The Enzyme Database

Your query returned 4 entries.    printer_iconPrintable version

EC 1.14.20.3     
Accepted name: (5R)-carbapenem-3-carboxylate synthase
Reaction: (3S,5S)-carbapenam-3-carboxylate + 2-oxoglutarate + O2 = (5R)-carbapen-2-em-3-carboxylate + succinate + CO2 + H2O
Glossary: (3S,5S)-carbapenam-3-carboxylate = (2S,5S)-7-oxo-1-azabicyclo[3.2.0]heptane-2-carboxylate
(5R)-carbapen-2-em-3-carboxylate = (5R)-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate
Other name(s): carC (gene name)
Systematic name: (3S,5S)-carbapenam-3-carboxylate,2-oxoglutarate:oxygen oxidoreductase (dehydrating)
Comments: Requires Fe2+. The enzyme is involved in the biosynthesis of the carbapenem β-lactam antibiotic (5R)-carbapen-2-em-3-carboxylate in the bacterium Pectobacterium carotovorum. It catalyses a stereoinversion at C-5 and introduces a double bond between C-2 and C-3.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Clifton, I.J., Doan, L.X., Sleeman, M.C., Topf, M., Suzuki, H., Wilmouth, R.C. and Schofield, C.J. Crystal structure of carbapenem synthase (CarC). J. Biol. Chem. 278 (2003) 20843–20850. [DOI] [PMID: 12611886]
2.  Stapon, A., Li, R. and Townsend, C.A. Carbapenem biosynthesis: confirmation of stereochemical assignments and the role of CarC in the ring stereoinversion process from L-proline. J. Am. Chem. Soc. 125 (2003) 8486–8493. [DOI] [PMID: 12848554]
3.  Sleeman, M.C., Smith, P., Kellam, B., Chhabra, S.R., Bycroft, B.W. and Schofield, C.J. Biosynthesis of carbapenem antibiotics: new carbapenam substrates for carbapenem synthase (CarC). ChemBioChem 5 (2004) 879–882. [DOI] [PMID: 15174175]
[EC 1.14.20.3 created 2013]
 
 
EC 2.3.1.226     
Accepted name: carboxymethylproline synthase
Reaction: malonyl-CoA + (S)-1-pyrroline-5-carboxylate + H2O = CoA + (2S,5S)-5-carboxymethylproline + CO2
Other name(s): CarB (ambiguous)
Systematic name: malonyl-CoA:(S)-1-pyrroline-5-carboxylate malonyltransferase (cyclizing)
Comments: The enzyme is involved in the biosynthesis of the carbapenem β-lactam antibiotic (5R)-carbapen-2-em-3-carboxylate in the bacterium Pectobacterium carotovorum.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Sleeman, M.C. and Schofield, C.J. Carboxymethylproline synthase (CarB), an unusual carbon-carbon bond-forming enzyme of the crotonase superfamily involved in carbapenem biosynthesis. J. Biol. Chem. 279 (2004) 6730–6736. [DOI] [PMID: 14625287]
2.  Gerratana, B., Arnett, S.O., Stapon, A. and Townsend, C.A. Carboxymethylproline synthase from Pectobacterium carotorova: a multifaceted member of the crotonase superfamily. Biochemistry 43 (2004) 15936–15945. [DOI] [PMID: 15595850]
3.  Sorensen, J.L., Sleeman, M.C. and Schofield, C.J. Synthesis of deuterium labelled L- and D-glutamate semialdehydes and their evaluation as substrates for carboxymethylproline synthase (CarB)—implications for carbapenem biosynthesis. Chem. Commun. (Camb.) (2005) 1155–1157. [DOI] [PMID: 15726176]
4.  Sleeman, M.C., Sorensen, J.L., Batchelar, E.T., McDonough, M.A. and Schofield, C.J. Structural and mechanistic studies on carboxymethylproline synthase (CarB), a unique member of the crotonase superfamily catalyzing the first step in carbapenem biosynthesis. J. Biol. Chem. 280 (2005) 34956–34965. [DOI] [PMID: 16096274]
5.  Batchelar, E.T., Hamed, R.B., Ducho, C., Claridge, T.D., Edelmann, M.J., Kessler, B. and Schofield, C.J. Thioester hydrolysis and C-C bond formation by carboxymethylproline synthase from the crotonase superfamily. Angew. Chem. Int. Ed. Engl. 47 (2008) 9322–9325. [DOI] [PMID: 18972478]
6.  Hamed, R.B., Gomez-Castellanos, J.R., Thalhammer, A., Harding, D., Ducho, C., Claridge, T.D. and Schofield, C.J. Stereoselective C-C bond formation catalysed by engineered carboxymethylproline synthases. Nat. Chem. 3 (2011) 365–371. [DOI] [PMID: 21505494]
[EC 2.3.1.226 created 2013]
 
 
EC 6.3.1.16      
Transferred entry: carbapenam-3-carboxylate synthetase. The enzyme was discovered at the public-review stage to have been misclassified and so was withdrawn. See EC 6.3.3.6, carbapenam-3-carboxylate synthase
[EC 6.3.1.16 created 2013, deleted 2013]
 
 
EC 6.3.3.6     
Accepted name: carbapenam-3-carboxylate synthase
Reaction: ATP + (2S,5S)-5-carboxymethylproline = AMP + diphosphate + (3S,5S)-carbapenam 3-carboxylate
Other name(s): CarA (ambiguous); CPS (ambiguous); carbapenam-3-carboxylate ligase; 6-methyl-(2S,5S)-5-carboxymethylproline cyclo-ligase (AMP-forming)
Systematic name: (2S,5S)-5-carboxymethylproline cyclo-ligase (AMP-forming)
Comments: The enzyme is involved in the biosynthesis of the carbapenem β-lactam antibiotic (5R)-carbapen-2-em-3-carboxylate in the bacterium Pectobacterium carotovorum.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Gerratana, B., Stapon, A. and Townsend, C.A. Inhibition and alternate substrate studies on the mechanism of carbapenam synthetase from Erwinia carotovora. Biochemistry 42 (2003) 7836–7847. [DOI] [PMID: 12820893]
2.  Miller, M.T., Gerratana, B., Stapon, A., Townsend, C.A. and Rosenzweig, A.C. Crystal structure of carbapenam synthetase (CarA). J. Biol. Chem. 278 (2003) 40996–41002. [DOI] [PMID: 12890666]
3.  Raber, M.L., Arnett, S.O. and Townsend, C.A. A conserved tyrosyl-glutamyl catalytic dyad in evolutionarily linked enzymes: carbapenam synthetase and β-lactam synthetase. Biochemistry 48 (2009) 4959–4971. [DOI] [PMID: 19371088]
4.  Arnett, S.O., Gerratana, B. and Townsend, C.A. Rate-limiting steps and role of active site Lys443 in the mechanism of carbapenam synthetase. Biochemistry 46 (2007) 9337–9345. [DOI] [PMID: 17658887]
[EC 6.3.3.6 created 2013 as 6.3.1.16, transferred 2013 to EC 6.3.3.6]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald