The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

EC 3.4.22.60     
Accepted name: caspase-7
Reaction: Strict requirement for an Asp residue at position P1 and has a preferred cleavage sequence of Asp-Glu-Val-Asp┼
Other name(s): CASP-7; ICE-like apoptotic protease 3; ICE-LAP3; apoptotic protease Mch-3; Mch3; CMH-1
Comments: Caspase-7 is an effector/executioner caspase, as are caspase-3 (EC 3.4.22.56) and caspase-6 (EC 3.4.22.59) [1]. These caspases are responsible for the proteolysis of the majority of cellular polypeptides [e.g. poly(ADP-ribose) polymerase (PARP)], which leads to the apoptotic phenotype [2]. Although a hydrophobic residue at P5 of caspase-2 (EC 3.4.22.55) and caspase-3 leads to more efficient hydrolysis, the amino-acid residue at this location in caspase-7 has no effect [3]. Caspase-7 is activated by the initiator caspases [caspase-8 (EC 3.4.22.61), caspase-9 (EC 3.4.22.62) and caspase-10 (EC 3.4.22.63)]. Removal of the N-terminal prodomain occurs before cleavage in the linker region between the large and small subunits [4]. Belongs in peptidase family C14.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 189258-14-8
References:
1.  Chang, H.Y. and Yang, X. Proteases for cell suicide: functions and regulation of caspases. Microbiol. Mol. Biol. Rev. 64 (2000) 821–846. [PMID: 11104820]
2.  Nicholson, D. and Thornberry, N.A. Caspase-3 and caspase-7. In: Barrett, A.J., Rawlings, N.D. and Woessner, J.F. (Ed.), Handbook of Proteolytic Enzymes, 2nd edn, Elsevier, London, 2004, pp. 1298–1302.
3.  Fang, B., Boross, P.I., Tozser, J. and Weber, I.T. Structural and kinetic analysis of caspase-3 reveals role for S5 binding site in substrate recognition. J. Mol. Biol. 360 (2006) 654–666. [DOI] [PMID: 16781734]
4.  Denault, J.B. and Salvesen, G.S. Human caspase-7 activity and regulation by its N-terminal peptide. J. Biol. Chem. 278 (2003) 34042–34050. [DOI] [PMID: 12824163]
[EC 3.4.22.60 created 2007]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald