Comments: |
Requires Mg2+ or Mn2+ for maximal activity [1]. The enzyme is specific for D-ribulose 5-phosphate as substrate as ribose 5-phosphate, xylulose 5-phosphate, allulose 6-phosphate and fructose 6-phosphate cannot act as substrate. In addition to formaldehyde, the enzyme can also use glycolaldehyde and methylglyoxal [7]. This enzyme, along with EC 5.3.1.27, 6-phospho-3-hexuloisomerase, plays a key role in the ribulose-monophosphate cycle of formaldehyde fixation, which is present in many microorganisms that are capable of utilizing C1-compounds [1]. The hyperthermophilic and anaerobic archaeon Pyrococcus horikoshii OT3 constitutively produces a bifunctional enzyme that sequentially catalyses the reactions of this enzyme and EC 5.3.1.27, 6-phospho-3-hexuloisomerase [6]. This enzyme is a member of the orotidine 5′-monophosphate decarboxylase (OMPDC) suprafamily [5]. |
References: |
1. |
Ferenci, T., Strøm, T. and Quayle, J.R. Purification and properties of 3-hexulose phosphate synthase and phospho-3-hexuloisomerase from Methylococcus capsulatus. Biochem. J. 144 (1974) 477–486. [PMID: 4219834] |
2. |
Kato, N., Ohashi, H., Tani, Y. and Ogata, K. 3-Hexulosephosphate synthase from Methylomonas aminofaciens 77a. Purification, properties and kinetics. Biochim. Biophys. Acta 523 (1978) 236–244. [DOI] [PMID: 564713] |
3. |
Yanase, H., Ikeyama, K., Mitsui, R., Ra, S., Kita, K., Sakai, Y. and Kato, N. Cloning and sequence analysis of the gene encoding 3-hexulose-6-phosphate synthase from the methylotrophic bacterium, Methylomonas aminofaciens 77a, and its expression in Escherichia coli. FEMS Microbiol. Lett. 135 (1996) 201–205. [PMID: 8595859] |
4. |
Yurimoto, H., Kato, N. and Sakai, Y. Assimilation, dissimilation, and detoxification of formaldehyde, a central metabolic intermediate of methylotrophic metabolism. Chem. Rec. 5 (2005) 367–375. [DOI] [PMID: 16278835] |
5. |
Kato, N., Yurimoto, H. and Thauer, R.K. The physiological role of the ribulose monophosphate pathway in bacteria and archaea. Biosci. Biotechnol. Biochem. 70 (2006) 10–21. [DOI] [PMID: 16428816] |
6. |
Orita, I., Yurimoto, H., Hirai, R., Kawarabayasi, Y., Sakai, Y. and Kato, N. The archaeon Pyrococcus horikoshii possesses a bifunctional enzyme for formaldehyde fixation via the ribulose monophosphate pathway. J. Bacteriol. 187 (2005) 3636–3642. [DOI] [PMID: 15901685] |
7. |
Kato, N., Miyamoto, N., Shimao, M. and Sakazawa, C. 3-Hexulose phosphate pynthase from a new facultative methylotroph, Mycobacterium gastri MB19. Agric. Biol. Chem. 52 (1988) 2659–2661. |
|