The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

EC 1.1.1.431     
Accepted name: D-xylose reductase (NADPH)
Reaction: xylitol + NADP+ = D-xylose + NADPH + H+
Other name(s): XYL1 (gene name, ambiguous); xyl1 (gene name, ambiguous); xyrA (gene name); xyrB (gene name)
Systematic name: xylitol:NADP+ oxidoreductase
Comments: Xylose reductases catalyse the reduction of xylose to xylitol, the initial reaction in the fungal D-xylose degradation pathway. Most of the enzymes exhibit a strict requirement for NADPH (e.g. the enzymes from Saccharomyces cerevisiae, Aspergillus niger, Trichoderma reesei, Candida tropicalis, Saitozyma flava, and Candida intermedia). Some D-xylose reductases have dual cosubstrate specificity, though they still prefer NADPH to NADH (cf. EC 1.1.1.307, D-xylose reductase [NAD(P)H]). Very rarely the enzyme prefers NADH (cf. EC 1.1.1.430, D-xylose reductase (NADH)).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Bolen, P.L. and Detroy, R.W. Induction of NADPH-linked D-xylose reductase and NAD-linked xylitol dehydrogenase activities in Pachysolen tannophilus by D-xylose, L-arabinose, or D-galactose. Biotechnol. Bioeng. 27 (1985) 302–307. [DOI] [PMID: 18553673]
2.  Suzuki, T., Yokoyama, S., Kinoshita, Y., Yamada, H., Hatsu, M., Takamizawa, K. and Kawai, K. Expression of xyrA gene encoding for D-xylose reductase of Candida tropicalis and production of xylitol in Escherichia coli. J. Biosci. Bioeng. 87 (1999) 280–284. [DOI] [PMID: 16232468]
3.  Nidetzky, B., Mayr, P., Hadwiger, P. and Stutz, A.E. Binding energy and specificity in the catalytic mechanism of yeast aldose reductases. Biochem. J. 344 Pt 1 (1999) 101–107. [PMID: 10548539]
4.  Mayr, P., Bruggler, K., Kulbe, K.D. and Nidetzky, B. D-Xylose metabolism by Candida intermedia: isolation and characterisation of two forms of aldose reductase with different coenzyme specificities. J. Chromatogr. B Biomed. Sci. Appl. 737 (2000) 195–202. [DOI] [PMID: 10681056]
5.  Sene, L., Felipe, M.G., Silva, S.S. and Vitolo, M. Preliminary kinetic characterization of xylose reductase and xylitol dehydrogenase extracted from Candida guilliermondii FTI 20037 cultivated in sugarcane bagasse hydrolysate for xylitol production. Appl. Biochem. Biotechnol. 91-93 (2001) 671–680. [DOI] [PMID: 11963895]
6.  Jeong, E.Y., Sopher, C., Kim, I.S. and Lee, H. Mutational study of the role of tyrosine-49 in the Saccharomyces cerevisiae xylose reductase. Yeast 18 (2001) 1081–1089. [DOI] [PMID: 11481678]
7.  Chroumpi, T., Peng, M., Aguilar-Pontes, M.V., Muller, A., Wang, M., Yan, J., Lipzen, A., Ng, V., Grigoriev, I.V., Makela, M.R. and de Vries, R.P. Revisiting a ‘simple’ fungal metabolic pathway reveals redundancy, complexity and diversity. Microb. Biotechnol. 14 (2021) 2525–2537. [DOI] [PMID: 33666344]
8.  Terebieniec, A., Chroumpi, T., Dilokpimol, A., Aguilar-Pontes, M.V., Makela, M.R. and de Vries, R.P. Characterization of D-xylose reductase, XyrB, from Aspergillus niger. Biotechnol Rep (Amst) 30:e00610 (2021). [DOI] [PMID: 33842213]
[EC 1.1.1.431 created 2022]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald