The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

Accepted name: glucosamine-6-phosphate deaminase
Reaction: α-D-glucosamine 6-phosphate + H2O = D-fructose 6-phosphate + NH3
For diagram of UDP-N-acetylglucosamine biosynthesis, click here
Glossary: α-D-glucosamine 6-phosphate = 2-amino-2-deoxy-α-D-glucopyranose 6-phosphate
Other name(s): glucosaminephosphate isomerase (ambiguous); glucosamine-6-phosphate isomerase (ambiguous); phosphoglucosaminisomerase (ambiguous); glucosamine phosphate deaminase; aminodeoxyglucosephosphate isomerase (ambiguous); phosphoglucosamine isomerase (ambiguous); 2-amino-2-deoxy-D-glucose-6-phosphate aminohydrolase (ketol isomerizing)
Systematic name: 2-amino-2-deoxy-α-D-glucose-6-phosphate aminohydrolase (ketol isomerizing)
Comments: The enzyme uses ring opening and isomerization of the aldose-ketose type to convert the -CH(-NH2)-CH=O group of glucosamine 6-phosphate into -C(=NH)-CH2-OH, forming 2-deoxy-2-imino-D-arabino-hexitol, which then hydrolyses to yield fructose 6-phosphate and ammonia. N-Acetyl-D-glucosamine 6-phosphate, which is not broken down, activates the enzyme.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9013-10-9
1.  Wolfe, J.B., Britton, B.B., Nakada, H.I. Glucosamine degradation by Escherichia coli. III. Isolation and studies of "phosphoglucosaminisomerase". Arch. Biochem. Biophys. 66 (1957) 333–339. [DOI] [PMID: 13403679]
2.  Comb, D.G., Roseman, S. Glucosamine metabolism. IV. Glucosamine-6-phosphate deaminase. J. Biol. Chem. 232 (1958) 807–827. [PMID: 13549465]
3.  Pattabiraman, T.N., Bachhawat, B.K. Purification of glucosamine 6-phosphate deaminase from human brain. Biochim. Biophys. Acta 54 (1961) 273–283. [DOI] [PMID: 14484386]
4.  Liu, C., Li, D., Liang, Y.H., Li, L.F. and Su, X.D. Ring-opening mechanism revealed by crystal structures of NagB and its ES intermediate complex. J. Mol. Biol. 379 (2008) 73–81. [DOI] [PMID: 18436239]
[EC created 1961 as EC, transferred 2000 to EC]

Data © 2001–2022 IUBMB
Web site © 2005–2022 Andrew McDonald