EC |
1.14.15.25 |
Accepted name: |
p-cymene methyl-monooxygenase |
Reaction: |
p-cymene + O2 + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ = 4-isopropylbenzyl alcohol + 2 oxidized ferredoxin [iron-sulfur] cluster + H2O |
Glossary: |
p-cymene = 4-methyl-1-(propan-2-yl)benzene |
Other name(s): |
cymAa (gene name); cymA (gene name); p-cymene methyl hydroxylase |
Systematic name: |
p-cymene,ferredoxin:oxygen oxidoreductase (methyl-hydroxylating) |
Comments: |
The enzyme, characterized from several Pseudomonas strains, initiates p-cymene catabolism through hydroxylation of the methyl group. The enzyme has a distinct preference for substrates containing at least an alkyl or heteroatom substituent at the para-position of toluene. The electrons are provided by a reductase (EC 1.18.1.3, ferredoxin—NAD+ reductase) that transfers electrons from NADH via FAD and an [2Fe-2S] cluster. In Pseudomonas chlororaphis the presence of a third component of unknown function greatly increases the activity. cf. EC 1.14.15.26, toluene methyl-monooxygenase. |
Links to other databases: |
BRENDA, EXPASY, KEGG, MetaCyc |
References: |
1. |
Eaton, R.W. p-Cymene catabolic pathway in Pseudomonas putida F1: cloning and characterization of DNA encoding conversion of p-cymene to p-cumate. J. Bacteriol. 179 (1997) 3171–3180. [DOI] [PMID: 9150211] |
2. |
Dutta, T.K. and Gunsalus, I.C. Reductase gene sequences and protein structures: p-cymene methyl hydroxylase. Biochem. Biophys. Res. Commun. 233 (1997) 502–506. [DOI] [PMID: 9144566] |
3. |
Nishio, T., Patel, A., Wang, Y. and Lau, P.C. Biotransformations catalyzed by cloned p-cymene monooxygenase from Pseudomonas putida F1. Appl. Microbiol. Biotechnol. 55 (2001) 321–325. [PMID: 11341314] |
4. |
Dutta, T.K., Chakraborty, J., Roy, M., Ghosal, D., Khara, P. and Gunsalus, I.C. Cloning and characterization of a p-cymene monooxygenase from Pseudomonas chlororaphis subsp. aureofaciens. Res. Microbiol. 161 (2010) 876–882. [DOI] [PMID: 21035544] |
|
[EC 1.14.15.25 created 2018] |
|
|
|
|