The Enzyme Database

Your query returned 25 entries.    printer_iconPrintable version

EC 4.2.1.139     Relevance: 100%
Accepted name: pterocarpan synthase
Reaction: a (4R)-4,2′-dihydroxyisoflavan = a pterocarpan + H2O
For diagram of medicarpin and formononetin derivatives biosynthesis, click here
Glossary: an isoflavan = an isoflavonoid with a 3,4-dihydro-3-aryl-2H-1-benzopyran skeleton.
(–)-medicarpin = (6aR,11aR)-9-methoxy-6a,11a-dihydro-6H-[1]benzofuro[3,2-c]chromen-3-ol
(+)-medicarpin = (6aS,11aS)-9-methoxy-6a,11a-dihydro-6H-[1]benzofuro[3,2-c]chromen-3-ol
(–)-maackiain = (6aR,12aR)-6a,12a-dihydro-6H-[1,3]dioxolo[5,6][1]benzofuro[3,2-c]chromen-3-ol
(+)-maackiain = (6aS,12aS)-6a,12a-dihydro-6H-[1,3]dioxolo[5,6][1]benzofuro[3,2-c]chromen-3-ol
(+)-pterocarpan = (6aR,11aR)-6a,11a-dihydro-6H-[1]benzofuran[3,2-c][1]benzopyran
Other name(s): medicarpin synthase; medicarpan synthase; 7,2′-dihydroxy-4′-methoxyisoflavanol dehydratase; 2′,7-dihydroxy-4′-methoxyisoflavanol dehydratase; DMI dehydratase; DMID; 2′-hydroxyisoflavanol 4,2′-dehydratase; PTS (gene name); 4′-methoxyisoflavan-2′,4,7-triol hydro-lyase [(–)-medicarpin-forming]
Systematic name: (4R)-4,2′-dihydroxyisoflavan hydro-lyase (pterocarpan-forming)
Comments: The enzyme catalyses the formation of the additional ring in pterocarpan, the basic structure of phytoalexins produced by leguminous plants, including (–)-medicarpin, (+)-medicarpin, (–)-maackiain and (+)-maackiain. The enzyme requires that the hydroxyl group at C-4 of the substrate is in the (4R) configuration. The configuration of the hydrogen atom at C-3 determines whether the pterocarpan is the (+)- or (–)-enantiomer. The enzyme contains amino acid motifs characteristic of dirigent proteins.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Guo, L., Dixon, R.A. and Paiva, N.L. The ‘pterocarpan synthase’ of alfalfa: association and co-induction of vestitone reductase and 7,2′-dihydroxy-4′-methoxy-isoflavanol (DMI) dehydratase, the two final enzymes in medicarpin biosynthesis. FEBS Lett. 356 (1994) 221–225. [DOI] [PMID: 7805842]
2.  Guo, L., Dixon, R.A. and Paiva, N.L. Conversion of vestitone to medicarpin in alfalfa (Medicago sativa L.) is catalyzed by two independent enzymes. Identification, purification, and characterization of vestitone reductase and 7,2′-dihydroxy-4′-methoxyisoflavanol dehydratase. J. Biol. Chem. 269 (1994) 22372–22378. [PMID: 8071365]
3.  Uchida, K., Akashi, T. and Aoki, T. The missing link in leguminous pterocarpan biosynthesis is a dirigent domain-containing protein with isoflavanol dehydratase activity. Plant Cell Physiol. 58 (2017) 398–408. [PMID: 28394400]
[EC 4.2.1.139 created 2013, modified 2019]
 
 
EC 5.3.3.11     Relevance: 62.9%
Accepted name: isopiperitenone Δ-isomerase
Reaction: isopiperitenone = piperitenone
For diagram of (–)-carvone, perillyl aldehyde and pulegone biosynthesis, click here
Systematic name: isopiperitenone Δ84-isomerase
Comments: Involved in the biosynthesis of menthol and related monoterpenes in peppermint (Mentha piperita) leaves.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 96595-07-2
References:
1.  Kjonaas, R.B., Venkatachalam, K.V. and Croteau, R. Metabolism of monoterpenes: oxidation of isopiperitenol to isopiperitenone, and subsequent isomerization to piperitenone by soluble enzyme preparations from peppermint (Mentha piperita) leaves. Arch. Biochem. Biophys. 238 (1985) 49–60. [DOI] [PMID: 3885858]
[EC 5.3.3.11 created 1989]
 
 
EC 1.14.13.52      
Transferred entry: isoflavone 3′-hydroxylase. Now EC 1.14.14.88, isoflavone 3′-hydroxylase
[EC 1.14.13.52 created 1992, deleted 2018]
 
 
EC 1.14.21.8      
Transferred entry: pseudobaptigenin synthase. Now EC 1.14.19.63, pseudobaptigenin synthase.
[EC 1.14.21.8 created 2011, deleted 2018]
 
 
EC 1.3.1.45     Relevance: 60.9%
Accepted name: 2′-hydroxyisoflavone reductase
Reaction: vestitone + NADP+ = 2′-hydroxyformononetin + NADPH + H+
For diagram of the biosynthesis of formononetin and derivatives, click here
Other name(s): NADPH:2′-hydroxyisoflavone oxidoreductase; isoflavone reductase; 2′,7-dihydroxy-4′,5′-methylenedioxyisoflavone reductase
Systematic name: vestitone:NADP+ oxidoreductase
Comments: In the reverse reaction, a 2′-hydroxyisoflavone is reduced to an isoflavanone; 2′-hydroxypseudobaptigenin also acts. Involved in the biosynthesis of the pterocarpin phytoalexins medicarpin and maackiain.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 128449-69-4
References:
1.  Tiemann, K., Hinderer, W. and Barz, W. Isolation of NADPH:isoflavone oxidoreductase, a new enzyme of pterocarpan biosynthesis in cell suspensions of Cicer arietinum. FEBS Lett. 213 (1987) 324–328.
[EC 1.3.1.45 created 1990]
 
 
EC 1.1.1.243     Relevance: 59%
Accepted name: carveol dehydrogenase
Reaction: (–)-trans-carveol + NADP+ = (–)-carvone + NADPH + H+
For diagram of (–)-carvone, perillyl aldehyde and pulegone biosynthesis, click here
Other name(s): (–)-trans-carveol dehydrogenase
Systematic name: (–)-trans-carveol:NADP+ oxidoreductase
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 122653-66-1
References:
1.  Gershenzon, J., Maffei, M. and Croteau, R. Biochemical and histochemical-localization of monoterpene biosynthesis in the glandular trichomes of spearmint (Mentha spicata). Plant Physiol. 89 (1989) 1351–1357. [PMID: 16666709]
[EC 1.1.1.243 created 1992]
 
 
EC 1.1.1.348     Relevance: 57.5%
Accepted name: (3R)-2′-hydroxyisoflavanone reductase
Reaction: a (4R)-4,2′-dihydroxyisoflavan + NADP+ = a (3R)-2′-hydroxyisoflavanone + NADPH + H+
For diagram of medicarpin and formononetin derivatives biosynthesis, click here
Glossary: (3R)-vestitone = (3R)-2′,7-dihydroxy-4′-methoxyisoflavanone
Other name(s): vestitone reductase; pterocarpin synthase (incorrect); pterocarpan synthase (incorrect)
Systematic name: (3R)-2′-hydroxyisoflavanone:NADP+ 4-oxidoreductase
Comments: This plant enzyme participates in the biosynthesis of the pterocarpan phytoalexins medicarpin, maackiain, and several forms of glyceollin. The enzyme has a strict stereo specificity for the 3R-isoflavanones.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 118477-70-6
References:
1.  Bless, W. and Barz, W. Isolation of pterocarpan synthase, the terminal enzyme of pterocarpan phytoalexin biosynthesis in cell-suspension cultures of Cicer arietinum. FEBS Lett. 235 (1988) 47–50.
2.  Guo, L., Dixon, R.A. and Paiva, N.L. Conversion of vestitone to medicarpin in alfalfa (Medicago sativa L.) is catalyzed by two independent enzymes. Identification, purification, and characterization of vestitone reductase and 7,2′-dihydroxy-4′-methoxyisoflavanol dehydratase. J. Biol. Chem. 269 (1994) 22372–22378. [PMID: 8071365]
3.  Guo, L., Dixon, R.A. and Paiva, N.L. The ‘pterocarpan synthase’ of alfalfa: association and co-induction of vestitone reductase and 7,2′-dihydroxy-4′-methoxy-isoflavanol (DMI) dehydratase, the two final enzymes in medicarpin biosynthesis. FEBS Lett. 356 (1994) 221–225. [DOI] [PMID: 7805842]
4.  Guo, L. and Paiva, N.L. Molecular cloning and expression of alfalfa (Medicago sativa L.) vestitone reductase, the penultimate enzyme in medicarpin biosynthesis. Arch. Biochem. Biophys. 320 (1995) 353–360. [DOI] [PMID: 7625843]
5.  Shao, H., Dixon, R.A. and Wang, X. Crystal structure of vestitone reductase from alfalfa (Medicago sativa L.). J. Mol. Biol. 369 (2007) 265–276. [DOI] [PMID: 17433362]
[EC 1.1.1.348 created 1992 as EC 1.1.1.246, part transferred 2013 to EC 1.1.1.348]
 
 
EC 1.1.1.246      
Transferred entry: pterocarpin synthase. This activity is now known to be catalysed by two enzymes, vestitone reductase (EC 1.1.1.348) and medicarpin synthase (EC 4.2.1.139).
[EC 1.1.1.246 created 1992, deleted 2013]
 
 
EC 1.14.13.53      
Transferred entry: 4′-methoxyisoflavone 2′-hydroxylase. Now EC 1.14.14.89, 4′-methoxyisoflavone 2′-hydroxylase
[EC 1.14.13.53 created 1992, modified 2005, deleted 2018]
 
 
EC 5.5.1.28     Relevance: 56.5%
Accepted name: (–)-kolavenyl diphosphate synthase
Reaction: geranylgeranyl diphosphate = (–)-kolavenyl diphosphate
For diagram of (–)-kolavenyl diphosphate derived diterpenoids, click here
Glossary: (–)-kolavenyl diphosphate = (2E)-5-[(1R,2S,4aS,8aS)-1,2,4a,5-tetramethyl-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-yl]-3-methylpent-2-en-1-yl diposphate
Other name(s): SdKPS; TwTPS14; TwTPS10/KPS; SdCPS2; clerodienyl diphosphate synthase; CLPP
Systematic name: (–)-kolavenyl diphosphate lyase (ring-opening)
Comments: Isolated from the hallucinogenic plant Salvia divinorum (seer’s sage) and the medicinal plant Tripterygium wilfordii (thunder god vine).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hansen, N.L., Heskes, A.M., Hamberger, B., Olsen, C.E., Hallstrom, B.M., Andersen-Ranberg, J. and Hamberger, B. The terpene synthase gene family in Tripterygium wilfordii harbors a labdane-type diterpene synthase among the monoterpene synthase TPS-b subfamily. Plant J. 89 (2017) 429–441. [DOI] [PMID: 27801964]
2.  Chen, X., Berim, A., Dayan, F.E. and Gang, D.R. A (–)-kolavenyl diphosphate synthase catalyzes the first step of salvinorin A biosynthesis in Salvia divinorum. J. Exp. Bot. 68 (2017) 1109–1122. [DOI] [PMID: 28204567]
[EC 5.5.1.28 created 2017]
 
 
EC 4.2.3.186     Relevance: 56.5%
Accepted name: ent-13-epi-manoyl oxide synthase
Reaction: ent-8α-hydroxylabd-13-en-15-yl diphosphate = ent-13-epi-manoyl oxide + diphosphate
For diagram of (–)-kolavenyl diphosphate derived diterpenoids, click here
Glossary: Ent-13-epi-manoyl oxide = (13R)-ent-8,13-epoxylabd-14-ene
Other name(s): SmKSL2; ent-LDPP synthase
Systematic name: ent-8α-hydroxylabd-13-en-15-yl-diphosphate diphosphate-lyase (cyclizing, ent-13-epi-manoyl-oxide-forming)
Comments: Isolated from the plant Salvia miltiorrhiza (red sage).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Cui, G., Duan, L., Jin, B., Qian, J., Xue, Z., Shen, G., Snyder, J.H., Song, J., Chen, S., Huang, L., Peters, R.J. and Qi, X. Functional divergence of diterpene syntheses in the medicinal plant Salvia miltiorrhiza. Plant Physiol. 169 (2015) 1607–1618. [DOI] [PMID: 26077765]
[EC 4.2.3.186 created 2017]
 
 
EC 1.14.14.88     Relevance: 56.3%
Accepted name: isoflavone 3′-hydroxylase
Reaction: formononetin + [reduced NADPH—hemoprotein reductase] + O2 = calycosin + [oxidized NADPH—hemoprotein reductase] + H2O
For diagram of medicarpin and formononetin derivatives biosynthesis, click here
Glossary: calycosin = 3′-hydroxyformononetin
Other name(s): isoflavone 3′-monooxygenase; CYP81E9
Systematic name: formononetin,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (3′-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein. Also acts on biochanin A and other isoflavones with a 4′-methoxy group. Involved in the biosynthesis of the pterocarpin phytoalexins medicarpin and maackiain.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 110183-50-1
References:
1.  Hinderer, W., Flentje, U. and Barz, W. Microsomal isoflavone 2′-hydroxylases and 3′-hydroxylases from chickpea (Cicer arietinum L) cell-suspensions induced for pterocarpan phytoalexin formation. FEBS Lett. 214 (1987) 101–106.
[EC 1.14.14.88 created 1992 as EC 1.14.13.52, transferred 2018 to EC 1.14.14.88]
 
 
EC 4.2.3.95     Relevance: 56.1%
Accepted name: (-)-α-cuprenene synthase
Reaction: (2E,6E)-farnesyl diphosphate = (-)-α-cuprenene + diphosphate
For diagram of biosynthesis of bicyclic sesquiterpenoids derived from bisabolyl cation, click here and for diagram of trichodiene and (–)-α-cuprenene biosynthesis, click here
Other name(s): Cop6
Systematic name: (-)-α-cuprenene hydrolase [cyclizing, (-)-α-cuprenene-forming]
Comments: The enzyme from the fungus Coprinopsis cinerea produces (-)-α-cuprenene with high selectivity.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lopez-Gallego, F., Agger, S.A., Abate-Pella, D., Distefano, M.D. and Schmidt-Dannert, C. Sesquiterpene synthases Cop4 and Cop6 from Coprinus cinereus: catalytic promiscuity and cyclization of farnesyl pyrophosphate geometric isomers. ChemBioChem 11 (2010) 1093–1106. [DOI] [PMID: 20419721]
[EC 4.2.3.95 created 2012]
 
 
EC 4.2.3.6     Relevance: 54.2%
Accepted name: trichodiene synthase
Reaction: (2E,6E)-farnesyl diphosphate = trichodiene + diphosphate
For diagram of biosynthesis of bicyclic sesquiterpenoids derived from bisabolyl cation, click here and for diagram of trichodiene and (–)-α-cuprenene biosynthesis, click here
Other name(s): trichodiene synthetase; sesquiterpene cyclase; trans,trans-farnesyl-diphosphate sesquiterpenoid-lyase
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, trichodiene-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 101915-76-8
References:
1.  Hohn, T.M. and Vanmiddlesworth, F. Purification and characterization of the sesquiterpene cyclase trichodiene synthetase from Fusarium sporotrichioides. Arch. Biochem. Biophys. 251 (1986) 756–761. [DOI] [PMID: 3800398]
2.  Hohn, T.M. and Beremand, P.D. Isolation and nucleotide sequence of a sesquiterpene cyclase gene from the trichothecene-producing fungus Fusarium sporotrichioides. Gene 79 (1989) 131–138. [DOI] [PMID: 2777086]
3.  Rynkiewicz, M.J., Cane, D.E. and Christianson, D.W. Structure of trichodiene synthase from Fusarium sporotrichioides provides mechanistic inferences on the terpene cyclization cascade. Proc. Natl. Acad. Sci. USA 98 (2001) 13543–13548. [DOI] [PMID: 11698643]
[EC 4.2.3.6 created 1989 as EC 4.1.99.6, transferred 2000 to EC 4.2.3.6]
 
 
EC 1.14.19.63     Relevance: 53.9%
Accepted name: pseudobaptigenin synthase
Reaction: (1) calycosin + [reduced NADPH—hemoprotein reductase] + O2 = pseudobaptigenin + [oxidized NADPH—hemoprotein reductase] + 2 H2O
(2) pratensein + [reduced NADPH-hemoprotein reductase] + O2 = 5-hydroxypseudobaptigenin + [oxidized NADPH—hemoprotein reductase] + 2 H2O
Glossary: calycosin = 3′-hydroxyformononetin
pratensein = 3′-hydroxybiochanin A
Systematic name: calycosin,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (methylenedioxy-bridge-forming)
Comments: A cytochrome P-450 (heme-thiolate) enzyme catalysing an oxidative reaction that does not incorporate oxygen into the product. Catalyses a step in the biosynthesis of (–)-maackiain, the main pterocarpan phytoalexin in chickpea (Cicer arietinum).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Clemens S., Barz W. Cytochrome P450-dependent methylenedioxy bridge formation in Cicer arietinum. Phytochemistry 41 (1996) 457–460.
[EC 1.14.19.63 created 2011 as EC 1.14.21.8, transferred 2018 to EC 1.14.19.63]
 
 
EC 1.14.13.104      
Transferred entry: (+)-menthofuran synthase. Now EC 1.14.14.143, (+)-menthofuran synthase
[EC 1.14.13.104 created 2008, deleted 2018]
 
 
EC 1.3.99.25     Relevance: 53.6%
Accepted name: carvone reductase
Reaction: (1) (+)-dihydrocarvone + acceptor = (–)-carvone + reduced acceptor
(2) (–)-isodihydrocarvone + acceptor = (+)-carvone + reduced acceptor
For diagram of (–)-carvone catabolism, click here
Glossary: (+)-dihydrocarvone = (1S,4R)-menth-8-en-2-one
(+)-isodihydrocarvone = (1S,4R)-menth-8-en-2-one
(–)-carvone = (4R)-mentha-1(6),8-dien-6-one = (5R)-2-methyl-5-(prop-1-en-2-yl)cyclohex-2-en-1-one
Systematic name: (+)-dihydrocarvone:acceptor 1,6-oxidoreductase
Comments: This enzyme participates in the carveol and dihydrocarveol degradation pathway of the Gram-positive bacterium Rhodococcus erythropolis DCL14. The enzyme has not been purified, and requires an unknown cofactor, which is different from NAD+, NADP+ or a flavin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  van der Werf, M.J. and Boot, A.M. Metabolism of carveol and dihydrocarveol in Rhodococcus erythropolis DCL14. Microbiology 146 (2000) 1129–1141. [DOI] [PMID: 10832640]
[EC 1.3.99.25 created 2008]
 
 
EC 1.1.1.296     Relevance: 53.2%
Accepted name: dihydrocarveol dehydrogenase
Reaction: menth-8-en-2-ol + NAD+ = menth-8-en-2-one + NADH + H+
For diagram of (–)-carvone catabolism, click here
Glossary: (+)-dihydrocarveol = (1S,2S,4S)-menth-8-en-2-ol
(+)-isodihydrocarveol = (1S,2S,4R)-menth-8-en-2-ol
(+)-neoisodihydrocarveol = (1S,2R,4R)-menth-8-en-2-ol
(–)-dihydrocarvone = (1S,4S)-menth-8-en-2-one
(+)-isodihydrocarvone = (1S,4R)-menth-8-en-2-one
Other name(s): carveol dehydrogenase (ambiguous)
Systematic name: menth-8-en-2-ol:NAD+ oxidoreductase
Comments: This enzyme from the Gram-positive bacterium Rhodococcus erythropolis DCL14 forms part of the carveol and dihydrocarveol degradation pathway. The enzyme accepts all eight stereoisomers of menth-8-en-2-ol as substrate, although some isomers are converted faster than others. The preferred substrates are (+)-neoisodihydrocarveol, (+)-isodihydrocarveol, (+)-dihydrocarveol and (–)-isodihydrocarveol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  van der Werf, M.J. and Boot, A.M. Metabolism of carveol and dihydrocarveol in Rhodococcus erythropolis DCL14. Microbiology 146 (2000) 1129–1141. [DOI] [PMID: 10832640]
[EC 1.1.1.296 created 2008]
 
 
EC 1.14.14.89     Relevance: 51.4%
Accepted name: 4′-methoxyisoflavone 2′-hydroxylase
Reaction: formononetin + [reduced NADPH—hemoprotein reductase] + O2 = 2′-hydroxyformononetin + [oxidized NADPH—hemoprotein reductase] + H2O
For diagram of the biosynthesis of formononetin and derivatives, click here
Other name(s): CYP81E1 (gene name); CYP81E3 (gene name); CYP81E7 (gene name); isoflavone 2′-monooxygenase (ambiguous); isoflavone 2′-hydroxylase (ambiguous)
Systematic name: formononetin,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (2′-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein. Acts on isoflavones with a 4′-methoxy group, such as formononetin and biochanin A. Involved in the biosynthesis of the pterocarpin phytoalexins medicarpin and maackiain. EC 1.14.14.90, isoflavone 2′-hydroxylase, is less specific and acts on other isoflavones as well as 4′-methoxyisoflavones.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 110183-49-8
References:
1.  Hinderer, W., Flentje, U. and Barz, W. Microsomal isoflavone 2′-hydroxylases and 3′-hydroxylases from chickpea (Cicer arietinum L) cell-suspensions induced for pterocarpan phytoalexin formation. FEBS Lett. 214 (1987) 101–106.
2.  Akashi, T., Aoki, T. and Ayabe, S.-I. CYP81E1, a cytochrome P450 cDNA of licorice (Glycyrrhiza echinata L.), encodes isoflavone 2′-hydroxylase. Biochem. Biophys. Res. Commun. 251 (1998) 67–70. [DOI] [PMID: 9790908]
3.  Liu, C.J., Huhman, D., Sumner, L.W. and Dixon, R.A. Regiospecific hydroxylation of isoflavones by cytochrome p450 81E enzymes from Medicago truncatula. Plant J. 36 (2003) 471–484. [PMID: 14617078]
[EC 1.14.14.89 created 1992 as EC 1.14.13.53, modified 2005, transferred 2018 to EC 1.14.14.89]
 
 
EC 1.23.1.3     Relevance: 51.4%
Accepted name: (–)-pinoresinol reductase
Reaction: (–)-lariciresinol + NADP+ = (–)-pinoresinol + NADPH + H+
For diagram of (–)-lariciresinol biosynthesis, click here
Glossary: (–)-lariciresinol = 4-[(2R,3S,4S)-4-[(4-hydroxy-3-methoxyphenyl)methyl]-3-(hydroxymethyl)oxolan-2-yl]-2-methoxyphenol
(–)-pinoresinol = (1R,3aS,4R,6aS)-4,4′-(tetrahydro-1H,3H-furo[3,4-c]furan-1,4-diyl)bis(2-methoxyphenol)
Other name(s): pinoresinol/lariciresinol reductase; pinoresinol-lariciresinol reductases; (–)-pinoresinol-(–)-lariciresinol reductase; PLR
Systematic name: (–)-lariciresinol:NADP+ oxidoreductase
Comments: The reaction is catalysed in vivo in the opposite direction to that shown. A multifunctional enzyme that usually further reduces the product to (+)-secoisolariciresinol [EC 1.23.1.4, (–)-lariciresinol reductase]. Isolated from the plants Thuja plicata (western red cedar) [1], Linum perenne (perennial flax) [2] and Arabidopsis thaliana (thale cress) [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Fujita, M., Gang, D.R., Davin, L.B. and Lewis, N.G. Recombinant pinoresinol-lariciresinol reductases from western red cedar (Thuja plicata) catalyze opposite enantiospecific conversions. J. Biol. Chem. 274 (1999) 618–627. [DOI] [PMID: 9872995]
2.  Hemmati, S., Schmidt, T.J. and Fuss, E. (+)-Pinoresinol/(-)-lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B. FEBS Lett. 581 (2007) 603–610. [DOI] [PMID: 17257599]
3.  Nakatsubo, T., Mizutani, M., Suzuki, S., Hattori, T. and Umezawa, T. Characterization of Arabidopsis thaliana pinoresinol reductase, a new type of enzyme involved in lignan biosynthesis. J. Biol. Chem. 283 (2008) 15550–15557. [DOI] [PMID: 18347017]
[EC 1.23.1.3 created 2013]
 
 
EC 1.14.13.47      
Transferred entry: (S)-limonene 3-monooxygenase. Now EC 1.14.14.99, (S)-limonene 3-monooxygenase
[EC 1.14.13.47 created 1992, modified 2003, deleted 2018]
 
 
EC 3.1.1.83     Relevance: 50.3%
Accepted name: monoterpene ε-lactone hydrolase
Reaction: (1) isoprop(en)ylmethyloxepan-2-one + H2O = 6-hydroxyisoprop(en)ylmethylhexanoate (general reaction)
(2) 4-isopropenyl-7-methyloxepan-2-one + H2O = 6-hydroxy-3-isopropenylheptanoate
(3) 7-isopropyl-4-methyloxepan-2-one + H2O = 6-hydroxy-3,7-dimethyloctanoate
For diagram of (–)-carvone catabolism, click here and for diagram of menthol biosynthesis, click here
Other name(s): MLH
Systematic name: isoprop(en)ylmethyloxepan-2-one lactonohydrolase
Comments: The enzyme catalyses the ring opening of ε-lactones which are formed during degradation of dihydrocarveol by the Gram-positive bacterium Rhodococcus erythropolis DCL14. The enzyme also acts on ethyl caproate, indicating that it is an esterase with a preference for lactones (internal cyclic esters). The enzyme is not stereoselective.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  van der Vlugt-Bergmans , C.J. and van der Werf , M.J. Genetic and biochemical characterization of a novel monoterpene ε-lactone hydrolase from Rhodococcus erythropolis DCL14. Appl. Environ. Microbiol. 67 (2001) 733–741. [DOI] [PMID: 11157238]
[EC 3.1.1.83 created 2008]
 
 
EC 1.14.13.48      
Transferred entry: (S)-limonene 6-monooxygenase. Now classified as EC 1.14.14.51, (S)-limonene 6-monooxygenase
[EC 1.14.13.48 created 1992, modified 2003, deleted 2017]
 
 
EC 1.14.13.49      
Transferred entry: (S)-limonene 7-monooxygenase. Now classified as EC 1.14.14.52, (S)-limonene 7-monooxygenase
[EC 1.14.13.49 created 1992, modified 2003, deleted 2017]
 
 
EC 1.14.13.105     Relevance: 42.5%
Accepted name: monocyclic monoterpene ketone monooxygenase
Reaction: (1) (–)-menthone + NADPH + H+ + O2 = (4R,7S)-7-isopropyl-4-methyloxepan-2-one + NADP+ + H2O
(2) dihydrocarvone + NADPH + H+ + O2 = 4-isopropenyl-7-methyloxepan-2-one + NADP+ + H2O
(3) (iso)-dihydrocarvone + NADPH + H+ + O2 = 6-isopropenyl-3-methyloxepan-2-one + NADP+ + H2O
(4a) 1-hydroxymenth-8-en-2-one + NADPH + H+ + O2 = 7-hydroxy-4-isopropenyl-7-methyloxepan-2-one + NADP+ + H2O
(4b) 7-hydroxy-4-isopropenyl-7-methyloxepan-2-one = 3-isopropenyl-6-oxoheptanoate (spontaneous)
For diagram of (–)-carvone catabolism, click here, for diagram of limonene catabolism, click here and for diagram of menthol biosynthesis, click here
Other name(s): 1-hydroxy-2-oxolimonene 1,2-monooxygenase; dihydrocarvone 1,2-monooxygenase; MMKMO
Systematic name: (–)-menthone,NADPH:oxygen oxidoreductase
Comments: A flavoprotein (FAD). This Baeyer-Villiger monooxygenase enzyme from the Gram-positive bacterium Rhodococcus erythropolis DCL14 has wide substrate specificity, catalysing the lactonization of a large number of monocyclic monoterpene ketones and substituted cyclohexanones [2]. Both (1R,4S)- and (1S,4R)-1-hydroxymenth-8-en-2-one are metabolized, with the lactone product spontaneously rearranging to form 3-isopropenyl-6-oxoheptanoate [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  van der Werf, M.J., Swarts, H.J. and de Bont, J.A. Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene. Appl. Environ. Microbiol. 65 (1999) 2092–2102. [PMID: 10224006]
2.  Van Der Werf, M.J. Purification and characterization of a Baeyer-Villiger mono-oxygenase from Rhodococcus erythropolis DCL14 involved in three different monocyclic monoterpene degradation pathways. Biochem. J. 347 (2000) 693–701. [PMID: 10769172]
3.  van der Werf, M.J. and Boot, A.M. Metabolism of carveol and dihydrocarveol in Rhodococcus erythropolis DCL14. Microbiology 146 (2000) 1129–1141. [DOI] [PMID: 10832640]
[EC 1.14.13.105 created 2008]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald