Z., Goklany, S., Linscott, K.B., Chen, X., Jia, Q., Brown, S.D., Bowman, J.L., Babbitt, P.C., Peters, R.J., Chen, F. and Chappell, J. Molecular diversity of terpene synthases in the liverwort Marchantia polymorpha. Plant Cell 28 (2016) 2632–2650. [DOI] [PMID: 27650333]
[EC 4.2.3.184 created 2017]
 
 
EC 4.2.3.185
Accepted name: ent-atiserene synthase
Reaction: ent-copalyl diphosphate = ent-atiserene + diphosphate
For diagram of biosynthesis of diterpenoids from ent-copalyl diphosphate, click here and for diagram of ent-atiserene, ent-kaurene and ent-isokaurene, click here
Other name(s): IrKSL4; AcKSL1; ApKSL1; AtKSL1; AsKSL1
Systematic name: ent-copalyl-diphosphate diphosphate-lyase (cyclizing, ent-atiserine-forming)
Comments: Isolated from the plant Isodon rubescens and several species of Aconitum as well as species of Streptomyces.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Smanski, M.J., Yu, Z., Casper, J., Lin, S., Peterson, R.M., Chen, Y., Wendt-Pienkowski, E., Rajski, S.R. and Shen, B. Dedicated ent-kaurene and ent-atiserene synthases for platensimycin and platencin biosynthesis. Proc. Natl. Acad. Sci. USA 108 (2011) 13498–13503. [DOI] [PMID: 21825154]
2.  Jin, B., Cui, G., Guo, J., Tang, J., Duan, L., Lin, H., Shen, Y., Chen, T., Zhang, H. and Huang, L. Functional diversification of kaurene synthase-like genes in Isodon rubescens. Plant Physiol. 174 (2017) 943–955. [DOI] [PMID: 28381502]
3.  Tian, M., Jin, B., Chen, L., Ma, R., Ma, Q., Li, X., Chen, T., Guo, J., Ge, H., Zhao, X., Lai, C., Tang, J., Cui, G. and Huang, L. Functional diversity of diterpene synthases in Aconitum plants. Plant Physiol. Biochem. 202:107968 (2023). [DOI] [PMID: 37619270]
[EC 4.2.3.185 created 2017]
 
 
EC 4.2.3.186
Accepted name: ent-13-epi-manoyl oxide synthase
Reaction: ent-8α-hydroxylabd-13-en-15-yl diphosphate = ent-13-epi-manoyl oxide + diphosphate
For diagram of (–)-kolavenyl diphosphate derived diterpenoids, click here
Glossary: Ent-13-epi-manoyl oxide = (13R)-ent-8,13-epoxylabd-14-ene
Other name(s): SmKSL2; ent-LDPP synthase
Systematic name: ent-8α-hydroxylabd-13-en-15-yl-diphosphate diphosphate-lyase (cyclizing, ent-13-epi-manoyl-oxide-forming)
Comments: Isolated from the plant Salvia miltiorrhiza (red sage).
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Cui, G., Duan, L., Jin, B., Qian, J., Xue, Z., Shen, G., Snyder, J.H., Song, J., Chen, S., Huang, L., Peters, R.J. and Qi, X. Functional divergence of diterpene syntheses in the medicinal plant Salvia miltiorrhiza. Plant Physiol. 169 (2015) 1607–1618. [DOI] [PMID: 26077765]
[EC 4.2.3.186 created 2017]
 
 
EC 4.2.3.187
Accepted name: (2Z,6E)-hedycaryol synthase
Reaction: (2E,6E)-farnesyl diphosphate + H2O = (2Z,6E)-hedycaryol + diphosphate
For diagram of biosynthesis of ent-germacrene sesquiterpenoids, click here
Glossary: (2Z,6E)-hedycaryol = (1E,4Z,7S)-germacra-1(10),4-dien-11-ol
Other name(s): HcS
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [cyclizing, (2Z,6E)-hedycaryol-forming]
Comments: Isolated from the bacterium Kitasatospora setae. The stereochemistry suggests the farnesyl diphosphate rearranges to nerolidyl diphosphate or an equivalent intermediate before cyclization. See also EC 4.2.3.174 (2E,6E)-hedycaryol synthase.
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Baer, P., Rabe, P., Citron, C.A., de Oliveira Mann, C.C., Kaufmann, N., Groll, M. and Dickschat, J.S. Hedycaryol synthase in complex with nerolidol reveals terpene cyclase mechanism. ChemBioChem 15 (2014) 213–216. [DOI] [PMID: 24399794]
[EC 4.2.3.187 created 2017]
 
 
EC 4.2.3.188
Accepted name: β-geranylfarnesene synthase
Reaction: (1) all-trans-geranylfarnesyl diphosphate = β-geranylfarnesene + diphosphate
(2) all-trans-hexaprenyl diphosphate = β-hexaprene + diphosphate
(3) all-trans-heptaprenyl diphosphate = β-heptaprene + diphosphate
For diagram of sesquarterpenoid biosynthesis, click here and for diagram of sesterterpenoids biosynthesis, click here
Glossary: β-geranylfarnesene = (6E,10E,14E)-7,11,15,19-tetramethyl-3-methyleneicosa-1,6,10,14,18-pentaene
Other name(s): Bcl-TS
Systematic name: all-trans-geranylfarnesyl-diphosphate diphosphate-lyase (β-geranylfarnesene-forming)
Comments: Isolated from the bacterium Bacillus clausii. The enzyme acts on a range of polyprenyl diphosphates.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Sato, T., Yamaga, H., Kashima, S., Murata, Y., Shinada, T., Nakano, C. and Hoshino, T. Identification of novel sesterterpene/triterpene synthase from Bacillus clausii. ChemBioChem 14 (2013) 822–825. [DOI] [PMID: 23554321]
2.  Ueda, D., Yamaga, H., Murakami, M., Totsuka, Y., Shinada, T. and Sato, T. Biosynthesis of sesterterpenes, head-to-tail triterpenes, and sesquarterpenes in Bacillus clausii: identification of multifunctional enzymes and analysis of isoprenoid metabolites. ChemBioChem 16 (2015) 1371–1377. [DOI] [PMID: 25882275]
[EC 4.2.3.188 created 2017]
 
 
EC 4.2.3.189
Accepted name: 9,13-epoxylabd-14-ene synthase
Reaction: peregrinol diphosphate = (13R)-9,13-epoxylabd-14-ene + diphosphate
For diagram of hydroxylabdenyl diphosphate derived diterpenoids, click here
Glossary: peregrinol diphosphate = (13E)-9-hydroxy-8α-labd-13-en-15-yl diphosphate
Other name(s): ELS (gene name); TPS2 (gene name) (ambiguous); peregrinol-diphosphate diphosphate-lyase (9,13-epoxylabd-14-ene-forming)
Systematic name: peregrinol-diphosphate diphosphate-lyase [(13R)-9,13-epoxylabd-14-ene-forming]
Comments: Isolated from the plants Marrubium vulgare (white horehound) and Vitex agnus-castus (chaste tree). Involved in marrubiin biosynthesis.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Zerbe, P., Chiang, A., Dullat, H., O'Neil-Johnson, M., Starks, C., Hamberger, B. and Bohlmann, J. Diterpene synthases of the biosynthetic system of medicinally active diterpenoids in Marrubium vulgare. Plant J. 79 (2014) 914–927. [DOI] [PMID: 24990389]
2.  Heskes, A.M., Sundram, T.CM., Boughton, B.A., Jensen, N.B., Hansen, N.L., Crocoll, C., Cozzi, F., Rasmussen, S., Hamberger, B., Hamberger, B., Staerk, D., Møller, B.L. and Pateraki, I. Biosynthesis of bioactive diterpenoids in the medicinal plant Vitex agnus-castus. Plant J. 93 (2018) 943–958. [PMID: 29315936]
[EC 4.2.3.189 created 2017]
 
 
EC 4.2.3.190
Accepted name: manoyl oxide synthase
Reaction: (13E)-8α-hydroxylabd-13-en-15-yl diphosphate = manoyl oxide + diphosphate
For diagram of hydroxylabdenyl diphosphate derived diterpenoids, click here
Glossary: (13E)-8α-hydroxylabd-13-en-15-yl diphosphate = 8-hydroxycopalyl diphosphate
manoyl oxide = (13R)-8,13-epoxylabd-14-ene
Other name(s): GrTPS6; CfTPS3; CfTPS4; MvELS
Systematic name: (13E)-8α-hydroxylabd-13-en-15-yl-diphosphate diphosphate-lyase (manoyl-oxide-forming)
Comments: Manoyl oxide is found in many plants. This enzyme has been isolated from the plants, Grindelia hirsutula (gum weed), Plectranthus barbatus (forskohlii) and Marrubium vulgare (white horehound).
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Zerbe, P., Hamberger, B., Yuen, M.M., Chiang, A., Sandhu, H.K., Madilao, L.L., Nguyen, A., Hamberger, B., Bach, S.S. and Bohlmann, J. Gene discovery of modular diterpene metabolism in nonmodel systems. Plant Physiol. 162 (2013) 1073–1091. [DOI] [PMID: 23613273]
2.  Pateraki, I., Andersen-Ranberg, J., Hamberger, B., Heskes, A.M., Martens, H.J., Zerbe, P., Bach, S.S., Moller, B.L., Bohlmann, J. and Hamberger, B. Manoyl oxide (13R), the biosynthetic precursor of forskolin, is synthesized in specialized root cork cells in Coleus forskohlii. Plant Physiol. 164 (2014) 1222–1236. [DOI] [PMID: 24481136]
3.  Zerbe, P., Chiang, A., Dullat, H., O'Neil-Johnson, M., Starks, C., Hamberger, B. and Bohlmann, J. Diterpene synthases of the biosynthetic system of medicinally active diterpenoids in Marrubium vulgare. Plant J. 79 (2014) 914–927. [DOI] [PMID: 24990389]
[EC 4.2.3.190 created 2017]
 
 
EC 4.2.3.191
Accepted name: cycloaraneosene synthase
Reaction: geranylgeranyl diphosphate = cycloaraneosene + diphosphate
For diagram of biosynthesis of fusicoccane diterpenoids, click here
Glossary: cycloaraneosene = (1R,3aR,9aS,10aR)-1,9a-dimethyl-4-methylene-7-(propan-2-yl)-1,2,3,3a,4,5,6,8,9,9a,10,10a-dodecahydrodicyclopenta[a,d][8]annulene
Other name(s): SdnA
Systematic name: geranylgeranyl-diphosphate diphosphate-lyase (cycloaraneosene-forming)
Comments: Isolated from the fungus Sordaria araneosa. Cycloaraneosene is a precursor of the antibiotic sordarin.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Kudo, F., Matsuura, Y., Hayashi, T., Fukushima, M. and Eguchi, T. Genome mining of the sordarin biosynthetic gene cluster from Sordaria araneosa Cain ATCC 36386: characterization of cycloaraneosene synthase and GDP-6-deoxyaltrose transferase. J. Antibiot. (Tokyo) 69 (2016) 541–548. [DOI] [PMID: 27072286]
[EC 4.2.3.191 created 2017]
 
 
EC 4.2.3.192
Accepted name: labda-7,13(16),14-triene synthase
Reaction: (13E)-labda-7,13-dienyl diphosphate = labda-7,13(16),14-triene + diphosphate
For diagram of labdane diterpenoids biosynthesis, click here
Other name(s): SCLAV_p0491
Systematic name: (13E)-labda-7,13-dienyl-diphosphate diphosphate-lyase (labda-7,13(16),14-triene-forming)
Comments: Isolated from the bacterium Streptomyces clavuligerus.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Yamada, Y., Komatsu, M. and Ikeda, H. Chemical diversity of labdane-type bicyclic diterpene biosynthesis in Actinomycetales microorganisms. J. Antibiot. (Tokyo) 69 (2016) 515–523. [DOI] [PMID: 26814669]
[EC 4.2.3.192 created 2017]
 
 
EC 4.2.3.193
Accepted name: (12E)-labda-8(17),12,14-triene synthase
Reaction: (+)-copalyl diphosphate = (12E)-labda-8(17),12,14-triene + diphosphate
For diagram of pimarane diterpenoids biosynthesis, click here
Other name(s): CldD
Systematic name: (+)-copalyl-diphosphate diphosphate-lyase [(12E)-labda-8(17),12,14-triene-forming]
Comments: Isolated from the bacterium Streptomyces cyslabdanicus.
Links to other databases: BRENDA, EXPASY, KEGG, PDB
References:
1.  Yamada, Y., Komatsu, M. and Ikeda, H. Chemical diversity of labdane-type bicyclic diterpene biosynthesis in Actinomycetales microorganisms. J. Antibiot. (Tokyo) 69 (2016) 515–523. [DOI] [PMID: 26814669]
[EC 4.2.3.193 created 2017]
 
 
EC 4.2.3.194
Accepted name: (–)-drimenol synthase
Reaction: (2E,6E)-farnesyl diphosphate + H2O = (–)-drimenol + diphosphate
For diagram of sesquiterpenoid biosynthesis, click here
Glossary: (–)-drimenol = drim-7-en-11-ol
Other name(s): PhDS; VoTPS3; farnesyl pyrophosphate:drimenol cyclase; drimenol cyclase; (2E,6E)-farnesyl-diphosphate diphosphohydrolase (drimenol-forming)
Systematic name: (2E,6E)-farnesyl-diphosphate diphospho-lyase [cyclising, (–)-drimenol-forming]
Comments: Isolated from the plants Valeriana officinalis (valerian) and Persicaria hydropiper (water pepper). The enzyme does not act on farnesol or drimenol diphosphate. Using 18-oxygen labelled water 18-oxygen was incorporated suggesting involvement of a stabilised carbocation or an equivalent species.
Links to other databases: BRENDA, EXPASY, KEGG, PDB, CAS registry number: 146838-17-7
References:
1.  Banthorp, D.V., Brown, J.T. and Morris, G.S. Partial purification of farnesyl pyrophosphate:drimenol cyclase and geranylgerany pyrophosphate:sclareol cyclase, using cell culture as a source of material. Phytochemistry 31 (1992) 3391–3395.
2.  Kwon, M., Cochrane, S.A., Vederas, J.C. and Ro, D.K. Molecular cloning and characterization of drimenol synthase from valerian plant (Valeriana officinalis). FEBS Lett. 588 (2014) 4597–4603. [DOI] [PMID: 25447532]
3.  Henquet, M.GL., Prota, N., van der Hooft, J.JJ., Varbanova-Herde, M., Hulzink, R.JM., de Vos, M., Prins, M., de Both, M.TJ., Franssen, M.CR., Bouwmeester, H. and Jongsma, M. Identification of a drimenol synthase and drimenol oxidase from Persicaria hydropiper, involved in the biosynthesis of insect deterrent drimanes. Plant J. 90 (2017) 1052–1063. [DOI] [PMID: 28258968]
[EC 4.2.3.194 created 2011 as EC 3.1.7.7, transferred 2017 to EC 4.2.3.194]
 
 
EC 4.3.2.7
Accepted name: glutathione-specific γ-glutamylcyclotransferase
Reaction: glutathione = L-cysteinylglycine + 5-oxo-L-proline
Other name(s): γ-GCG; CHAC (gene name); CHAC1 (gene name); CHAC2 (gene name)
Systematic name: glutathione γ-glutamyl cyclotransferase (5-oxo-L-proline producing)
Comments: The enzyme, found in bacteria, fungi and animals, is specific for glutathione (cf. EC 4.3.2.9, γ-glutamylcyclotransferase). The enzyme acts as a cyclotransferase, cleaving the amide bond via transamidation using the α-amine of the L-glutamyl residue, releasing it as the cyclic 5-oxo-L-proline.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Kumar, A., Tikoo, S., Maity, S., Sengupta, S., Sengupta, S., Kaur, A. and Bachhawat, A.K. Mammalian proapoptotic factor ChaC1 and its homologues function as γ-glutamyl cyclotransferases acting specifically on glutathione. EMBO Rep. 13 (2012) 1095–1101. [DOI] [PMID: 23070364]
2.  Kaur, A., Gautam, R., Srivastava, R., Chandel, A., Kumar, A., Karthikeyan, S. and Bachhawat, A.K. ChaC2, an enzyme for slow turnover of cytosolic glutathione. J. Biol. Chem. 292 (2017) 638–651. [DOI] [PMID: 27913623]
[EC 4.3.2.7 created 2017]
 
 
EC 4.3.2.8
Accepted name: γ-glutamylamine cyclotransferase
Reaction: ε-(γ-L-glutamyl)-L-lysine = L-lysine + 5-oxo-L-proline
Other name(s): GGACT
Systematic name: ε-(γ-L-glutamyl)-L-lysine γ-glutamyl cyclotransferase (5-oxo-L-proline producing)
Comments: The enzyme, found in vertebrates, has no activity toward α-(γ-L-glutamyl)-L-amino acids (cf. EC 4.3.2.9, γ-glutamylcyclotransferase). The enzyme acts as a cyclotransferase, cleaving the amide bond via transamidation using the α-amine of the γ-L-glutamyl residue, releasing it as the cyclic 5-oxo-L-proline.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB
References:
1.  Fink, M.L., Chung, S.I. and Folk, J.E. γ-Glutamylamine cyclotransferase: specificity toward ε-(L-γ-glutamyl)-L-lysine and related compounds. Proc. Natl. Acad. Sci. USA 77 (1980) 4564–4568. [DOI] [PMID: 6107907]
2.  Oakley, A.J., Coggan, M. and Board, P.G. Identification and characterization of γ-glutamylamine cyclotransferase, an enzyme responsible for γ-glutamyl-ε-lysine catabolism. J. Biol. Chem. 285 (2010) 9642–9648. [DOI] [PMID: 20110353]
[EC 4.3.2.8 created 2017]
 
 
EC 4.3.2.9
Accepted name: γ-glutamylcyclotransferase
Reaction: α-(γ-L-glutamyl)-L-amino acid = α-L-amino acid + 5-oxo-L-proline
Other name(s): γ-glutamyl-amino acid cyclotransferase; γ-L-glutamylcyclotransferase; L-glutamic cyclase; (5-L-glutamyl)-L-amino-acid 5-glutamyltransferase (cyclizing); GGCT
Systematic name: α-(γ-L-glutamyl)-L-amino-acid γ-glutamyl cyclotransferase (5-oxo-L-proline producing)
Comments: The enzyme, found in animals and plants, acts on derivatives of L-glutamate, L-2-aminobutanoate, L-alanine and glycine. The enzyme acts as a cyclotransferase, cleaving the amide bond via transamidation using the α-amine of the L-glutamyl residue, releasing it as the cyclic 5-oxo-L-proline.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, PDB, CAS registry number: 9045-44-7
References:
1.  Bodnaryk, R.P. and McGirr, L. Purification, properties and function of a unique γ-glutamyl cyclotransferase from the housefly, Musca domestica L. Biochim. Biophys. Acta 315 (1973) 352–362.
2.  Orlowski, M., Richman, P.G. and Meister, A. Isolation and properties of γ-L-glutamylcyclotransferase from human brain. Biochemistry 8 (1969) 1048–1055. [PMID: 5781001]
3.  Oakley, A.J., Yamada, T., Liu, D., Coggan, M., Clark, A.G. and Board, P.G. The identification and structural characterization of C7orf24 as γ-glutamyl cyclotransferase. An essential enzyme in the γ-glutamyl cycle. J. Biol. Chem. 283 (2008) 22031–22042. [DOI] [PMID: 18515354]
4.  Paulose, B., Chhikara, S., Coomey, J., Jung, H.I., Vatamaniuk, O. and Dhankher, O.P. A γ-glutamyl cyclotransferase protects Arabidopsis plants from heavy metal toxicity by recycling glutamate to maintain glutathione homeostasis. Plant Cell 25 (2013) 4580–4595. [DOI] [PMID: 24214398]
[EC 4.3.2.9 created 1972 as EC 2.3.2.4, transferred 2017 to EC 4.3.2.9]
 
 
EC 4.4.1.36
Accepted name: hercynylcysteine S-oxide lyase
Reaction: S-(hercyn-2-yl)-L-cysteine S-oxide + reduced acceptor = ergothioneine + pyruvate + NH3 + acceptor (overall reaction)
(1a) S-(hercyn-2-yl)-L-cysteine S-oxide + H2O = 2-(hydroxysulfanyl)hercynine + pyruvate + NH3
(1b) 2-(hydroxysulfanyl)hercynine + reduced acceptor = ergothioneine + acceptor + H2O (spontaneous)
Glossary: 2-(hydroxysulfanyl)hercynine = Nα,Nα,Nα-trimethyl-2-(hydroxysulfanyl)-L-histidine = 2-sulfenohercynine
ergothioneine = Nα,Nα,Nα-trimethyl-2-sulfanylidene-2,3-dihydro-L-histidine
Other name(s): egtE (gene name)
Systematic name: S-(hercyn-2-yl)-L-cysteine ergothioneine-hydroxysulfanolate-lyase
Comments: Contains pyridoxal 5′-phosphate. The enzyme, characterized from the bacterium Mycobacterium smegmatis, cayalyses the last step in the pathway of ergothioneine biosynthesis. The enzyme forms a 2-(hydroxysulfanyl)hercynine intermediate, which is reduced to ergothioneine non-enzymically by a thiol. In vitro, DTT can serve this function.
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Seebeck, F.P. In vitro reconstitution of mycobacterial ergothioneine biosynthesis. J. Am. Chem. Soc. 132 (2010) 6632–6633. [DOI] [PMID: 20420449]
2.  Pluskal, T., Ueno, M. and Yanagida, M. Genetic and metabolomic dissection of the ergothioneine and selenoneine biosynthetic pathway in the fission yeast, S. pombe, and construction of an overproduction system. PLoS One 9:e97774 (2014). [DOI] [PMID: 24828577]
3.  Song, H., Hu, W., Naowarojna, N., Her, A.S., Wang, S., Desai, R., Qin, L., Chen, X. and Liu, P. Mechanistic studies of a novel C-S lyase in ergothioneine biosynthesis: the involvement of a sulfenic acid intermediate. Sci. Rep. 5:11870 (2015). [DOI] [PMID: 26149121]
[EC 4.4.1.36 created 2017]
 
 
EC 5.4.4.8
Accepted name: linalool isomerase
Reaction: (RS)-linalool = geraniol
For diagram of acyclic monoterpenoid biosynthesis, click here
Other name(s): 3,1-hydroxyl-Δ12-mutase (linalool isomerase)
Systematic name: (RS)-linalool hydroxymutase
Comments: Isolated from the bacterium Thauera linaloolentis grown on (RS)-linalool as the sole source of carbon. Unlike EC 5.4.4.4, geraniol isomerase, which only acts on (S)-linalool, this enzyme acts equally well on both enantiomers.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Marmulla, R., Šafarić, B., Markert, S., Schweder, T. and Harder, J. Linalool isomerase, a membrane-anchored enzyme in the anaerobic monoterpene degradation in Thauera linaloolentis 47Lol. BMC Biochem. 17:6 (2016). [DOI] [PMID: 26979141]
[EC 5.4.4.8 created 2017]
 
 
EC 5.4.99.65
Accepted name: pre-α-onocerin synthase
Reaction: (3S,22S)-2,3:22,23-diepoxy-2,3,22,23-tetrahydrosqualene = pre-α-onocerin
For diagram of α-onocerin biosynthesis, click here
Glossary: pre-α-onocerin = (21S)-21,22-epoxypolypoda-8(26)-13,17-trien-3β-ol
Other name(s): LCC
Systematic name: (3S,22S)-2,3:22,23-diepoxy-2,3,22,23-tetrahydrosqualene mutase (cyclizing, pre-α-onocerin-forming)
Comments: Isolated from the plant Lycopodium clavatum. The enzyme does not act on (3S)-2,3-epoxy-2,3-dihydrosqualene and does not form any α-onocerin.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Araki, T., Saga, Y., Marugami, M., Otaka, J., Araya, H., Saito, K., Yamazaki, M., Suzuki, H. and Kushiro, T. Onocerin biosynthesis requires two highly dedicated triterpene cyclases in a fern Lycopodium clavatum. ChemBioChem 17 (2016) 288–290. [DOI] [PMID: 26663356]
[EC 5.4.99.65 created 2017]
 
 
EC 5.4.99.66
Accepted name: α-onocerin synthase
Reaction: pre-α-onocerin = α-onocerin
For diagram of α-onocerin biosynthesis, click here
Glossary: α-onocerin = 8,14-secogammacera-8(26),14(27)-diene-3β,21α-diol
pre-α-onocerin = (21S)-21,22-epoxypolypoda-8(26)-13,17-trien-3β-ol
Other name(s): LCD
Systematic name: pre-α-onocerin mutase (cyclizing, α-onocerin-forming)
Comments: Isolated from the plant Lycopodium clavatum.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Araki, T., Saga, Y., Marugami, M., Otaka, J., Araya, H., Saito, K., Yamazaki, M., Suzuki, H. and Kushiro, T. Onocerin biosynthesis requires two highly dedicated triterpene cyclases in a fern Lycopodium clavatum. ChemBioChem 17 (2016) 288–290. [DOI] [PMID: 26663356]
[EC 5.4.99.66 created 2017]
 
 
EC 5.5.1.28
Accepted name: (–)-kolavenyl diphosphate synthase
Reaction: geranylgeranyl diphosphate = (–)-kolavenyl diphosphate
For diagram of (–)-kolavenyl diphosphate derived diterpenoids, click here
Glossary: (–)-kolavenyl diphosphate = (2E)-5-[(1R,2S,4aS,8aS)-1,2,4a,5-tetramethyl-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-yl]-3-methylpent-2-en-1-yl diposphate
Other name(s): SdKPS; TwTPS14; TwTPS10/KPS; SdCPS2; clerodienyl diphosphate synthase; CLPP
Systematic name: (–)-kolavenyl diphosphate lyase (ring-opening)
Comments: Isolated from the hallucinogenic plant Salvia divinorum (seer’s sage) and the medicinal plant Tripterygium wilfordii (thunder god vine).
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Hansen, N.L., Heskes, A.M., Hamberger, B., Olsen, C.E., Hallstrom, B.M., Andersen-Ranberg, J. and Hamberger, B. The terpene synthase gene family in Tripterygium wilfordii harbors a labdane-type diterpene synthase among the monoterpene synthase TPS-b subfamily. Plant J. 89 (2017) 429–441. [DOI] [PMID: 27801964]
2.  Chen, X., Berim, A., Dayan, F.E. and Gang, D.R. A (–)-kolavenyl diphosphate synthase catalyzes the first step of salvinorin A biosynthesis in Salvia divinorum. J. Exp. Bot. 68 (2017) 1109–1122. [DOI] [PMID: 28204567]
[EC 5.5.1.28 created 2017]
 
 
EC 5.5.1.29
Accepted name: (+)-kolavenyl diphosphate synthase
Reaction: geranylgeranyl diphosphate = (+)-kolavenyl diphosphate
For diagram of (+)-kolavenyl diphosphate derived diterpenoids, click here
Glossary: (+) kolavenyl diphosphate = (2E)-3-methyl-5-[(1R,2S,4aS,8aS)-1,2,4a,5-tetramethyl-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-yl]pent-2-en-1-yl diphosphate
Systematic name: (+)-kolavenyl-diphosphate lyase (ring-opening)
Comments: Isolated from the bacterium Herpetosiphon aurantiacus.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Nakano, C., Oshima, M., Kurashima, N. and Hoshino, T. Identification of a new diterpene biosynthetic gene cluster that produces O-methylkolavelool in Herpetosiphon aurantiacus. ChemBioChem 16 (2015) 772–781. [DOI] [PMID: 25694050]
[EC 5.5.1.29 created 2017]
 
 
EC 5.5.1.30
Accepted name: labda-7,13-dienyl diphosphate synthase
Reaction: geranylgeranyl diphosphate = (13E)-labda-7,13-dien-15-yl diphosphate
For diagram of labdane diterpenoids biosynthesis, click here
Other name(s): SCLAV_p0490
Systematic name: (13E)-labda-7,13-dien-15-yl-diphosphate lyase (ring-opening)
Comments: Isolated from the bacterium Streptomyces clavuligerus.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Yamada, Y., Komatsu, M. and Ikeda, H. Chemical diversity of labdane-type bicyclic diterpene biosynthesis in Actinomycetales microorganisms. J. Antibiot. (Tokyo) 69 (2016) 515–523. [DOI] [PMID: 26814669]
[EC 5.5.1.30 created 2017]
 
 
EC 6.1 Forming carbon-oxygen bonds
 
EC 6.1.3 Cyclo-ligases
 
EC 6.1.3.1
Accepted name: olefin β-lactone synthetase
Reaction: ATP + a (2R,3S)-2-alkyl-3-hydroxyalkanoate = AMP + diphosphate + a cis-3-alkyl-4-alkyloxetan-2-one
Other name(s): oleC (gene name)
Systematic name: (2R,3S)-2-alkyl-3-hydroxyalkanoate ligase (β-lactone,AMP-forming)
Comments: The enzyme, found in certain bacterial species, participates in a pathway for the production of olefins. It forms a β-lactone. The alkyl group at C2 of the substrate ends up as the 3-alkyl group of the product.
Links to other databases: BRENDA, EXPASY, Gene, KEGG
References:
1.  Sukovich, D.J., Seffernick, J.L., Richman, J.E., Hunt, K.A., Gralnick, J.A. and Wackett, L.P. Structure, function, and insights into the biosynthesis of a head-to-head hydrocarbon in Shewanella oneidensis strain MR-1. Appl. Environ. Microbiol. 76 (2010) 3842–3849. [DOI] [PMID: 20418444]
2.  Frias, J.A., Goblirsch, B.R., Wackett, L.P. and Wilmot, C.M. Cloning, purification, crystallization and preliminary X-ray diffraction of the OleC protein from Stenotrophomonas maltophilia involved in head-to-head hydrocarbon biosynthesis. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66 (2010) 1108–1110. [DOI] [PMID: 20823539]
3.  Kancharla, P., Bonnett, S.A. and Reynolds, K.A. Stenotrophomonas maltophilia OleC-catalyzed ATP-dependent formation of long-chain Z-olefins from 2-alkyl-3-hydroxyalkanoic acids. ChemBioChem 17 (2016) 1426–1429. [DOI] [PMID: 27238740]
4.  Christenson, J.K., Richman, J.E., Jensen, M.R., Neufeld, J.Y., Wilmot, C.M. and Wackett, L.P. β-Lactone synthetase found in the olefin biosynthesis pathway. Biochemistry 56 (2017) 348–351. [DOI] [PMID: 28029240]
[EC 6.1.3.1 created 2017]
 
 
EC 6.2.1.50
Accepted name: 4-hydroxybenzoate adenylyltransferase FadD22
Reaction: ATP + 4-hydroxybenzoate + holo-[4-hydroxyphenylalkanoate synthase] = AMP + diphosphate + 4-hydroxybenzoyl-[4-hydroxyphenylalkanoate synthase] (overall reaction)
(1a) ATP + 4-hydroxybenzoate = 4-hydroxybenzoyl-adenylate + diphosphate
(1b) 4-hydroxybenzoyl-adenylate + holo-[4-hydroxyphenylalkanoate synthase] = AMP + 4-hydroxybenzoyl-[4-hydroxyphenylalkanoate synthase]
Other name(s): fadD22 (gene name); 4-hydroxybenzoate adenylase
Systematic name: 4-hydroxybenzoate:holo-[4-hydroxyphenylalkanoate synthase] ligase (AMP-forming)
Comments: This mycobacterial enzyme participates in the biosynthesis of phenolphthiocerols. Following the substrate’s activation by adenylation, it is transferred to an acyl-carrier protein domain within the enzyme, from which it is transferred to EC 2.3.1.261, 4-hydroxyphenylalkanoate synthase.
Links to other databases: BRENDA, EXPASY, KEGG
References:
1.  Simeone, R., Leger, M., Constant, P., Malaga, W., Marrakchi, H., Daffe, M., Guilhot, C. and Chalut, C. Delineation of the roles of FadD22, FadD26 and FadD29 in the biosynthesis of phthiocerol dimycocerosates and related compounds in Mycobacterium tuberculosis. FEBS J. 277 (2010) 2715–2725. [DOI] [PMID: 20553505]
2.  Vergnolle, O., Chavadi, S.S., Edupuganti, U.R., Mohandas, P., Chan, C., Zeng, J., Kopylov, M., Angelo, N.G., Warren, J.D., Soll, C.E. and Quadri, L.E. Biosynthesis of cell envelope-associated phenolic glycolipids in Mycobacterium marinum. J. Bacteriol. 197 (2015) 1040–1050. [DOI] [PMID: 25561717]
[EC 6.2.1.50 created 2017 as EC 2.7.7.98, transferred 2017 to EC 6.2.1.50]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald