The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

Accepted name: cholest-4-en-3-one 26-monooxygenase [(25S)-3-oxocholest-4-en-26-oate forming]
Reaction: cholest-4-en-3-one + 6 reduced ferredoxin [iron-sulfur] cluster + 6 H+ + 3 O2 = (25S)-3-oxocholest-4-en-26-oate + 6 oxidized ferredoxin [iron-sulfur] cluster + 4 H2O (overall reaction)
(1a) cholest-4-en-3-one + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2 = (25S)-26-hydroxycholest-4-en-3-one + 2 oxidized ferredoxin [iron-sulfur] cluster + H2O
(1b) (25S)-26-hydroxycholest-4-en-3-one + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2 = (25S)-26-oxocholest-4-en-3-one + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O
(1c) (25S)-26-oxocholest-4-en-3-one + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2 = (25S)-3-oxocholest-4-en-26-oate + 2 oxidized ferredoxin [iron-sulfur] cluster + H2O
Other name(s): CYP125; CYP125A1; cholest-4-en-3-one 27-monooxygenase (misleading); cholest-4-en-3-one,NADH:oxygen oxidoreductase (26-hydroxylating); cholest-4-en-3-one 26-monooxygenase (ambiguous)
Systematic name: cholest-4-en-3-one,[reduced ferredoxin]:oxygen oxidoreductase [(25S)-3-oxocholest-4-en-26-oate-forming]
Comments: A cytochrome P-450 (heme-thiolate) protein found in several bacterial pathogens. The enzyme is involved in degradation of the host's cholesterol. It catalyses the hydroxylation of the C-26 carbon, followed by oxidation of the alcohol to the carboxylic acid via the aldehyde intermediate, initiating the degradation of the alkyl side-chain of cholesterol [4]. The products are exclusively in the (25S) configuration. The enzyme is part of a two-component system that also includes a ferredoxin reductase (most likely KshB, which also interacts with EC, 3-ketosteroid 9α-monooxygenase). The enzyme also accepts cholesterol as a substrate. cf. EC, cholest-4-en-3-one 27-monooxygenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
1.  Rosloniec, K.Z., Wilbrink, M.H., Capyk, J.K., Mohn, W.W., Ostendorf, M., van der Geize, R., Dijkhuizen, L. and Eltis, L.D. Cytochrome P450 125 (CYP125) catalyses C26-hydroxylation to initiate sterol side-chain degradation in Rhodococcus jostii RHA1. Mol. Microbiol. 74 (2009) 1031–1043. [DOI] [PMID: 19843222]
2.  McLean, K.J., Lafite, P., Levy, C., Cheesman, M.R., Mast, N., Pikuleva, I.A., Leys, D. and Munro, A.W. The Structure of Mycobacterium tuberculosis CYP125: molecular basis for cholesterol binding in a P450 needed for host infection. J. Biol. Chem. 284 (2009) 35524–35533. [DOI] [PMID: 19846552]
3.  Capyk, J.K., Kalscheuer, R., Stewart, G.R., Liu, J., Kwon, H., Zhao, R., Okamoto, S., Jacobs, W.R., Jr., Eltis, L.D. and Mohn, W.W. Mycobacterial cytochrome P450 125 (Cyp125) catalyzes the terminal hydroxylation of C27 steroids. J. Biol. Chem. 284 (2009) 35534–35542. [DOI] [PMID: 19846551]
4.  Ouellet, H., Guan, S., Johnston, J.B., Chow, E.D., Kells, P.M., Burlingame, A.L., Cox, J.S., Podust, L.M. and de Montellano, P.R. Mycobacterium tuberculosis CYP125A1, a steroid C27 monooxygenase that detoxifies intracellularly generated cholest-4-en-3-one. Mol. Microbiol. 77 (2010) 730–742. [DOI] [PMID: 20545858]
[EC created 2012 as EC, modified 2016, transferred 2018 to EC]

Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald