The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

EC 2.7.7.23     
Accepted name: UDP-N-acetylglucosamine diphosphorylase
Reaction: UTP + N-acetyl-α-D-glucosamine 1-phosphate = diphosphate + UDP-N-acetyl-α-D-glucosamine
For diagram of UDP-N-acetylglucosamine biosynthesis, click here
Other name(s): UDP-N-acetylglucosamine pyrophosphorylase; uridine diphosphoacetylglucosamine pyrophosphorylase; UTP:2-acetamido-2-deoxy-α-D-glucose-1-phosphate uridylyltransferase; UDP-GlcNAc pyrophosphorylase; GlmU uridylyltransferase; Acetylglucosamine 1-phosphate uridylyltransferase; UDP-acetylglucosamine pyrophosphorylase; uridine diphosphate-N-acetylglucosamine pyrophosphorylase; uridine diphosphoacetylglucosamine phosphorylase; acetylglucosamine 1-phosphate uridylyltransferase
Systematic name: UTP:N-acetyl-α-D-glucosamine-1-phosphate uridylyltransferase
Comments: Part of the pathway for acetamido sugar biosynthesis in bacteria and archaea. The enzyme from several bacteria (e.g., Escherichia coli, Bacillus subtilis and Haemophilus influenzae) has been shown to be bifunctional and also to possess the activity of EC 2.3.1.157, glucosamine-1-phosphate N-acetyltransferase [3,4,6]. The enzyme from plants and animals is also active toward N-acetyl-α-D-galactosamine 1-phosphate (cf. EC 2.7.7.83, UDP-N-acetylgalactosamine diphosphorylase) [5,7], while the bacterial enzyme shows low activity toward that substrate [4].
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9023-06-7
References:
1.  Pattabiramin, T.N. and Bachhawat, B.K. Purification of uridine diphosphoacetylglucosamine pyrophosphorylase from sheep brain. Biochim. Biophys. Acta 50 (1961) 129–134. [DOI] [PMID: 13733356]
2.  Strominger, J.L. and Smith, M.S. Uridine diphosphoacetylglucosamine pyrophosphorylase. J. Biol. Chem. 234 (1959) 1822–1827. [PMID: 13672971]
3.  Mengin-Lecreulx, D. and van Heijenoort, J. Copurification of glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase activities of Escherichia coli: characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent steps in the pathway for UDP-N-acetylglucosamine synthesis. J. Bacteriol. 176 (1994) 5788–5795. [DOI] [PMID: 8083170]
4.  Gehring, A.M., Lees, W.J., Mindiola, D.J., Walsh, C.T. and Brown, E.D. Acetyltransfer precedes uridylyltransfer in the formation of UDP-N-acetylglucosamine in separable active sites of the bifunctional GlmU protein of Escherichia coli. Biochemistry 35 (1996) 579–585. [DOI] [PMID: 8555230]
5.  Wang-Gillam, A., Pastuszak, I. and Elbein, A.D. A 17-amino acid insert changes UDP-N-acetylhexosamine pyrophosphorylase specificity from UDP-GalNAc to UDP-GlcNAc. J. Biol. Chem. 273 (1998) 27055–27057. [DOI] [PMID: 9765219]
6.  Olsen, L.R. and Roderick, S.L. Structure of the Escherichia coli GlmU pyrophosphorylase and acetyltransferase active sites. Biochemistry 40 (2001) 1913–1921. [DOI] [PMID: 11329257]
7.  Peneff, C., Ferrari, P., Charrier, V., Taburet, Y., Monnier, C., Zamboni, V., Winter, J., Harnois, M., Fassy, F. and Bourne, Y. Crystal structures of two human pyrophosphorylase isoforms in complexes with UDPGlc(Gal)NAc: role of the alternatively spliced insert in the enzyme oligomeric assembly and active site architecture. EMBO J. 20 (2001) 6191–6202. [DOI] [PMID: 11707391]
[EC 2.7.7.23 created 1965, modified 2012]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald