The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

EC 1.2.7.12     
Accepted name: formylmethanofuran dehydrogenase
Reaction: a formylmethanofuran + H2O + 2 oxidized ferredoxin [iron-sulfur] cluster = CO2 + a methanofuran + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+
For diagram of methane biosynthesis, click here
Glossary: methanofuran a = 4-[4-(2-{[(4R*,5S*)-4,5,7-tricarboxyheptanoyl]-γ-L-glutamyl-γ-L-glutamylamino}ethyl)phenoxymethyl]furan-2-ylmethanamine
Other name(s): formylmethanofuran:acceptor oxidoreductase
Systematic name: formylmethanofuran:ferredoxin oxidoreductase
Comments: Contains a molybdopterin cofactor and numerous [4Fe-4S] clusters. In some organisms an additional subunit enables the incorporation of tungsten when molybdenum availability is low. The enzyme catalyses a reversible reaction in methanogenic archaea, and is involved in methanogenesis from CO2 as well as the oxidation of coenzyme M to CO2. The reaction is endergonic, and is driven by coupling with the soluble CoB-CoM heterodisulfide reductase via electron bifurcation.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 119940-12-4
References:
1.  Karrasch, M., Börner, G., Enssle, M. and Thauer, R.K. The molybdoenzyme formylmethanofuran dehydrogenase from Methanosarcina barkeri contains a pterin cofactor. Eur. J. Biochem. 194 (1990) 367–372. [DOI] [PMID: 2125267]
2.  Bertram, P.A., Schmitz, R.A., Linder, D. and Thauer, R.K. Tungstate can substitute for molybdate in sustaining growth of Methanobacterium thermoautotrophicum. Identification and characterization of a tungsten isoenzyme of formylmethanofuran dehydrogenase. Arch. Microbiol. 161 (1994) 220–228. [PMID: 8161283]
3.  Bertram, P.A., Karrasch, M., Schmitz, R.A., Bocher, R., Albracht, S.P. and Thauer, R.K. Formylmethanofuran dehydrogenases from methanogenic Archaea. Substrate specificity, EPR properties and reversible inactivation by cyanide of the molybdenum or tungsten iron-sulfur proteins. Eur. J. Biochem. 220 (1994) 477–484. [DOI] [PMID: 8125106]
4.  Vorholt, J.A. and Thauer, R.K. The active species of ’CO2’ utilized by formylmethanofuran dehydrogenase from methanogenic Archaea. Eur. J. Biochem. 248 (1997) 919–924. [DOI] [PMID: 9342247]
5.  Meuer, J., Kuettner, H.C., Zhang, J.K., Hedderich, R. and Metcalf, W.W. Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. Proc. Natl. Acad. Sci. USA 99 (2002) 5632–5637. [DOI] [PMID: 11929975]
6.  Kaster, A.K., Moll, J., Parey, K. and Thauer, R.K. Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea. Proc. Natl. Acad. Sci. USA 108 (2011) 2981–2986. [DOI] [PMID: 21262829]
7.  Wagner, T., Ermler, U. and Shima, S. The methanogenic CO2 reducing-and-fixing enzyme is bifunctional and contains 46 [4Fe-4S] clusters. Science 354 (2016) 114–117. [PMID: 27846502]
[EC 1.2.7.12 created 1992 as EC 1.2.99.5, transferred 2017 to EC 1.2.7.12]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald