The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

Accepted name: acyl-homoserine-lactone acylase
Reaction: an N-acyl-L-homoserine lactone + H2O = L-homoserine lactone + a carboxylate
Other name(s): acyl-homoserine lactone acylase; AHL-acylase; AiiD; N-acyl-homoserine lactone acylase; PA2385 protein; quorum-quenching AHL acylase; quorum-quenching enzyme; QuiP
Systematic name: N-acyl-L-homoserine-lactone amidohydrolase
Comments: Acyl-homoserine lactones (AHLs) are produced by a number of bacterial species and are used by them to regulate the expression of virulence genes in a process known as quorum-sensing. Each bacterial cell has a basal level of AHL and, once the population density reaches a critical level, it triggers AHL-signalling which, in turn, initiates the expression of particular virulence genes. Plants or animals capable of degrading AHLs would have a therapeutic advantage in avoiding bacterial infection as they could prevent AHL-signalling and the expression of virulence genes in quorum-sensing bacteria. This quorum-quenching enzyme removes the fatty-acid side chain from the homoserine lactone ring of AHL-dependent quorum-sensing signal molecules. It has broad specificity for AHLs with side changes ranging in length from 11 to 14 carbons. Substituents at the 3′-position, as found in N-(3-oxododecanoyl)-L-homoserine lactone, do not affect this activity.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, MetaCyc, PDB
1.  Lin, Y.H., Xu, J.L., Hu, J., Wang, L.H., Ong, S.L., Leadbetter, J.R. and Zhang, L.H. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol. Microbiol. 47 (2003) 849–860. [DOI] [PMID: 12535081]
2.  Sio, C.F., Otten, L.G., Cool, R.H., Diggle, S.P., Braun, P.G., Bos, R., Daykin, M., Cámara, M., Williams, P. and Quax, W.J. Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infect. Immun. 74 (2006) 1673–1682. [DOI] [PMID: 16495538]
[EC created 2007]

Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald