The Enzyme Database

Your query returned 2 entries.    printer_iconPrintable version



EC 1.14.13.182     
Accepted name: 2-heptyl-3-hydroxy-4(1H)-quinolone synthase
Reaction: 2-heptyl-4(1H)-quinolone + NADH + H+ + O2 = 2-heptyl-3-hydroxy-4(1H)-quinolone + NAD+ + H2O
Glossary: 2-heptyl-4(1H)-quinolone = 2-heptyl-4-hydroxyquinoline
2-heptyl-3-hydroxy-4(1H)-quinolone = 2-heptyl-3,4-dihydroxyquinoline
Other name(s): PqsH; 2-heptyl-3,4-dihydroxyquinoline synthase
Systematic name: 2-heptyl-4(1H)-quinolone,NADH:oxygen oxidoreductase (3-hydroxylating)
Comments: The enzyme from the bacterium Pseudomonas aeruginosa catalyses the terminal step in biosynthesis of the signal molecule 2-heptyl-3,4-dihydroxyquinoline that plays a role in regulation of virulence genes.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Schertzer, J.W., Brown, S.A. and Whiteley, M. Oxygen levels rapidly modulate Pseudomonas aeruginosa social behaviours via substrate limitation of PqsH. Mol. Microbiol. 77 (2010) 1527–1538. [DOI] [PMID: 20662781]
[EC 1.14.13.182 created 2013]
 
 
EC 2.3.1.262     
Accepted name: anthraniloyl-CoA anthraniloyltransferase
Reaction: anthraniloyl-CoA + malonyl-CoA = (2-aminobenzoyl)acetyl-CoA + CoA + CO2 (overall reaction)
(1a) anthraniloyl-CoA + L-cysteinyl-[PqsD protein] = S-anthraniloyl-L-cysteinyl-[PqsD protein] + CoA
(1b) S-anthraniloyl-L-cysteinyl-[PqsD protein] + malonyl-CoA = (2-aminobenzoyl)acetyl-CoA + CO2 + L-cysteinyl-[PqsD protein]
Glossary: anthraniloyl-CoA = 2-aminobenzoyl-CoA
Other name(s): pqsD (gene name)
Systematic name: anthraniloyl-CoA:malonyl-CoA anthraniloyltransferase
Comments: The enzyme, characterized from the bacterium Pseudomonas aeruginosa, participates in the synthesis of the secondary metabolites 2-heptyl-3-hydroxy-4(1H)-quinolone and 4-hydroxy-2(1H)-quinolone. The enzyme transfers an anthraniloyl group from anthraniloyl-CoA to an internal L-cysteine residue, followed by its transfer to malonyl-CoA to produce a short-lived product that can cyclize spontaneously to form 4-hydroxy-2(1H)-quinolone. However, when EC 3.1.2.32, 2-aminobenzoylacetyl-CoA thioesterase, is present, it removes the CoA moiety from the product, forming the stable (2-aminobenzoyl)acetate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Bera, A.K., Atanasova, V., Robinson, H., Eisenstein, E., Coleman, J.P., Pesci, E.C. and Parsons, J.F. Structure of PqsD, a Pseudomonas quinolone signal biosynthetic enzyme, in complex with anthranilate. Biochemistry 48 (2009) 8644–8655. [DOI] [PMID: 19694421]
2.  Dulcey, C.E., Dekimpe, V., Fauvelle, D.A., Milot, S., Groleau, M.C., Doucet, N., Rahme, L.G., Lepine, F. and Deziel, E. The end of an old hypothesis: the pseudomonas signaling molecules 4-hydroxy-2-alkylquinolines derive from fatty acids, not 3-ketofatty acids. Chem. Biol. 20 (2013) 1481–1491. [DOI] [PMID: 24239007]
3.  Drees, S.L. and Fetzner, S. PqsE of Pseudomonas aeruginosa acts as pathway-specific thioesterase in the biosynthesis of alkylquinolone signaling molecules. Chem. Biol. 22 (2015) 611–618. [DOI] [PMID: 25960261]
[EC 2.3.1.262 created 2017]
 
 


Data © 2001–2021 IUBMB
Web site © 2005–2021 Andrew McDonald