The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

EC 2.5.1.15     
Accepted name: dihydropteroate synthase
Reaction: (7,8-dihydropterin-6-yl)methyl diphosphate + 4-aminobenzoate = diphosphate + 7,8-dihydropteroate
For diagram of folate biosynthesis (late stages), click here
Glossary: 7,8-dihydropteroate = 4-{[(2-amino-4-oxo-3,4,7,8-tetrahydropteridin-6-yl)methyl]amino}benzoate
Other name(s): dihydropteroate pyrophosphorylase; DHPS; 7,8-dihydropteroate synthase; 7,8-dihydropteroate synthetase; 7,8-dihydropteroic acid synthetase; dihydropteroate synthetase; dihydropteroic synthetase; 2-amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine-diphosphate:4-aminobenzoate 2-amino-4-hydroxydihydropteridine-6-methenyltransferase; (2-amino-4-hydroxy-7,8-dihydropteridin-6-yl)methyl-diphosphate:4-aminobenzoate 2-amino-4-hydroxydihydropteridine-6-methenyltransferase
Systematic name: (7,8-dihydropterin-6-yl)methyl-diphosphate:4-aminobenzoate 2-amino-4-hydroxy-7,8-dihydropteridine-6-methenyltransferase
Comments: The enzyme participates in the biosynthetic pathways for folate (in bacteria, plants and fungi) and methanopterin (in archaea). The enzyme exists in varying types of multifunctional proteins in different organisms. The enzyme from the plant Arabidopsis thaliana also harbors the activity of EC 2.7.6.3, 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine diphosphokinase [4], while the enzyme from yeast Saccharomyces cerevisiae is trifunctional with the two above mentioned activities as well as EC 4.1.2.25, dihydroneopterin aldolase [3].
Links to other databases: BRENDA, EXPASY, Gene, KEGG, MetaCyc, PDB, CAS registry number: 9055-61-2
References:
1.  Richey, D.P. and Brown, G.M. The biosynthesis of folic acid. IX. Purification and properties of the enzymes required for the formation of dihydropteroic acid. J. Biol. Chem. 244 (1969) 1582–1592. [PMID: 4304228]
2.  Shiota, T., Baugh, C.M., Jackson, R. and Dillard, R. The enzymatic synthesis of hydroxymethyldihydropteridine pyrophosphate and dihydrofolate. Biochemistry 8 (1969) 5022–5028. [PMID: 4312465]
3.  Güldener, U., Koehler, G.J., Haussmann, C., Bacher, A., Kricke, J., Becher, D. and Hegemann, J.H. Characterization of the Saccharomyces cerevisiae Fol1 protein: starvation for C1 carrier induces pseudohyphal growth. Mol. Biol. Cell 15 (2004) 3811–3828. [DOI] [PMID: 15169867]
4.  Storozhenko, S., Navarrete, O., Ravanel, S., De Brouwer, V., Chaerle, P., Zhang, G.F., Bastien, O., Lambert, W., Rebeille, F. and Van Der Straeten, D. Cytosolic hydroxymethyldihydropterin pyrophosphokinase/dihydropteroate synthase from Arabidopsis thaliana: a specific role in early development and stress response. J. Biol. Chem. 282 (2007) 10749–10761. [DOI] [PMID: 17289662]
[EC 2.5.1.15 created 1972, modified 2015]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald