The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

EC 1.13.11.72     
Accepted name: 2-hydroxyethylphosphonate dioxygenase
Reaction: 2-hydroxyethylphosphonate + O2 = hydroxymethylphosphonate + formate
For diagram of phosphonate metabolism, click here
Other name(s): HEPD; phpD (gene name); 2-hydroxyethylphosphonate:O2 1,2-oxidoreductase (hydroxymethylphosphonate forming)
Systematic name: 2-hydroxyethylphosphonate:oxygen 1,2-oxidoreductase (hydroxymethylphosphonate-forming)
Comments: Requires non-heme-iron(II). Isolated from some bacteria including Streptomyces hygroscopicus and Streptomyces viridochromogenes. The pro-R hydrogen at C-2 of the ethyl group is retained by the formate ion. Any stereochemistry at C-1 of the ethyl group is lost. One atom from dioxygen is present in each product. Involved in phosphinothricin biosynthesis.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Cicchillo, R.M., Zhang, H., Blodgett, J.A., Whitteck, J.T., Li, G., Nair, S.K., van der Donk, W.A. and Metcalf, W.W. An unusual carbon-carbon bond cleavage reaction during phosphinothricin biosynthesis. Nature 459 (2009) 871–874. [DOI] [PMID: 19516340]
2.  Whitteck, J.T., Malova, P., Peck, S.C., Cicchillo, R.M., Hammerschmidt, F. and van der Donk, W.A. On the stereochemistry of 2-hydroxyethylphosphonate dioxygenase. J. Am. Chem. Soc. 133 (2011) 4236–4239. [DOI] [PMID: 21381767]
3.  Peck, S.C., Cooke, H.A., Cicchillo, R.M., Malova, P., Hammerschmidt, F., Nair, S.K. and van der Donk, W.A. Mechanism and substrate recognition of 2-hydroxyethylphosphonate dioxygenase. Biochemistry 50 (2011) 6598–6605. [DOI] [PMID: 21711001]
[EC 1.13.11.72 created 2012]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald