The Enzyme Database

Your query returned 12 entries.    printer_iconPrintable version

EC 1.3.8.15     
Accepted name: 3-(aryl)acrylate reductase
Reaction: (1) phloretate + electron-transfer flavoprotein = 4-coumarate + reduced electron-transfer flavoprotein
(2) 3-phenylpropanoate + electron-transfer flavoprotein = trans-cinnamate + reduced electron-transfer flavoprotein
(3) 3-(1H-indol-3-yl)propanoate + electron-transfer flavoprotein = 3-(indol-3-yl)acrylate + reduced electron-transfer flavoprotein
Glossary: phloretate = 3-(4-hydroxyphenyl)propanoate
crotonate = (2E)-but-2-enoate
Other name(s): acdA (gene name)
Systematic name: 3-(phenyl)propanoate:electron-transfer flavoprotein 2,3-oxidoreductase
Comments: The enzyme, found in some amino acid-fermenting anaerobic bacteria, participates in the fermentation pathways of L-phenylalanine, L-tyrosine, and L-tryptophan. Unlike EC 1.3.1.31, 2-enoate reductase, this enzyme has minimal activity with crotonate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Dodd, D., Spitzer, M.H., Van Treuren, W., Merrill, B.D., Hryckowian, A.J., Higginbottom, S.K., Le, A., Cowan, T.M., Nolan, G.P., Fischbach, M.A. and Sonnenburg, J.L. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 551 (2017) 648–652. [PMID: 29168502]
[EC 1.3.8.15 created 2019]
 
 
EC 1.14.13.21      
Transferred entry: flavonoid 3′-monooxygenase. Now EC 1.14.14.82, flavonoid 3′-monooxygenase.
[EC 1.14.13.21 created 1983, deleted 2018]
 
 
EC 1.14.14.82     
Accepted name: flavonoid 3′-monooxygenase
Reaction: a flavonoid + [reduced NADPH—hemoprotein reductase] + O2 = a 3′-hydroxyflavonoid + [oxidized NADPH—hemoprotein reductase] + H2O
For diagram of flavonoid biosynthesis, click here and for diagram of the biosynthesis of naringenin derivatives, click here
Other name(s): CYP75B1 (gene name); flavonoid 3′-hydroxylase; flavonoid 3-hydroxylase (incorrect); NADPH:flavonoid-3′-hydroxylase (incorrect); flavonoid 3-monooxygenase (incorrect)
Systematic name: flavonoid,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (3′-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein found in plants. Acts on a number of flavonoids, including the flavanone naringenin and the flavone apigenin. Does not act on 4-coumarate or 4-coumaroyl-CoA.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 75991-44-5
References:
1.  Forkmann, G., Heller, W. and Grisebach, H. Anthocyanin biosynthesis in flowers of Matthiola incana flavanone 3- and flavonoid 3′-hydroxylases. Z. Naturforsch. C: Biosci. 35 (1980) 691–695.
2.  Brugliera, F., Barri-Rewell, G., Holton, T.A. and Mason, J.G. Isolation and characterization of a flavonoid 3′-hydroxylase cDNA clone corresponding to the Ht1 locus of Petunia hybrida. Plant J. 19 (1999) 441–451. [PMID: 10504566]
3.  Schoenbohm, C., Martens, S., Eder, C., Forkmann, G. and Weisshaar, B. Identification of the Arabidopsis thaliana flavonoid 3′-hydroxylase gene and functional expression of the encoded P450 enzyme. Biol. Chem. 381 (2000) 749–753. [PMID: 11030432]
[EC 1.14.14.82 created 1983 as EC 1.14.13.21, transferred 2018 to EC 1.14.14.82]
 
 
EC 1.14.17.2      
Deleted entry:  4-coumarate 3-monooxygenase. Now included with EC 1.14.18.1 monophenol monooxygenase
[EC 1.14.17.2 created 1972, deleted 1984]
 
 
EC 2.4.1.120     
Accepted name: sinapate 1-glucosyltransferase
Reaction: UDP-α-D-glucose + sinapate = UDP + 1-O-sinapoyl-β-D-glucose
Glossary: sinapate = (2E)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate
Other name(s): uridine diphosphoglucose-sinapate glucosyltransferase; UDP-glucose:sinapic acid glucosyltransferase; uridine 5′-diphosphoglucose-hydroxycinnamic acid acylglucosyltransferase; UDP-glucose:sinapate D-glucosyltransferase
Systematic name: UDP-α-D-glucose:sinapate D-glucosyltransferase
Comments: Some other hydroxycinnamates, including 4-coumarate, ferulate and caffeate, can act as acceptors, but more slowly. Only glucose esters, not glucosides, are formed (cf. EC 2.4.1.126 hydroxycinnamate 4-β-glucosyltransferase).
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, CAS registry number: 74082-53-4
References:
1.  Strack, D. Enzymatic synthesis of 1-sinapoylglucose from free sinapic acid and UDP-glucose by a cell free system from Raphanus sativus seedlings. Z. Naturforsch. C: Biosci. 35 (1980) 204–208.
[EC 2.4.1.120 created 1984]
 
 
EC 2.4.1.126     
Accepted name: hydroxycinnamate 4-β-glucosyltransferase
Reaction: UDP-glucose + trans-4-hydroxycinnamate = UDP + 4-O-β-D-glucosyl-4-hydroxycinnamate
Other name(s): uridine diphosphoglucose-hydroxycinnamate glucosyltransferase; UDP-glucose-hydroxycinnamate glucosyltransferase; hydroxycinnamoyl glucosyltransferase
Systematic name: UDP-glucose:trans-4-hydroxycinnamate 4-O-β-D-glucosyltransferase
Comments: Acts on 4-coumarate, ferulate, caffeate and sinapate, forming a mixture of 4-glucosides and glucose esters (cf. EC 2.4.1.120 sinapate 1-glucosyltransferase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 77848-85-2
References:
1.  Fleuriet, A., Macheix, J.J., Suen, R. and Ibrahim, R.K. Partial purifiction and some properties of a hydroxycinnamoyl glucosyltransferase from tomato fruits. Z. Naturforsch. C: Biosci. 35 (1980) 967–972.
[EC 2.4.1.126 created 1984]
 
 
EC 2.4.1.177     
Accepted name: cinnamate β-D-glucosyltransferase
Reaction: UDP-glucose + trans-cinnamate = UDP + trans-cinnamoyl β-D-glucoside
Other name(s): uridine diphosphoglucose-cinnamate glucosyltransferase; UDPG:t-cinnamate glucosyltransferase
Systematic name: UDP-glucose:trans-cinnamate β-D-glucosyltransferase
Comments: 4-Coumarate, 2-coumarate, benzoate, feruloate and caffeate can also act as acceptors, but more slowly. Involved in the biosynthesis of chlorogenic acid in the root of the sweet potato, Ipomoea batatas.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 83744-95-0
References:
1.  Shimizu, T. and Kojima, M. Partial purification and characterization of UDPG:t-cinnamate glucosyltransferase in the root of sweet potato, Ipomoea batatas Lam. J. Biochem. (Tokyo) 95 (1984) 205–213. [PMID: 6231280]
[EC 2.4.1.177 created 1989]
 
 
EC 2.4.1.271     
Accepted name: crocetin glucosyltransferase
Reaction: (1) UDP-α-D-glucose + crocetin = UDP + β-D-glucosyl crocetin
(2) UDP-α-D-glucose + β-D-glucosyl crocetin = UDP + bis(β-D-glucosyl) crocetin
(3) UDP-α-D-glucose + β-D-gentiobiosyl crocetin = UDP + β-D-gentiobiosyl β-D-glucosyl crocetin
For diagram of crocin biosynthesis, click here
Other name(s): crocetin GTase; UGTCs2; UGT75L6; UDP-glucose:crocetin glucosyltransferase; UDP-glucose:crocetin 8-O-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:crocetin 8-O-D-glucosyltransferase
Comments: In the plants Crocus sativus and Gardenia jasminoides this enzyme esterifies a free carboxyl group of crocetin and some crocetin glycosyl esters. The enzyme from Gardenia can also form glucosyl esters with 4-coumarate, caffeate and ferulate [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Côté, F., Cormier, F., Dufresne, C. and Willemot, C. Properties of a glucosyltransferase involved in crocin synthesis. Plant Sci. 153 (2000) 55–63.
2.  Moraga, A.R., Nohales, P.F., Perez, J.A. and Gomez-Gomez, L. Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas. Planta 219 (2004) 955–966. [DOI] [PMID: 15605174]
3.  Nagatoshi, M., Terasaka, K., Owaki, M., Sota, M., Inukai, T., Nagatsu, A. and Mizukami, H. UGT75L6 and UGT94E5 mediate sequential glucosylation of crocetin to crocin in Gardenia jasminoides. FEBS Lett. 586 (2012) 1055–1061. [DOI] [PMID: 22569263]
[EC 2.4.1.271 created 2011]
 
 
EC 2.8.3.17     
Accepted name: 3-(aryl)acryloyl-CoA:(R)-3-(aryl)lactate CoA-transferase
Reaction: (1) (E)-cinnamoyl-CoA + (R)-(phenyl)lactate = (E)-cinnamate + (R)-(phenyl)lactoyl-CoA
(2) (E)-4-coumaroyl-CoA + (R)-3-(4-hydroxyphenyl)lactate = 4-coumarate + (R)-3-(4-hydroxyphenyl)lactoyl-CoA
(3) 3-(indol-3-yl)acryloyl-CoA + (R)-3-(indol-3-yl)lactate = 3-(indol-3-yl)acrylate + (R)-3-(indol-3-yl)lactoyl-CoA
Other name(s): FldA; cinnamoyl-CoA:phenyllactate CoA-transferase
Systematic name: 3-(aryl)acryloyl-CoA:(R)-3-(aryl)lactate CoA-transferase
Comments: The enzyme, found in some amino acid-fermenting anaerobic bacteria, participates in the fermentation pathways of L-phenylalanine, L-tyrosine, and L-tryptophan. It forms a complex with EC 4.2.1.175, (R)-3-(aryl)lactoyl-CoA dehydratase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 289682-21-9
References:
1.  Dickert, S., Pierik, A.J., Linder, D. and Buckel, W. The involvement of coenzyme A esters in the dehydration of (R)-phenyllactate to (E)-cinnamate by Clostridium sporogenes. Eur. J. Biochem. 267 (2000) 3874–3884. [DOI] [PMID: 10849007]
2.  Dodd, D., Spitzer, M.H., Van Treuren, W., Merrill, B.D., Hryckowian, A.J., Higginbottom, S.K., Le, A., Cowan, T.M., Nolan, G.P., Fischbach, M.A. and Sonnenburg, J.L. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 551 (2017) 648–652. [PMID: 29168502]
[EC 2.8.3.17 created 2003, modified 2019]
 
 
EC 2.8.3.23     
Accepted name: caffeate CoA-transferase
Reaction: 3-(3,4-dihydroxyphenyl)propanoyl-CoA + (2E)-3-(3,4-dihydroxyphenyl)prop-2-enoate = 3-(3,4-dihydroxyphenyl)propanoate + (2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl-CoA
Glossary: 3-(3,4-dihydroxyphenyl)propanoate = hydrocaffeate
(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoate = (2E)-3-(3,4-dihydroxyphenyl)acrylate = trans-caffeate
Other name(s): CarA
Systematic name: 3-(3,4-dihydroxyphenyl)propanoyl-CoA:(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoate CoA-transferase
Comments: The enzyme, isolated from the bacterium Acetobacterium woodii, catalyses an energy-saving CoA loop for caffeate activation. In addition to caffeate, the enzyme can utilize 4-coumarate or ferulate as CoA acceptor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hess, V., Gonzalez, J.M., Parthasarathy, A., Buckel, W. and Muller, V. Caffeate respiration in the acetogenic bacterium Acetobacterium woodii: a coenzyme A loop saves energy for caffeate activation. Appl. Environ. Microbiol. 79 (2013) 1942–1947. [DOI] [PMID: 23315745]
[EC 2.8.3.23 created 2015]
 
 
EC 4.1.1.102     
Accepted name: phenacrylate decarboxylase
Reaction: (1) 4-coumarate = 4-vinylphenol + CO2
(2) trans-cinnamate = styrene + CO2
(3) ferulate = 4-vinylguaiacol + CO2
Glossary: 4-coumarate = 3-(4-hydroxyphenyl)prop-2-enoate
trans-cinnamate = (2E)-3-phenylprop-2-enoate
ferulate = 4-hydroxy-3-methoxycinnamate
Other name(s): FDC1 (gene name); ferulic acid decarboxylase
Systematic name: 3-phenylprop-2-enoate carboxy-lyase
Comments: The enzyme, found in fungi, catalyses the decarboxylation of phenacrylic acids present in plant cell walls. It requires a prenylated flavin cofactor that is produced by EC 2.5.1.129, flavin prenyltransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Mukai, N., Masaki, K., Fujii, T., Kawamukai, M. and Iefuji, H. PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae. J. Biosci. Bioeng. 109 (2010) 564–569. [DOI] [PMID: 20471595]
2.  Bhuiya, M.W., Lee, S.G., Jez, J.M. and Yu, O. Structure and mechanism of ferulic acid decarboxylase (FDC1) from Saccharomyces cerevisiae. Appl. Environ. Microbiol. 81 (2015) 4216–4223. [DOI] [PMID: 25862228]
3.  Payne, K.A., White, M.D., Fisher, K., Khara, B., Bailey, S.S., Parker, D., Rattray, N.J., Trivedi, D.K., Goodacre, R., Beveridge, R., Barran, P., Rigby, S.E., Scrutton, N.S., Hay, S. and Leys, D. New cofactor supports α,β-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition. Nature 522 (2015) 497–501. [DOI] [PMID: 26083754]
[EC 4.1.1.102 created 2015]
 
 
EC 6.2.1.12     
Accepted name: 4-coumarate—CoA ligase
Reaction: ATP + 4-coumarate + CoA = AMP + diphosphate + 4-coumaroyl-CoA
For diagram of chalcone and stilbene biosynthesis, click here
Glossary: 4-coumarate = 3-(4-hydroxyphenyl)prop-2-enoate
Other name(s): 4-coumaroyl-CoA synthetase; p-coumaroyl CoA ligase; p-coumaryl coenzyme A synthetase; p-coumaryl-CoA synthetase; p-coumaryl-CoA ligase; feruloyl CoA ligase; hydroxycinnamoyl CoA synthetase; 4-coumarate:coenzyme A ligase; caffeolyl coenzyme A synthetase; p-hydroxycinnamoyl coenzyme A synthetase; feruloyl coenzyme A synthetase; sinapoyl coenzyme A synthetase; 4-coumaryl-CoA synthetase; hydroxycinnamate:CoA ligase; p-coumaryl-CoA ligase; p-hydroxycinnamic acid:CoA ligase; 4CL
Systematic name: 4-coumarate:CoA ligase (AMP-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37332-51-7
References:
1.  Gross, G.G. and Zenk, M.H. Isolation and properties of hydroxycinnamate: CoA ligase from lignifying tissue of Forsythia. Eur. J. Biochem. 42 (1974) 453–459. [DOI] [PMID: 4364250]
2.  Lindl, T., Kreuzaler, F. and Hahlbrock, F. Synthesis of p-coumaroyl coenzyme A with a partially purified p-coumarate:CoA ligase from cell suspension cultures of soybean (Glycine max). Biochim. Biophys. Acta 302 (1973) 457–464. [DOI] [PMID: 4699252]
[EC 6.2.1.12 created 1976]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald