The Enzyme Database

Your query returned 4 entries.    printer_iconPrintable version

EC 1.3.8.4     
Accepted name: isovaleryl-CoA dehydrogenase
Reaction: isovaleryl-CoA + electron-transfer flavoprotein = 3-methylcrotonyl-CoA + reduced electron-transfer flavoprotein
Other name(s): isovaleryl-coenzyme A dehydrogenase; isovaleroyl-coenzyme A dehydrogenase; 3-methylbutanoyl-CoA:(acceptor) oxidoreductase
Systematic name: 3-methylbutanoyl-CoA:electron-transfer flavoprotein oxidoreductase
Comments: Contains a tightly-bound FAD cofactor. Pentanoate can act as donor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37274-61-6
References:
1.  Bachhawat, B.K., Robinson, W.G. and Coon, M.J. Enzymatic carboxylation of β-hydroxyisovaleryl coenzyme A. J. Biol. Chem. 219 (1956) 539–550. [PMID: 13319276]
2.  Ikeda, Y. and Tanaka, K. Purification and characterization of isovaleryl coenzyme A dehydrogenase from rat liver mitochondria. J. Biol. Chem. 258 (1983) 1077–1085. [PMID: 6401713]
3.  Tanaka, K., Budd, M.A., Efron, M.L. and Isselbacher, K.J. Isovaleric acidemia: a new genetic defect of leucine metabolism. Proc. Natl. Acad. Sci. USA 56 (1966) 236–242. [DOI] [PMID: 5229850]
[EC 1.3.8.4 created 1978 as EC 1.3.99.10, modified 1986, transferred 2012 to EC 1.3.8.4]
 
 
EC 1.3.99.10      
Transferred entry: isovaleryl-CoA dehydrogenase. Now EC 1.3.8.4, isovaleryl-CoA dehydrogenase
[EC 1.3.99.10 created 1978, modified 1986, deleted 2012]
 
 
EC 2.3.1.93     
Accepted name: 13-hydroxylupanine O-tigloyltransferase
Reaction: (E)-2-methylcrotonoyl-CoA + 13-hydroxylupanine = CoA + 13-[(E)-2-methylcrotonoyl]oxylupanine
Glossary: (E)-2-methylcrotonoyl-CoA = tigloyl-CoA = (E)-2-methylbut-2-enoyl-CoA
Other name(s): tigloyl-CoA:13-hydroxylupanine O-tigloyltransferase; 13-hydroxylupanine acyltransferase
Systematic name: (E)-2-methylcrotonoyl-CoA:13-hydroxylupanine O-2-methylcrotonoyltransferase
Comments: Benzoyl-CoA and, more slowly, pentanoyl-CoA, 3-methylbutanoyl-CoA and butanoyl-CoA can act as acyl donors. Involved in the synthesis of lupanine alkaloids.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 85341-00-0
References:
1.  Wink, M. and Hartmann, T. Enzymatic synthesis of quinolizidine alkaloid esters: a tigloyl-CoA:13-hydroxylupanine O-tigloyl transferase from Lupinus albus L. Planta 156 (1982) 560–565. [PMID: 24272737]
2.  Okada, T.. Hirai, M.Y., Suzuki, H., Yamazaki, M. and Saito, K. Molecular characterization of a novel quinolizidine alkaloid O-tigloyltransferase: cDNA cloning, catalytic activity of recombinant protein and expression analysis in Lupinus plants. Plant Cell Physiol. 46 (2005) 233–244. [PMID: 15659437]
3.  Suzuki, H., Murakoshi, I. and Saito, K. A novel O-tigloyltransferase for alkaloid biosynthesis in plants. Purification, characterization, and distribution in Lupinus plants. J. Biol. Chem. 269 (1994) 15853–15860. [PMID: 8195240]
[EC 2.3.1.93 created 1986, modified 2011]
 
 
EC 2.3.1.300     
Accepted name: branched-chain β-ketoacyl-[acyl-carrier-protein] synthase
Reaction: (1) 3-methylbutanoyl-CoA + a malonyl-[acyl-carrier protein] = a 5-methyl-3-oxohexanoyl-[acyl-carrier-protein] + CoA + CO2
(2) 2-methylpropanoyl-CoA + a malonyl-[acyl-carrier protein] = a 4-methyl-3-oxopentanoyl-[acyl-carrier-protein] + CoA + CO2
(3) (2S)-2-methylbutanoyl-CoA + a malonyl-[acyl-carrier protein] = a (4S)-4-methyl-3-oxohexanoyl-[acyl-carrier-protein] + CoA + CO2
Glossary: 3-methylbutanoyl-CoA = isovaleryl-CoA
2-methylpropanoyl-CoA = isobutanoyl-CoA = isobutyryl-CoA
Systematic name: 3-methylbutanoyl-CoA:malonyl-[acyl-carrier protein] C-acyltransferase
Comments: The enzyme is responsible for initiating branched-chain fatty acid biosynthesis by the dissociated (or type II) fatty-acid biosynthesis system (FAS-II) in some bacteria, using molecules derived from degradation of the branched-chain amino acids L-leucine, L-valine, and L-isoleucine to form the starting molecules for elongation by the FAS-II system. In some organisms the enzyme is also able to use acetyl-CoA, leading to production of a mix of branched-chain and straight-chain fatty acids [3] (cf. EC 2.3.1.180, β-ketoacyl-[acyl-carrier-protein] synthase III).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Han, L., Lobo, S. and Reynolds, K.A. Characterization of β-ketoacyl-acyl carrier protein synthase III from Streptomyces glaucescens and its role in initiation of fatty acid biosynthesis. J. Bacteriol. 180 (1998) 4481–4486. [DOI] [PMID: 9721286]
2.  Choi, K.H., Heath, R.J. and Rock, C.O. β-ketoacyl-acyl carrier protein synthase III (FabH) is a determining factor in branched-chain fatty acid biosynthesis. J. Bacteriol. 182 (2000) 365–370. [DOI] [PMID: 10629181]
3.  Khandekar, S.S., Gentry, D.R., Van Aller, G.S., Warren, P., Xiang, H., Silverman, C., Doyle, M.L., Chambers, P.A., Konstantinidis, A.K., Brandt, M., Daines, R.A. and Lonsdale, J.T. Identification, substrate specificity, and inhibition of the Streptococcus pneumoniae β-ketoacyl-acyl carrier protein synthase III (FabH). J. Biol. Chem. 276 (2001) 30024–30030. [DOI] [PMID: 11375394]
4.  Singh, A.K., Zhang, Y.M., Zhu, K., Subramanian, C., Li, Z., Jayaswal, R.K., Gatto, C., Rock, C.O. and Wilkinson, B.J. FabH selectivity for anteiso branched-chain fatty acid precursors in low-temperature adaptation in Listeria monocytogenes. FEMS Microbiol. Lett. 301 (2009) 188–192. [DOI] [PMID: 19863661]
5.  Yu, Y.H., Hu, Z., Dong, H.J., Ma, J.C. and Wang, H.H. Xanthomonas campestris FabH is required for branched-chain fatty acid and DSF-family quorum sensing signal biosynthesis. Sci. Rep. 6:32811 (2016). [DOI] [PMID: 27595587]
[EC 2.3.1.300 created 2021]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald