|
Your query returned 1 entry. Printable version
EC | 2.1.1.319 | ||||||||
Accepted name: | type I protein arginine methyltransferase | ||||||||
Reaction: | 2 S-adenosyl-L-methionine + [protein]-L-arginine = 2 S-adenosyl-L-homocysteine + [protein]-Nω,Nω-dimethyl-L-arginine (overall reaction) (1a) S-adenosyl-L-methionine + [protein]-L-arginine = S-adenosyl-L-homocysteine + [protein]-Nω-methyl-L-arginine (1b) S-adenosyl-L-methionine + [protein]-Nω-methyl-L-arginine = S-adenosyl-L-homocysteine + [protein]-Nω,Nω-dimethyl-L-arginine |
||||||||
Other name(s): | PRMT1 (gene name); PRMT2 (gene name); PRMT3 (gene name); PRMT4 (gene name); PRMT6 (gene name); PRMT8 (gene name); RMT1 (gene name); CARM1 (gene name) | ||||||||
Systematic name: | S-adenosyl-L-methionine:[protein]-L-arginine N-methyltransferase ([protein]-Nω,Nω-dimethyl-L-arginine-forming) | ||||||||
Comments: | This eukaryotic enzyme catalyses the sequential dimethylation of one of the terminal guanidino nitrogen atoms in arginine residues, resulting in formation of asymmetric dimethylarginine residues. Some forms (e.g. PRMT1) have a very wide substrate specificity, while others (e.g. PRMT4 and PRMT6) are rather specific. The enzyme has a preference for methylating arginine residues that are flanked by one or more glycine residues [1]. PRMT1 is responsible for the bulk (about 85%) of total protein arginine methylation activity in mammalian cells [2]. cf. EC 2.1.1.320, type II protein arginine methyltransferase, EC 2.1.1.321, type III protein arginine methyltransferase, and EC 2.1.1.322, type IV protein arginine methyltransferase. | ||||||||
Links to other databases: | BRENDA, EXPASY, Gene, KEGG, MetaCyc, PDB | ||||||||
References: |
| ||||||||