The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

Accepted name: protein-Nπ-phosphohistidine—D-mannitol phosphotransferase
Reaction: [protein]-Nπ-phospho-L-histidine + D-mannitol[side 1] = [protein]-L-histidine + D-mannitol 1-phosphate[side 2]
Other name(s): mtlA (gene name); D-mannitol PTS permease; EIIMtl
Systematic name: protein-Nπ-phospho-L-histidine:D-mannitol Nπ-phosphotransferase
Comments: This enzyme is a component (known as enzyme II) of a phosphoenolpyruvate (PEP)-dependent, sugar transporting phosphotransferase system (PTS). The system, which is found only in prokaryotes, simultaneously transports its substrate from the periplasm or extracellular space into the cytoplasm and phosphorylates it. The phosphate donor, which is shared among the different systems, is a phospho-carrier protein of low molecular mass that has been phosphorylated by EC (phosphoenolpyruvate—protein phosphotransferase). Enzyme II, on the other hand, is specific for a particular substrate, although in some cases alternative substrates can be transported with lower efficiency. The reaction involves a successive transfer of the phosphate group to several amino acids within the enzyme before the final transfer to the substrate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
1.  Jacobson, G.R., Lee, C.A. and Saier, M.H., Jr. Purification of the mannitol-specific enzyme II of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system. J. Biol. Chem. 254 (1979) 249–252. [PMID: 368051]
2.  Jacobson, G.R., Tanney, L.E., Kelly, D.M., Palman, K.B. and Corn, S.B. Substrate and phospholipid specificity of the purified mannitol permease of Escherichia coli. J. Cell. Biochem. 23 (1983) 231–240. [DOI] [PMID: 6427236]
3.  Lee, C.A. and Saier, M.H., Jr. Mannitol-specific enzyme II of the bacterial phosphotransferase system. III. The nucleotide sequence of the permease gene. J. Biol. Chem. 258 (1983) 10761–10767. [PMID: 6309813]
4.  Elferink, M.G., Driessen, A.J. and Robillard, G.T. Functional reconstitution of the purified phosphoenolpyruvate-dependent mannitol-specific transport system of Escherichia coli in phospholipid vesicles: coupling between transport and phosphorylation. J. Bacteriol. 172 (1990) 7119–7125. [DOI] [PMID: 2123863]
5.  van Weeghel, R.P., Meyer, G., Pas, H.H., Keck, W. and Robillard, G.T. Cytoplasmic phosphorylating domain of the mannitol-specific transport protein of the phosphoenolpyruvate-dependent phosphotransferase system in Escherichia coli: overexpression, purification, and functional complementation with the mannitol binding domain. Biochemistry 30 (1991) 9478–9485. [PMID: 1909895]
6.  Boer, H., ten Hoeve-Duurkens, R.H. and Robillard, G.T. Relation between the oligomerization state and the transport and phosphorylation function of the Escherichia coli mannitol transport protein: interaction between mannitol-specific enzyme II monomers studied by complementation of inactive site-directed mutants. Biochemistry 35 (1996) 12901–12908. [DOI] [PMID: 8841134]
[EC created 1972 as EC, part transferred 2016 to EC]

Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald